
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MASTER THESIS 
 
 
 
 
 
 
 
 
 
 
 

 
TITLE: Deployment of NFV and SFC scenarios 
 
MASTER DEGREE:  Master's Degree in Telecommunications Engineering 
 
AUTHOR:  Pau Capdevila i Pujol 
 
ADVISOR: David Rincón Rivera 
 
DATE:  February, 17th 2017 
 





 

 
Títol: Desplegament d’escenaris NFV i SFC 
 
Autor: Pau Capdevila i Pujol 
 
Director: David Rincón Rivera 
 
Data: 17 de febrer del 2017 
 

 
 
Resum 
 

 
Els serveis de telecomunicacions s’han dissenyat tradicionalment enllaçant 
dispositius de maquinari i definint els mecanismes per propiciar la 
interoperabilitat entre aquests. Els dispositius físics sovint són exclusius per a 
un sol servei i estan basats en tecnologia propietària. Per altra banda, el model 
d'estandardització vigent parteix de la definició de protocols rigorosos per tal 
d’assolir els alts nivells de fiabilitat que han caracteritzat l’entorn d’operador. 
 
L’aprovisionament de nous serveis suposa dificultats a diversos nivells ja que 
són necessàries modificacions en la topologia de xarxa per tal d’intercalar-hi 
els dispositius requerits. Això comporta ineficiències en el desplegament i 
l’increment dels costos operatius. Per superar els actuals impediments cal 
flexibilitzar la instal·lació de noves funcions de xarxa i la seva inserció en la 
cadena d’elements que composen un servei. 
 
El model vigent a les operadores tradicionals s’ha vist superat per l’oferta dels 
proveïdors de continguts que operen a traves d’Internet (Facebook, Netflix, 
etc.), amb cicles de producte i de desenvolupament molt dinàmics. Això ha 
suposat una competència i una sobrecàrrega per la infraestructura dels les 
operadors i els ha forçat a cercar noves tecnologies per irrompre de nou al 
mercat amb serveis flexibles i rendibles.  
 
La virtualització de funcions de xarxa (NFV) i l’encadenament de funcions de 
servei (SFC) formen part del seguit d’iniciatives iniciades pels proveïdors de 
servei per tal de recuperar el lideratge. En el present projecte s’ha experimentat 
amb algunes de les tecnologies, ja disponibles, que estan cridades a vertebrar 
els nous paradigmes de xarxa (5G, IOT) i permetre nous serveis de valor afegit 
sobre infraestructures eficients. 
 
Concretament s’han desplegat escenaris SFC amb Open Platform for NFV 
(OPNFV), projecte de la Linux Foundation. S’han demostrat algun dels casos 
d’ús de la tecnologia NFV amb aplicació a laboratoris docents. Tot i que l’actual 
implementació no assoleix un grau de fiabilitat apte per a entorns de producció, 
ofereix un entorn adequat pel desenvolupament de noves millores i l'avaluació 
funcional i de rendiment d’infraestructures de xarxa virtualitzades. 
 





 

 
Title: Deployment of NFV and SFC scenarios 
 
Author: Pau Capdevila i Pujol 
 
Advisor: David Rincón Rivera 
 
Date: February, 17th 2017 
 

 
 
Abstract 
 

 
Telecommunications services have been traditionally designed linking 
hardware devices and providing mechanisms so that they can interoperate. 
Those devices are usually specific to a single service and are based on 
proprietary technology. On the other hand, the current model works by defining 
standards and strict protocols to achieve high levels of quality and reliability 
which have defined the carrier-class provider environment. 
 
Provisioning new services represent challenges at different levels because 
inserting the required devices involve changes in the network topology. This 
leads to slow deployment times and increased operational costs. To overcome 
the current burdens network function installation and insertion processes into 
the current service topology needs to be streamlined to allow greater flexibility. 
 
The current service provider model has been disrupted by the over-the-top 
Internet content providers (Facebook, Netflix, etc.), with short product cycles 
and fast development pace of new services. The content provider irruption has 
meant a competition and stress over service providers’ infrastructure and has 
forced telco companies to research new technologies to recover market share 
with flexible and revenue-generating services. 
 
Network Function Virtualization (NFV) and Service Function Chaining (SFC) 
are some of the initiatives led by the Communication Service Providers to 
regain the lost leadership. This project focuses on experimenting with some of 
these already available new technologies, which are expected to be the 
foundation of the new network paradigms (5G, IOT) and support new value-
added services over cost-efficient telecommunication infrastructures. 
 
Specifically, SFC scenarios have been deployed with Open Platform for NFV 
(OPNFV), a Linux Foundation project. Some use cases of the NFV technology 
are demonstrated applied to teaching laboratories. Although the current 
implementation does not achieve a production degree of reliability, it provides 
a suitable environment for the development of new functional improvements 
and evaluation of the performance of virtualized network infrastructures. 
 





 

 
CONTENTS 

 
 

INTRODUCTION ................................................................................................ 1 

CHAPTER 1. INTRODUCTION TO NFV AND SFC ........................................... 3 

1.1. Limitations of the current model...................................................................................... 3 

1.2. Introduction to NFV ........................................................................................................... 4 
1.2.1. ETSI NFV Architectural Framework ....................................................................... 6 

1.3. Integration of SDN and NFV ............................................................................................. 7 

1.4. Introduction to SFC ........................................................................................................... 9 
1.4.1. IETF SFC Architecture ......................................................................................... 11 

CHAPTER 2. STATE OF THE ART IN OPEN SOURCE NFV ......................... 13 

2.1. NFV Historic Phases ....................................................................................................... 14 

2.2. An open source stack for NFV ....................................................................................... 15 
2.2.1 NFV Infrastructure ................................................................................................ 15 
2.2.2 Network control plane ........................................................................................... 15 
2.2.3 Network data plane ............................................................................................... 15 
2.2.4 NFV Integrated platforms ..................................................................................... 16 

2.3. OpenStack ........................................................................................................................ 17 
2.3.1 OpenStack for NFV .............................................................................................. 18 
2.3.2 Nova ..................................................................................................................... 19 
2.3.3 Neutron ................................................................................................................. 20 
2.3.4 Heat ...................................................................................................................... 21 
2.3.5 Tacker ................................................................................................................... 22 
2.3.6 Fuel ....................................................................................................................... 22 

2.4. OpenDaylight ................................................................................................................... 22 

2.5. Open vSwitch ................................................................................................................... 24 

2.6. Open Platform for NFV .................................................................................................... 26 
2.6.1 OPNFV architecture ............................................................................................. 27 
2.6.2 Installers for OPNFV ............................................................................................. 28 
2.6.3 Functional testing in OPNFV ................................................................................ 28 

CHAPTER 3. DEPLOYMENT AND TESTING OF SFC SCENARIOS ............. 31 

 OPNFV reference POD .................................................................................................... 31 

 Scenario Deployment Workflow ..................................................................................... 32 
3.2.1 Automated Scenario Deployment ......................................................................... 33 
3.2.2 Deploy Script Overview ........................................................................................ 33 
3.2.3 Deployment hardware adapter customization ...................................................... 34 



                            

 

 Virtual lab environment ................................................................................................... 34 

 Bare-metal lab environment ........................................................................................... 35 

 Details of the SFC scenario ............................................................................................ 38 
3.5.1 Tacker workflow for VNF and SFC ....................................................................... 39 
3.5.2 Scenario high level logical topology ..................................................................... 40 
3.5.3 Scenario limitations .............................................................................................. 41 

 Tests over the SFC scenario .......................................................................................... 41 
3.6.1 Scenario functional tests ...................................................................................... 42 

CHAPTER 4. CONCLUSIONS ......................................................................... 45 

4.1. Conclusions ..................................................................................................................... 45 

4.2. Environmental impact ..................................................................................................... 46 

4.3. Future lines of study ....................................................................................................... 46 

REFERENCES ................................................................................................. 49 

ACRONYMS .................................................................................................... 57 

ANNEX A. NFV MANAGEMENT AND ORCHESTRATION ......................... 59 

A.1. Standardization of MANO ............................................................................................... 59 
A.1.1. TOSCA ................................................................................................................. 60 
A.1.2. TOSCA NFV Profile .............................................................................................. 61 

A.2. Management software for NFV ....................................................................................... 62 
A.2.1. Open source MANO implementations .................................................................. 62 
A.2.2. Case study: Tacker ............................................................................................... 64 
A.2.3. Case study: RIFT.ware ......................................................................................... 65 
A.2.4. Case study: Open Source MANO......................................................................... 66 
A.2.5. Proprietary MANO implementations ..................................................................... 67 
A.2.6. State of the art in MANO summary ...................................................................... 68 

ANNEX B. NFV USE CASE EXAMPLE ....................................................... 69 

B.1. Virtualization of the CPE ................................................................................................. 69 

ANNEX C. SFC ENCAPSULATION: NSH ................................................... 71 

C.1. Service Function Chains and Paths .............................................................................. 71 

C.2. SFC Control Plane ........................................................................................................... 71 

C.3. NSH: the SFC encapsulation .......................................................................................... 72 

ANNEX D. STATE OF THE ART IN VIRTUALIZED COMPUTING .............. 75 

D.1. Advances in virtualization and hardware architectures .............................................. 75 
D.1.1. Virtualized computing ........................................................................................... 75 
D.1.2. Hardware architecture enhancements ................................................................. 77 
D.1.3. Network I/O acceleration ...................................................................................... 78 



 

D.2. Nova NFV infrastructure platform awareness .............................................................. 79 

ANNEX E. OPNFV PROJECTS OVERVIEW ............................................... 81 

E.1. OPNFV software stack .................................................................................................... 81 

ANNEX F. LINUX NETWORKING ............................................................... 85 

F.1. Linux networking ............................................................................................................. 85 
F.1.1. Linux bridges ........................................................................................................ 85 
F.1.2. Linux Namespaces ............................................................................................... 86 
F.1.3. Veth pairs .............................................................................................................. 87 

ANNEX G. DETAILED SCENARIO SETUP GUIDE ..................................... 89 

G.1. Common preliminary tasks ............................................................................................ 89 

G.2. Virtual lab deployment .................................................................................................... 90 

G.3. Bare-metal lab deployment ............................................................................................. 92 

ANNEX H. DETAILED SCENARIO WALKTHROUGH ................................ 95 

H.1. Functional test execution ............................................................................................... 97 

 





 

LIST OF FIGURES 
 
Figure 1.1: Comparison of classical and NFV model .......................................... 5 
Figure 1.2: NFV ETSI architecture [8] ................................................................ 7 
Figure 1.3: Integration of NFV and SDN [23] ...................................................... 8 
Figure 1.4: Legacy telco central office architecture [22] ..................................... 9 
Figure 1.5: Classification in the SFC domain entry in the EPS network ........... 10 

Figure 1.6: SFC IETF Architecture [27] ............................................................ 11 
Figure 2.1: NFV mindmap by Morgan Ricchome [30] ....................................... 13 
Figure 2.2: NFV timeline based on ETSI releases [32] ..................................... 14 
Figure 2.3: Simplified OpenStack conceptual architecture [50] ........................ 17 
Figure 2.4: Alignment of OpenStack in NFV [52] .............................................. 18 

Figure 2.5: OpenStack Magnum Container-as-a-Service architecture [60] ...... 20 
Figure 2.6: OpenDaylight high level architecture [67] ....................................... 23 
Figure 2.7: OpenStack and OpenDaylight Integration [68] ............................... 24 

Figure 2.8: Open vSwitch architecture [68] ...................................................... 25 
Figure 2.9: Improvements of Open vSwitch with DPDK  [72] ........................... 25 
Figure 2.10: OPNFV Architecture [44] .............................................................. 27 
Figure 3.1: OPNFV generic POD architecture .................................................. 32 

Figure 3.2: OPNFV Fuel GIT repository [85] .................................................... 33 
Figure 3.3: OPNFV virtual POD logical topology .............................................. 35 

Figure 3.4: OPNFV bare-metal POD physical topology .................................... 37 
Figure 3.5: OPNFV bare-metal POD logical topology ...................................... 38 
Figure 3.6: Tacker configuration flow for SFC scenario .................................... 39 

Figure 3.7: SFC scenario high level virtual network topology ........................... 40 
Figure 3.8: SFC scenario VXLAN workaround [91] .......................................... 41 

Figure 3.9: SFC scenario service chaining tests .............................................. 42 
Figure A.1: Overview of MANO Descriptor Files [103] ..................................... 59 

Figure A.2: TOSCA Service Template schema  [107] ...................................... 61 
Figure A.3: Mapping between TOSCA and NFV descriptors [108] ................... 61 

Figure A.4: OpenStack Tacker positioning in the NFV architecture .................. 64 
Figure A.5: OpenStack Tacker high-level overview .......................................... 64 

Figure A.6: Rift.ware MANO framework architecture [119] ............................... 65 
Figure A.7: Rift.ware Hyperscale engine APIs.................................................. 66 
Figure A.8: Open Source MANO framework architecture [122] ........................ 66 

Figure B.1: Juniper Networks Cloud CPE solution [133] .................................. 69 
Figure B.2: Juniper Networks NFX250 Network Services Platform [132] ......... 69 

Figure C.1: SFC Service Path rendering [136] ................................................. 71 
Figure C.2: NSH base header format detail...................................................... 72 
Figure C.3: NSH header format [138] ............................................................... 73 
Figure C.4: Example of Type 2 context header allocation for security .............. 73 
Figure D.1: Comparison of VNF packaging options [149] ................................ 76 

Figure D.2: Iron.io IronFunctions high-level overview ....................................... 77 
Figure D.3: Sandy Bridge-like NUMA architecture with VM pinning [156] ........ 78 

Figure D.4: Comparison of datapath acceleration options [158] ....................... 79 
Figure D.5: Nova support for Enhanced Platform Awareness [164] ................. 80 
Figure E.6: OPNFV Projects categorization [2] ................................................ 83 
Figure G.1: fuel-deploy git repository on github.com ........................................ 89 
Figure H.1: Opendaylight DLUX UI showing the OpenFlow topology ............... 95 
Figure H.2: Opendaylight DLUX SFC UI service node view ............................. 96



                            

 



 

LIST OF TABLES 

 
Table 2.1: OpenStack NFV gap analysis based on [58] ................................... 18 

Table 2.2: Partial list of OPNFV scenarios for the Colorado release ................ 27 
Table 2.3 OPNFV Colorado functional test categories [83] .............................. 29 
Table 3.1: OPNFV requirements for a virtual lab .............................................. 35 
Table 3.2: OPNFV requirements for a bare-metal deployment......................... 36 
Table 3.3: OPNFV POD networks for a virtual deployment .............................. 37 

Table 3.4: Role to server mapping in the bare-metal POD ............................... 38 
Table 3.5: Role to server mapping in the virtual POD ...................................... 39 
Table 3.6: ODL features installed in the SFC scenario ..................................... 40 
Table 3.7:  Functional tests run on the virtual scenario .................................... 42 
Table 3.8:  Functional test results ..................................................................... 43 
Table E.1: OPNFV project to NFV architecture mapping ................................. 81 
Table E.2: List of OPNFV projects and their goals ........................................... 82 

Table F.1: Namespace command workflow for a Neutron namespace ............ 87 
 





Introduction  1 

INTRODUCTION 
 
Current communication service provider´s (CSP) networks contain a growing 
variety of proprietary hardware appliances to support legacy and new network 
services. Maintaining the life cycle of existent devices is a costly procurement, 
integration and deployment cycle with no revenue. Developing a new service 
means additional planning for new rack space, power and network expansion or 
change to accommodate any new required devices. 
 
In the last years, large over-the-top (OTT) content providers like Facebook, 
Google or Netflix are competing with CSPs and their service offering. Moreover, 
OTT content providers pose a high traffic demand over the communication 
provider’s network [1] and have competitive advantages like agile and efficient 
delivery of highly scalable and resilient services which force the traditional telco 
to transform or end up relegated to a secondary role. 
 
Network Functions Virtualization (NFV) and Software-Defined Networking 
(SDN) technologies are candidates to change the CSP traditional network service 
delivery model from a proprietary and tightly integrated stack into an open and 
decoupled model where applications are hosted on commodity computing and 
networking hardware. NFV proposes an innovative and cost-effective network 
infrastructure for faster service time-to-market. 
 
NFV takes the idea of enterprise server virtualization to the CSP world. The NFV 
architecture implements network nodes such as Customer Premises Equipment 
(CPE) [2], usually delivered via purpose-built proprietary hardware, on Virtual 
Machines (VMs) or containers hosted either on bare-metal servers or a cloud 
computing infrastructure.  
 
A subtle difference with classical IT virtualization is that a Virtualized Network 
Function (VNF) can use one or more VNF Components (VNFC) to compose a 
given function. VNFs act as building blocks that can then be chained together to 
create comprehensive communication services. Chains can be modified 
dynamically to leverage complex service topologies via VNF orchestration. 
 
A Service Function Chain (SFC) is the concatenation of Network Functions (NF) 
to provide a given service. This has been accomplished in a rather static fashion 
until now. The introduction of NFV and SDN technologies ease the provision of 
network infrastructure and simplify the creation of service chains that can be 
deployed at a higher scale to be used by CSPs to provide feature-rich services. 
 
The aim of this thesis is to explore the current state of the art in standards-based 
service chaining use cases for end-to-end service delivery within the scope of 
Network Functions Virtualization. The scope of the work is mainly focused on 
enterprise and telco scenarios as NFV technologies play a key role in the next 
generation of carrier-grade networks. 
 
The project’s working methodology has been based both on research and 
practical implementation. First, a state of the art overview on NFV and adjacent 



2                                  Deployment of NFV and SFC scenarios 
                            

 

technologies was conducted. During this phase unit proof of concepts (POCs) 
were run in sandbox environments for the most relevant open source 
implementations to assess the maturity of each project. 
 
After that, a selection of projects implementing the core NFV building blocks was 
integrated into wider POC scenarios. Stress has been put in using standards-
compliant open source tools which the industry uses to steer innovation. This 
approach is also open to academic contribution and porting the scenarios to the 
EETAC labs has been an achievement in this direction. 
 
The document has been divided into the following chapters to better describe the 
project development phases: 

1. Introduction to NFV and SFC 
2. State of the art in open source NFV 
3. Deployment and testing of NFV SFC Scenarios 
4. Conclusions 

 
Some sections have been added as annexes and supporting materials: 

A. NFV management and orchestration 
B. NFV use case examples 
C. SFC encapsulation: NSH 
D. State of the art in virtualized computing 
E. OPNFV projects overview 
F. Linux and OpenStack networking  
G. Detailed scenario setup guide 
H. Detailed scenario walkthrough 

 
During the project, several NFV SFC scenarios have been tested successfully 
showcasing the basic features of the proposed technologies. The learning curve 
with the evaluated tools has been steeper than expected. But finally, failproof 
procedures have been carried out in a repeatable fashion thanks to small code 
improvements which can be contributed back to the community. 
 
The available open source implementations of NFV are not yet production-ready, 
but provide a solid playground for feature development and functional 
infrastructure testing and benchmarking. There is currently a lack of available 
VNFs, which indicates that the available open source frameworks are useful 
reference implementations but still have to reach maturity. 
 
NFV relies on commodity hardware but to realize its full potential last generation 
equipment is required to take advantage of the cutting-edge virtualization 
features. Several lab environment shortcomings and hardware limitations have 
put the project development into struggle limiting the thesis achievements. But 
the potential of the technology has been proved to a great extent. 
 
Regarding the SFC technology, the available implementation has limitations 
currently solved with several workarounds. This reveals that there is still work 
pending to provide a solid reference implementation. This may also indicate a 
problem in terms of the contributor's balance of commitment between the open 
source and the internally derived implementations. 



Introduction to NFV and SFC   3 

CHAPTER 1. INTRODUCTION TO NFV AND SFC 
 
This chapter provides an introduction to the current communication service 
provider (CSP) architecture limitations, which are the main drivers for the NFV 
paradigm. It also includes a brief overview of the different fields in the NFV 
standardization: the ETSI specifications and the IETF standards. The information 
model standards based in the OASIS projects have been enclosed in the MANO-
specific Annex A due to space constraints. 
 

1.1. Limitations of the current model 

 
Telecommunication carriers and vendors have been ahead in the market during 
the pre-Internet era. However, in recent years they have clearly lagged behind 
content providers. The big tech companies have taken a very successful vertical 
integration approach where, for example, Facebook built their network and 
developed its switches to accommodate better their traffic patterns [3]. 
 
One reason is the lack of a virtualization strategy in the Telecom industry 
equivalent to the one performed in the information technology (IT) industry. In 
recent years some signs of change have started showing with the early adoption 
of SDN (Software Defined Network) [4]  technologies, but this is still not enough 
to cope with the speed of change that the big tech firms impose.  
 
Based on [5], several factors have led to stagnation in the access provider 
landscape: 
 

● Dependency on application-specific hardware and vendor lock-in. This 
also has side effects on the skills required to manage telecom-specific 
network equipment. It all adds up to the organization’s technical debt. 

 
● Increased energy consumption due to the expanding need for hardware. 

The inability to consolidate workloads and lack of power awareness of 
current devices add to the power budget. 

 
● Long cycles of innovation due to the lack of test facilities similar to the 

production infrastructure. Test and integration are more difficult increasing 
development costs and time to market.  

 
● Heavy investments in hardware-based functionalities are required to 

create new services or add features. Economies of scale are not achieved 
with the hardware-based model due to a variety of equipment. 

 
● Need to overprovision and oversubscribe due to the static capacity of the 

network. Services cannot be scaled up or down on-demand nor can be 
scaled based on geographic demand. 

 



4                                  Deployment of NFV and SFC scenarios 
                            

 

● Reduced operational efficiency due to the diversity of the network 
infrastructure and management platforms. Lack of orchestration leads to 
manual installation and inability to modify the capacity on-demand. 

 

1.2. Introduction to NFV 

 
NFV (Network Functions Virtualization) defines how network services are 
abstracted using virtualized technologies which decouple them from the 
underlying hardware. The virtualization brings the opportunity to orchestrate 
services over commodity hardware without the operational burdens of 
architectures with network functions tied to physical appliances [6]. 
 
NFV is not just about virtualizing network appliances. It also involves breaking 
down all network functions to its elemental building blocks to later compose and 
orchestrate services only with the required components. The actual potential of 
NFV can only be realized with Service Function Chaining (SFC). Without SFC 
and orchestration, NFV alone would only add complexity. 
 
NFV could be realized relying on the protocols already in use in many multi-tenant 
networks1. However, managing multi-tenancy in current networks for customer 
isolation and resource partitioning is difficult and time-consuming due to its 
coupling with the network topology. Adding SDN can enhance and simplify 
operations, administration and maintenance and leverage end-to-end dynamic 
multi-tenancy. 
 
NFV and SDN can be deployed independently, but implemented together they 
play a complimentary role as enabling technologies for future networks. NFV can 
provide the infrastructure for SDN. The other way around SDN can provide the 
data-center (DC) and wide area network (WAN) network layers for NFV with 
proper orchestration coordination as stated in [7]. Therefore, NFV and SDN can 
be thought as the sides of the same coin in some scenarios. Also, NFV aligns 
with the SDN goal to employ commercial off-the-shelf (COTS) hardware. 
 
SDN plays a key role in the NFV framework as virtual network functions (VNFs) 
can be spread over data-centers, network nodes or end-user premises. VNFs 
could also belong to different domains. An SDN-decoupled control plane 
leverages programmability, elasticity and openness between the NFV 
virtualization infrastructure (NFVI) network and the WAN or the data-center 
interconnect (DCI) [8]. In this context, one of the most relevant SDN solutions are 
Network Virtualization Overlays (NVOs). 
 
Figure 1.1 shows the comparison of the hardware appliance model and the NFV 
approach. 
 
 

                                            
1 Multi-tenant networks are networks where different operators share the same infratructure but 
are logically isolated between them. This has many advantaces, specially from the economic point 
of view (economies of scale), and is a common deployment model in cloud computing data- 
centers. 



Introduction to NFV and SFC   5 

 

Figure 1.1: Comparison of classical and NFV model 

 
An overlay network is a network built on top of another network (the underlay). 
NVOs are part of a novel paradigm were VMs and bare-metal servers are 
integrated into public, private or hybrid clouds where the network overlay provides 
the connectivity. NFV can take advantage of overlay networks to allow VMs to 
perform a network service function. This VMs, now VNFs, are usually transit 
entities, not end-points. Examples of such network functions could be stateful 
firewalling, application delivery controllers or deep packet inspection. 
 
As stated in [5] NFV promises the following improvements: 
 

● Cost efficiency: Reduce CAPEX and OPEX through lower equipment 
costs and improved ROI from new services. 

● Complexity reduction: integrating and deploying new software appliances 
in a network. 

● Service agility: reduced time-to-market for new network services. 
● Deployment automation and operations simplification: Greater flexibility to 

scale up, scale down or evolve services. 
● Resource optimization: Maximize server usage and minimize energy 

consumption and rack space. 
● Openness: Opportunity of a virtual appliance market may generate pure 

software suppliers 
● Opportunities to trial and deploy new innovative services through network 

abstractions 
 
But poses the following challenges: 
 

● Performance: network stability and service levels must be granted without 
degradation during appliance load and relocation. 

● Reliability and resiliency: ensure proper service survival to hardware and 
software failures. 



6                                  Deployment of NFV and SFC scenarios 
                            

 

● Interoperability and portability: appliances should be portable between 
different hardware vendors and different hypervisors. 

● Migration and compatibility with legacy networks: coexistence with legacy 
hardware-based network platforms need to be assured while enabling an 
efficient migration path to a fully virtualized network.  

● Standardized management interfaces: should allow re-using existing 
OSS/BSS (Operations Support System/Business Support System). 

● Automation at scale: virtualized network platforms should be simpler to 
operate than existing networks. 

● Security: ensuring security both from attack or misconfiguration. 
 
NFV was proposed by a group of network service providers at the SDN and 
OpenFlow World Congress in 2012. Later, ETSI (European Telecommunications 
Standards Institute) [9] was decided to be the summit of the Industry Specification 
Group (ISG) for NFV. The ETSI NFV ISG [10] defined the architecture that is 
widely accepted and used in this thesis. 
 
ETSI also defined a set of first high-level use cases [11], spanning from the 
virtualization of the CPE or the network core (IMS, EPC, and RAN) to NFV clouds. 
ETSI NFV proves the feasibility of the use-cases through proof of concept trials. 
The other Standards Developing Organizations (SDO) and Open Source 
Foundations are expected to detail each use case further. 
 
The Virtual Customer Premises Equipment (vCPE) is an NFV use case which 
can help consolidate the understanding of the NFV definition subtleties. vCPE 
was the top use case within the original ETSI list as per [12] due to its economic 
benefits. The vendors have taken different approaches which need 
disambiguation. For example, Annex B compares how Juniper Cloud CPE and 
vCPE implement a different virtualization approach [13]. 
 

1.2.1. ETSI NFV Architectural Framework 

 
After the first call for action white paper [5], the NFV Industry Specification Group 
(ISG) released the first set of white papers in 2013 [14] [15] with high-level use 
cases, proposed terminology for virtualisation and, most important, the NFV 
architectural framework. It also described management and orchestration 
(MANO) functions which should be further developed in the scope of the MANO 
working group [16].  
 
The building blocks of the NFV architecture are: 
 

● Network Functions Virtualisation Infrastructure (NFVI) provides the 
hardware resources required to run the VNFs. It includes compute, 
storage, networking hardware and a hardware virtualization layer. 

● Virtualized Network Functions (VNFs) are the software-based network 
elements that are executed on the NFVI. 

● Management and Orchestration (MANO) takes care of the life-cycle 
administration of both the NFVI through the VIM and the VNFs themselves. 



Introduction to NFV and SFC   7 

It interacts with the OSS/BSS allowing integration with the legacy network 
management tools. It is divided into three parts: 
 

○ NFV Orchestrator (NFVO) contains a catalog of network services 
(NS) and VNF packages and interfaces with the VIM to accomplish 
NS lifecycle management 

○ The VNF manager (VNFM) takes care of the instantiation, scaling, 
updating, upgrading and termination of VNFs. 

○ The Virtualized Infrastructure Manager (VIM) provides interfaces 
to manage and control the compute, storage and networking 
resources. 

 
Figure 1.2 provides an overview of the NFV architecture: 
 
 

 
 

Figure 1.2: NFV ETSI architecture [8]  

 

1.3. Integration of SDN and NFV 

 
The modern idea behind Software-Defined Networking (SDN) was born due to 
the dynamic network requirements of cloud data-centers and carrier 
environments. SDN is a term coined by the Open Networking Foundation (ONF) 
[17]. The SDN definition [18] has changed over time, and it has been subject to 
many interpretations, but after some years of its inception it can be understood 
as a new network paradigm providing: 
 

 Centralization of the control plane management functions using network 
controller functions decoupled from the traffic forwarding processing. 

 Automation of the network lifecycle management improving both user 
experience and reducing operating costs. 



8                                  Deployment of NFV and SFC scenarios 
                            

 

 Abstraction of the management interfaces using APIs (Application 
Programming Interface) which enable direct network interaction. 

 
The ONF aim was to provide open and standards-based implementations to this 
model, and the most significant achievement is the OpenFlow switch specification 
[19]. OpenFlow defines a communication interface between the controller and 
forwarding layers in the SDN architecture. In the beginnings of the ONF 
OpenFlow was synonym with SDN but slowly OpenFlow protocol has been losing 
momentum as stated in [20].  
 
This is why ONF has started the absorption of the Open Networking 

Lab  (ON.Lab), home of the Open Network Operating System (ONOS) [21] and 

Central Office Re-architected as a Datacenter (CORD) [22] projects. By merging 
two standards development and open source software organizations ONF is 
trying to regain technical relevance with OpenFlow.  
  
Figure 1.3 shows the integration of NFV in the three SDN architecture layers: 
 

 Application layer contains applications consuming SDN services through 
the control layer interfacing through Northbound APIs. 

 Control layer contains the network intelligence and manages the network 
forwarding behavior through an open interface such as OpenFlow-based 
on the applications’ requirements. 

 Infrastructure layer is formed by the network elements (NE) that provide 
flow switching and other data-plane functions. 
 

 

Figure 1.3: Integration of NFV and SDN [23]  

 
Enhancing NFV with SDN networking can not only realize the common goals of 
each technology but multiply the benefits of both technologies. SDN can support 
NFV infrastructures providing scalable and on-demand networking according to 
the changing VNF connectivity requirements for both virtual and physical 



Introduction to NFV and SFC   9 

networking infrastructures, as the OpenFlow switch specification applies both to 
physical and virtual switches. 
 

1.4. Introduction to SFC 

 
For many years, service chains have been built wiring physical appliances one 
after the other so that the traffic crosses them. For example, in the telco central 
office architecture, the several functions are linked with physical links so that 
traffic enters through the Optical Line Termination (OLT) and traverses an 
aggregation layer to traverse the Broadband Network Gateway (BNG) finally as 
depicted in Figure 1.4: 
 

 

Figure 1.4: Legacy telco central office architecture [22] 

 
This basic idea evolved in layer2 or layer3 network topologies in the same way 
as the traffic still needed to traverse service functions in their forwarding path. 
Instead of physical wiring, network functions were linked either via bridges or 
routers. This tight coupling between network topology and service data path 
poses several limitations as per [24]: 
 

● Placement and selection of service functions. 

● Setup and modification configuration complexity. 

● Transport dependency. 

● Lack of scalability. 

● No multi-domain capability. 

● Lack of end-to-end view and Service Chain OA&M mechanisms. 

 
Several technologies have been used over time. However, they only solve some 
of these challenges. Some examples from [25]: 
 

● VLAN stitching.2 

● BGP based Routed Service Chain (BGP or SDN-based). 

● VXLAN (Multi-domain) with SDN Control Plane. 

● Segment Routing. 

● OpenFlow-based Service Chaining. 

 
In the Service Function Chaining (SFC) approach a classifier and mapping 
functions are introduced to steer matching traffic towards the service chain. This 

                                            
2 Interleaving a network function such as a transparent firewall in the middle of a layer 2 domain. 



10                                  Deployment of NFV and SFC scenarios 
                            

 

way service functions can be placed anywhere on the network and can be seen 
as a bump-in-the-wire. The classifying policy can be a simple match on VLAN, 
VRF, a flow rule match or another network-specific identifier. 
 
For example, in the Long-Term Evolution (LTE) Evolved Packet System (EPS)3 
network a traffic flow would be classified in the SFC domain entry as illustrated in 
Figure 1.5. Once classified, the network would take care of dynamically route the 
traffic through the required functions via a separated control plane managing the 
service chains. The classifier may be integrated into existing devices, such as the 
PGW (Packet Data Network Gateway). The classification parameter could be the 
Access Point Name (APN). 
 

 

Figure 1.5: Classification in the SFC domain entry in the EPS network 

 
 The new SFC approach offers: 
 

● Different policies applied to various types of traffic. 

● The individual functions can be modified independently. 

● A foundation for cross-domain use cases. The selected service functions 

can meet domain specific end-user requirements. 

 
As ETSI is not a standards body organization, the IETF was designed to develop 
a standard covering automated end-to-end service deployments. This led to the 
SFC Working Group [26]. One point to stress is that the SFC Architecture also 
includes physical network functions, which will continue to be prevalent in the 
initial stages of NFV adoption. This is why the SFC nomenclature is used instead 
of the VNF Forwarding Graph (VNFFG) one. 
 
 
 

                                            
3 EPS is the network core in the LTE mobile communication system. The LTE is a 4G wireless  
broadband technology developed by the 3GPP partnership. Do not confuse with Evolved Packet 
Core (EPC), which is the framework for providing unified voice and data in 4G networks.  



Introduction to NFV and SFC   11 

1.4.1. IETF SFC Architecture 

 
The SFC WG has produced several informational RFCs and drafts, starting with 
the problem statement early in 2015 [24] and the SFC architecture [27]. It also 
defined a network transport agnostic mechanism to steer traffic through SFs 
based on a generic SFC encapsulation: the Network Service Header [28] for 
which there are some commercial implementations, such as Cisco IOS XE [29]. 
The IETF SFC architecture helps to create composite network services built upon 
an ordered set of SFs that flows must traverse if they match classification criteria. 
Each SF is mapped to a unique identifier within the SFC-enabled domain. It 
describes SF deployment mechanisms that enable topological independent 
dynamic ordering of SFs and metadata exchange between the different core 
components in the architecture, which are: 
 

● Service Functions (SFs) are resources in an SFC domain that can be 
invoked as part of a composite service. 

● Classifiers are logical entities delimiting the SFC domain. Any traffic 
entering the domain will go through an initial classification. Based on the 
classification decision, the traffic is encapsulated and mapped to a new or 
existing chain, and metadata is embedded. Classifiers are commonly 
implemented along with an SF or SFF. 

● Service Function Forwarders (SFFs) take care of traffic forwarding 
between connected SFs based on the SFC encapsulation. They also can 
deliver traffic to a classifier or another SFF. 

● SFC proxies remove and insert SFC encapsulation on behalf of an         
SFC-unaware SF. SFC proxies are logical elements. 

 

 

Figure 1.6: SFC IETF Architecture [27]  

 



12                                  Deployment of NFV and SFC scenarios 
                            

 

In the SFC architecture, packets are classified when they enter the SFC-enabled 
domain as shown in Figure 1.6. Then, they are mapped to service function chains 
and forwarded through the service function path for processing in the required 
service functions (SF). A service overlay is built between SFC-aware elements in 
the architecture thanks to the SFC encapsulation: the Network Services Header 
(NSH). A more in-depth explanation of SFC and the service header encapsulation 
can be found in Annex C. 



State of the art in open source NFV   13 

CHAPTER 2. STATE OF THE ART IN OPEN 
SOURCE NFV 

 
Some aspects of the NFV technology are actively being deployed, but others are 
still in an early phase of maturity. This chapter explores NFV's yet short lifespan 
and enumerates the key open source projects that could form a complete NFV 
stack. It is quite difficult to gather all state of the art in NFV in a single chapter as 
the recent years’ evolution has been like the Big Bang expansion, as Figure 2.1 
tries to resemble: 
 

 

Figure 2.1: NFV mindmap by Morgan Ricchome [30] 

 
In the mindmap, the VNF is at the center as it is the element that in the end 
delivers the service. The first level ramifications, in a clock-wise direction, expand 
on the supporting infrastructure, the technology capabilities, the current 
interoperability efforts, the involved standards developing organizations (SDOs), 
the requirements for network service composition and, finally, examples of VNFs, 
from the simple cases to more comprehensive ones. 
 



14                                  Deployment of NFV and SFC scenarios 

2.1. NFV Historic Phases 

2017 will mark the 5th anniversary of NFV. Talking about history for a 5-year span 
could sound bombastic but, given the speed of events, the ETSI NFV ISG 
releases can well be used as a timeline reference to developing this chapter 
content which, otherwise, could become quite disperse. In Figure 2.2 the timeline 
until mid-2016 is shown. 

The focus of NFV Phase 1 (2012-2014) [31] was to establish the architectural 
framework. Phase 2 (2015-2016) focus was to promote adoption and 
interoperability. NFV Phase 3 (beyond 2016) aim is to foster an open ecosystem 
while NFV is actively deployed but, in theory, this would fall out of the ISG Charter, 
which was expected to end in late 2016, although it has been extended.  

 

 

Figure 2.2: NFV timeline based on ETSI releases [32] 

 
As stated in [6], the slowness and the political nature of ETSI has led to a 
migration of cooperation efforts towards OPNFV. For example, Phase 1 ended in 
a guidance rather than a full specification. While for Phase 2 there is still ongoing 
work on the interoperability field. For instance, at the time of writing (February 
2017) an ETSI/OPNFV “PlugTest” took place in Madrid to align Industry and 
Open Source initiative against the defined standards [33].  
 
Some NFV players endorse an open source approach to produce reference 
implementations of standards or by reaching de-facto standards directly. The use 
of Open Source Software (OSS) methodologies aims for fast-paced innovation 
and interoperability. This chapter reviews the open source ecosystem related to 
the NFV architecture. A review of MANO implementations can be found in Annex 
A. 
 



State of the art in open source NFV   15 

2.2. An open source stack for NFV 

 
One of the open source principles is to re-use existing tools suitable for other 
projects. Many open source projects can be integrated to deliver a whole NFV 
platform. It is no wonder that the open source community is especially active in 
the area of network virtualization. The next sections categorize some the related 
tools to implement service function chaining scenarios over an NFV 
infrastructure.  
 

2.2.1 NFV Infrastructure 

 
OpenStack [34] is a set of software projects intended for building and managing 
cloud computing platforms. It can control pools of computing, storage, and 
networking resources that can form an NFV Infrastructure. It has received many 
contributions from the NFV community to serve as the NFV Virtual Infrastructure 
Manager (VIM) component. It provides SDN integration with multiple controllers 
via the Neutron ML2 plugin [35]. 
 

2.2.2 Network control plane 

 
OpenDaylight (ODL) [36] is a multi-protocol SDN controller built for deployments 
on heterogeneous multi-vendor networks. It provides a model-driven service 
abstraction layer that allows easy integration between northbound interfaces and 
southbound protocols. ODL SFC project [37] provides a mature implementation 
of the SFC architecture. 
 
Open Network Operating System (ONOS) [21] is a carrier-grade SDN operating 
system. While ODL is based on a microservices architecture, ONOS follows an 
application-based model4. SFC implementation comes as a bundle in the VTN 
ONOS application. XOS[38] is the service orchestration layer that turns 
OpenStack Neutron into an ONOS network control application. 

 
OpenContrail [39] is an extensible platform for SDN. Its main components are the 
controller and the vRouter. The controller provides a logically centralized control 
and management plane and orchestrates the vRouters, conceptually similar to 
the OVS but in the Contrail architecture. OpenContrail implements SFC via a 
high-level policy language to interconnect virtual networks through additional 
routing instances which steer the traffic through the overlay (L3VPN or EVPN). 
 

2.2.3 Network data plane 

 
Open vSwitch (OVS) [40] is a multilayer virtual switch designed to enable network 
automation. It can work both as a hypervisor switch or as the control plane for 
hardware open switches. For best performance, a Linux kernel module is 

                                            
4 ONOS is built with application policy-based directives called intents. These intents are translated 
to OpenFlow rules and later programmed onto the switches. 



16                                  Deployment of NFV and SFC scenarios 

provided. It has a rich feature set, including many features in the SDN 
infrastructure layer. Although NSH is not officially supported, patches that provide 
NSH support exist for both Data-Path Development Kit (DPDK)5 and non-DPDK 
data-paths. 

 
The FD.io VPP (Fast data Input/Output Vector Packet Processing) [41] is an 
extensible switching/routing packet-processing platform that can run on 
commodity CPUs. It is based on Cisco's Vector Packet Processing [42], a 
modular technology built on a packet processing graph. VPP allows inserting new 
graph nodes without changes in the kernel. The Fd.io SFC project [43] supports 
NSH-based packet forwarding to allow high-performance SFC applications. 
 

2.2.4 NFV Integrated platforms 

 
OPNFV (Open Platform for NFV) [44] is a carrier-grade platform aimed to 
integrate upstream open source projects to accelerate the introduction of new 
NFV-based services. Several projects integrate the different components in an 
NFV architecture in several scenarios and a use case-based testing framework 
is provided to allow functional and CI testing. Several scenarios implement 
service chaining, including standards-based SFC. 
 
Sonata [45] is an NFV platform part of the 5G-PPP initiative [46]. Sonata is a 
service programming and orchestration framework. The core of Sonata is a 
service platform providing a MANO implementation and catalogs that store 
artifacts that can be used by the Sonata system. Sonata also consists of a 
software development kit (SDK) that supports a programming model and a 
development tool-chain. The programming model focuses on service chains. 
Sonata is open source but follows a particular release cycle and governance 
model. At the moment only one version has been released. 
 
ECOMP  (Enhanced Control, Orchestration, Management & Policy) [47] is the 
AT&T core NFV platform. It expands the ETSI architecture focusing on 
Controllers and Policy. Several software subsystems cover two major 
architectural frameworks: a design environment to program the platform and an 
execution environment run the logic using policy-driven automation. 
Unfortunately, there is no reference implementation open for testing at the 
moment of writing as it will be open sourced during 2017. 
 
After reviewing the available options, OPNFV has been selected to deploy and 
test NFV scenarios as it employs the most widely used tools and is the project 
currently covering most of the pieces in the standards-based NFV SFC 
architecture. The following sections describe OPNFV and its main components, 
which for the Colorado release are: 

● OpenStack Mitaka with SFC-enabled Tacker. 

● OpenDaylight Boron with SFC. 

● Open vSwitch 2.5.90 with NSH patches [48]. 

                                            
5 Data Plane Development Kit (DPDK) is an open-source library toolkit for fast packet software 
processing that supports the major processor architectures. 



State of the art in open source NFV   17 

2.3. OpenStack 

 
OpenStack is a software framework enabling cloud deployment and management 
suitable for IaaS (Infrastructure as a Service) service models. The first release 
only included compute and storage. Release after release it has grown to provide 
additional services in the software stack, such as networking, monitoring, 
authentication, orchestration and web user interface, amongst others. The 
current as of February 2017 is the 14th release, codenamed Newton [49]. 
 
The OpenStack architecture is built upon RESTful modular services. End users 
can interact either through the APIs or the provided CLIs and dashboards. Each 
6-month release includes an updated set of core services and other accessory 
services under what is called the project “big tent” to complement the feature 
offering as shown in Figure 2.3. The core services provide:  

● Nova: compute services such as scheduling and instantiation of VMs. 
● Neutron: inter-networking between OpenStack components. 
● Cinder: persistent block storage and volumes management for VMs. 
● Glance: VM disk image and metadata storage. 
● Swift: object (unstructured data) storage and replication. 
● Keystone: API authentication and authorization. 

 

 

Figure 2.3: Simplified OpenStack conceptual architecture [50] 

 



18                                  Deployment of NFV and SFC scenarios 

Other big tent relevant projects are: 
● Horizon: a web portal providing a user interface for core service features. 
● Heat: a service that provides application stack orchestration. 
● Ceilometer: which collects event and metering data from other services. 

 

2.3.1 OpenStack for NFV 

 
OpenStack targeted cloud computing infrastructure as a service (IaaS) use cases 
initially. Over the time it is evolving to support NFV features like telemetry, 
orchestration and advanced network services. Before that, OpenStack already 
provided some of the features required in an NFV environment to render 
communication services over an IaaS infrastructure as shown in Figure 3.2. 
 
OpenStack follows an open government model, and recently several CSPs have 
joined the Foundation’s board of directors [51] to focus on NFV related 
requirements [52]. To prepare OpenStack for NFV, gaps in some projects must 
be addressed or new projects initiated. 
 

 

Figure 2.4: Alignment of OpenStack in NFV [52] 

 
Table 2.1 lists some of the NFV requirements and the OpenStack projects that 
need improvements to fulfill them: 
 

Telco Requirement Gap Projects 

Distributed 
infrastructure 

Geographically close workloads with real-time 
response and low latency 

Heat [53] 

Networking Reliable, segmented and secure on-demand 
communication  

Neutron [54] 

Automated lifecycle 
management 

Automatic service deployment, monitoring, scaling, 
healing and upgrading 

Tacker [55] 

NFV Infrastructure 
operations 

Operation of distributed NFV infrastructure Kingbird [56], 
Tricircle [57] 

High-performance 
dataplane 

High packet processing and input/output with current 
hardware (e.g. ASICS) 

OVS  [40] 
Fd.io [41] 

 
Table 2.1: OpenStack NFV gap analysis based on [58] 



State of the art in open source NFV   19 

2.3.2 Nova 

 
Nova is the project that provides the compute service within OpenStack. It 
provides VM auto-provisioning on server hardware based on several constraints. 
The resources allocated to the VM are classified in flavours that define required 
parameters such as virtual CPUs, memory and storage space. The Nova 
scheduler algorithm selects the given compute node where to instantiate the VM 
[59]. 
 
The main components of Nova are: 

● The Nova API (Application Programming Interface), a RESTful HTTP 
service implementing the Compute API. 

● An AMPQ (Advanced Message Queuing Protocol) queue for RPC 
communications. 

● The Nova scheduler to handle hypervisor selection based on scheduler 
filters. 

 
Some recent improvements have been brought to Nova to better comply with 
NFV requirements, like Enhanced Platform Awareness (EPA). As further 
developed in Annex D, EPA enables the Nova scheduler to match a flavour taking 
into account finer specific hardware features: 
 

● Encryption Acceleration 
● Extended Vector Instructions 
● Hardware Transcoding 
● PCIe GPU Accelerator 

 
Nova offers an API agnostic to the underlying hardware stack, which can manage 
on-demand compute resources. Depending on the deployment,  those compute 
resources might be physical servers, Virtual Machines and even containers. 
Annex D also ellaborates on VNF packaging options. Several projects leverage 
containers in OpenStack: 
 

● Kolla runs OpenStack itself on Docker containers, so it is out of scope in 
regards to the container use as a VNF packaging format. 

● Murano offers an application catalog that allows application containers 
such as Kubernetes (K8s) to be installed on OpenStack. 

● Magnum offers multi-tenant Container-as-a-Service APIs for several 
container architectures, as shown in Figure 2.5. Namely, Docker Swarm, 
Kubernetes and Mesos 6. 
 

                                            
6 Docker is a containerization platform. Docker swarm is a tool that provides clustering capabilities 
to a group of Docker engines. Kubernetes is a tool for automating the deployment and life-cycle 
management of containerized applications. Finally, Mesos is a distributed systems kernel for 
which a containerizer module brings support for different container formats (mesos and docker). 



20                                  Deployment of NFV and SFC scenarios 

 

Figure 2.5: OpenStack Magnum Container-as-a-Service architecture [60] 

 

2.3.3 Neutron 

 
Neutron offers the networking service between OpenStack modules. It was 
originally included within the compute service but due to its organic growth was 
moved to a separate project, first called Quantum and now Neutron. The API 
provides basic connectivity and addressing services. Additionally, it supports on-
demand services like routing, NAT, load balancing, firewalling and VPN-as-a-
Service. 
 
The main components of Neutron are: 
 

● The Neutron server, which exposes an API to support Layer2 and basic 
Layer3 networking, DHCP and IPAM (IP address management). 

● Plug-in and Plug-in agents that enable Neutron to interact with diverse 
network technologies, including routers, switches and SDN controllers. 

● A message queue used in the ML2 (Multi-Layer 2) plug-in for RPC 
between the neutron server neutron and agents that run on each compute 
node hypervisor. 

 
Neutron distinguishes between two kinds of networks: 
 

● Tenant networks are used for connectivity within projects. By default, they 
are isolated and not shared between projects. 

● Provider networks represent existing virtual or physical networks in the 
outside Neutron which can map to multiple tenants.  

 
Neutron included initially monolithic plug-ins which were mutually exclusive. For 
instance, the Linux bridge and Open vSwitch plugin. Later a modular plug-in 
architecture was introduced to embrace the most common  Layer 2 networking 
protocols and technologies found in modern data-centres. The ML2 (Modular 
Layer 2) framework offers two kinds of drivers that can be used simultaneously: 
 

● Type drivers define the several kinds of tenant networks: 



State of the art in open source NFV   21 

○ Local: existing on a single host. 
○ Flat: implementing a regular broadcast domain. 
○ VLAN: using VLAN tagging for segmentation. 
○ GRE: using Generic Routing Encapsulation overlay. 
○ VXLAN: using Virtual Extensible LAN overlay. 

 
● Mechanism drivers implement the different types of networks on various 

open source switching solutions: 
○ LinuxBridge, the plain old Linux Kernel bridge implementation. 
○ Open vSwitch, a multilayer virtual switch with plenty of features. 
○ MacVTap virtualizes the NIC (Network Interface Card) in vNICs. 
○ SR-IOV (Single Root I/O Virtualization) vNIC at the PCIe level. 
○ L2 Population limits broadcast in overlays networks. 

 
and also on proprietary network gear:  

○ Arista EOS switches for VLAN and VXLAN provider networks. 
○ Specific Cisco Nexus models support either VLAN or VXLAN. 
○ Brocade NOS switches in VCS (Virtual Cluster Switching) mode. 
○ Hyper-V Agent for Hyper-V compute nodes. 
○ ALE Omniswitch switch range from Alcatel-Lucent Enterprise. 
○ Lenovo physical switches for VLAN networks/ 
○ Tail-F NCS (Network Control System), which is a Multi-Vendor 

Network Orchestration suite. 
 

2.3.4 Heat 

 
Heat is a service to orchestrate cloud applications or composite services using 
templates. Templates are human readable formatted text files able to describe 
Infrastructure as Code. Heat can provision all the OpenStack Infrastructure 
defined in a template and can be extended to support other resources using 
plugins. Besides of infrastructure components and its relations, Heat includes 
hooks for configuration management tools like Ansible [61] or Puppet [62]. 
 
The main components of Heat are: 
 

● Heat APIs. An OpenStack native API is available alongside with an 
Amazon Web Services (AWS) CloudFormation API. 

● Heat engine receives RPC calls from the API components and performs 
the orchestration tasks. 

 
Heat supports several kinds of templates, one for each supported API: 
 

● HOT (Heat Orchestrator Templates) are the native template format and 
are usually defined in YAML. 

● CFN are the CloudFormation compatible template type and are written in 
JSON (JavaScript Object Notation). 

 
Heat templates have 3 sections: 
 



22                                  Deployment of NFV and SFC scenarios 

● Template parameters are mainly resource IDs defined by the user. 
● Resources are the objects that Heat will provision. Once resources are 

created, they are called stacks. 
● The output is the information returned to the user/API invoking the 

template. 
 

2.3.5 Tacker 

The Tacker project [55] implements the VNF Manager and NFV Orchestrator 
functions in the ETSI MANO stack as shown in Figure 3.4. It takes care of 
deploying VNFs and orchestrating Network Services over an OpenStack 
platform. In the OpenStack Newton release, it will support SFC natively [63]. At 
the moment the SFC integration is implemented in a customized Tacker version 
for OPNFV. A more in-depth case study about Tacker is included in Annex A. 

 

2.3.6 Fuel 

 
Fuel [64] is a modular and extensible OpenStack deployment and management 
tool. It focuses on automating the installation and validation of OpenStack 
clusters and third-party plugins. It integrates several components. The core 
where the main Fuel logic is implemented is the Nailgun service, which offers a 
REST API, a Web UI and a CLI. Then there is Astute which interacts with the 
node provisioning and deployment tools, mainly Cobbler [65] and 
Puppet/Mcollective [66]. 
 
The Fuel architecture distinguishes between: 
 

● The Fuel master, a server that performs preboot execution environment 
(PXE) booting, IP assignment, OS provisioning and initial configuration of 
slave nodes. 

● Fuel Slaves, servers managed by the Fuel Master. Fuel slaves can 
become a variety of OpenStack roles based on Fuel node configuration. 

 

2.4. OpenDaylight 

 
OpenDaylight (ODL) [36] is a modular multi-protocol SDN platform. The current 
as of January 2017, is the 5th release of ODL, codenamed Boron (as the 5th 
element in the periodic table). It brings several enhancements to features that 
apply to NFV, being one of the most notable a new project, Genius (Generic 
Network Services). Genius improves the coexistence between apps that can 
program the same forwarding tables. This optimizes ODL application integration 
for complex implementations. 
 
The OpenDaylight architecture includes: 
 



State of the art in open source NFV   23 

● The controller platform, which contains services and applications which 
implement controller logic independently of the underlying network 
technologies below.  

● Southbound interfaces and protocol plugins. OpenDaylight offers a Model-
Driven Service Abstraction Layer (MD-SAL) which allows applications to 
control a broad range of underlying networking technologies. 

● On top of the components above, there are the several north-bound APIs, 
the AAA (Authentication, Authorization and Accounting) layer and the 
DLUX Interface framework. 

 
Figure 2.6 shows the OpenDaylight architecture for the Boron release: 
 

 
 

Figure 2.6: OpenDaylight high level architecture [67] 

 
Regarding OpenStack integration, OVSDB (Open vSwitch Database 
Management Protocol) features have been unified to achieve parity with the 
Neutron Reference Implementation in OpenStack better. Several applications in 
ODL cooperate with OpenStack Neutron to offload network processing and 
provide enhanced services as showin in Figure 2.7. A more comprehensive list 
of features is: 
 

● Layer 3 distributed routing with the L3 DVR (Distributed Virtual Router) 
● Layer 2 distributed switching. 
● Full support for clustering and HA (High Availability). 
● Security Group support implemented through OpenFlow rules instead of 

IPTables-based OpenStack Security Groups. 
● Security Group stateful connection tracking. 
● Service Function Chaining. 
● Network Virtualization graphical interface for DLUX. 

 



24                                  Deployment of NFV and SFC scenarios 

 

Figure 2.7: OpenStack and OpenDaylight Integration [68] 

 
OpenDaylight original code was written in Java. Luckily, it can be run under the 
OpenJDK Java runtime environment (JRE) [69]. On the other hand, it is highly 
modular. The ODL software distribution comes in Apache Karaf format [70]. Karaf 
is a type of application container commonly used in the Java ecosystem. ODL 
applications are installed in the form of Karaf features. The features most relevant 
to NFV and SFC are briefly introduced in the following list: 
 

● Service function chaining (SFC): Provides an API for applications to 
define chains and the service logic needed for ODL to provision the 
requested chain in the network. 

● NetVirt: The NetVirt code was split from OVSDB. It provides OVS-based 
virtualization for software switches, Hardware VTEP (VXLAN Tunnel 
Endpoint) and Service Function Chaining. The SFC Classifier and SFF are 
controlled via OVSDB and Openflow. 

● Group-based policy (GBP): Provides intent-based policy abstraction for 
ODL. GBP integrates with SFC in by configuring policy-based classifier 
rules in a declarative way. 

● VPN service: Implements the required infrastructure to support L3 VPN 
services. In Boron some of the code has been moved to NetVirt and  
Genius, reducing VPNService to the BGP Quagga interface. 

 

2.5. Open vSwitch 

 
Open vSwitch (OVS) is a multilayer software switch that can bridge traffic 
between VMs to the physical network and vice versa. The OVS project goal is to 
support the common Layer2 features (tagging, tunneling, bonding, accounting, 
etc.) providing programmatic extensions which make OVS suitable for SDN 
deployments. OVS can operate in user-space or kernel space, with the aid of a 
kernel module. 
 
As shown in Figure 2.8, the main components in the OVS architecture are the 
OVS vSwitch daemon (OVS-vSwitchd) and the OVS database server (OVSDB-
server). OVS-vSwitchd is the core of the system. It communicates with ODL via 
OpenFlow. The OVSDB-server is a database containing the switch state and 
configuration. It interacts with ODL using the OVSDB protocol [71]. 



State of the art in open source NFV   25 

 

Figure 2.8: Open vSwitch architecture [68] 

 
OVS supports several Linux-based hypervisors and, thus, competes with the 
Linux bridge, but it overcomes some of its limitations. For instance, support for 
distributed switching and off-loading to external hardware such as NICs or 
switches. But as shown in Figure 2.9, where OVS makes the difference to realize 
the NFV requirements in terms of throughput and latency with DPDK7, which runs 
in user-space. 
 

 

Figure 2.9: Improvements of Open vSwitch with DPDK  [72] 

 
Flow rule programming determines how inbound/outbound traffic should be 
treated within the virtual switches. OVS has two operating modes: 
 

● Standalone is the default mode, and it simply acts as a learning switch. 
● Secure mode relies on an external SDN controller to insert flows rules.  

 
OVS plays a key role in the SFC architecture as the Neutron Integration OVS 
bridge (br-int) acts as the service function forwarder (SFF). The br-int is an 

                                            
7 DPDK is a set of multiplatform libraries and drivers for fast packet processing. The main libraries 
optimize packet transmission impact on the CPU and implement fast packet capture. 



26                                  Deployment of NFV and SFC scenarios 

OpenFlow switch hosted in an OVS where all guest VMs are connected. In the 
OPNFV SFC implementation, there is an SFF in each compute node. The 
OPNFV OVS distribution includes patches to support the SFC encapsulation [48]. 
The patch supports the following NSH stacks: 
 

● ETH + NSH, which encapsulates NSH directly over Ethernet. 
● VxLAN-GPE + ETH + NSH, which encapsulates ETH+NSH on top of 

VxLAN Generic Protocol Extension8. 
 
The OPNFV SFC scenario is only implemented with VXLAN-GPE + ETH + NSH 
at the moment [37]. 
 

2.6. Open Platform for NFV 

 
The Open Platform for NFV (OPNFV) project defines a partial reference 
implementation of the ETSI NFV architecture. It employs exclusively open source 
tools to provide a carrier-grade environment with system level integration, 
deployment and testing. By means of the open source collaboration philosophy 
brings together the standards bodies, open source communities, and vendors to 
become a de facto platform for the industry.  
 
OPNFV is a rather young project. It has brought 3 releases, named alphabetically: 
Arno, Brahmaputra and Colorado. It follows a 6 month release cycle with follow-
on releases. At the time of writing (February 2017), the current is the C release 
(Colorado). Colorado offers more than 40 scenarios. Taking advantage of the 
OPNFV continuous integration/continuous deployment (CI/CD) pipeline, the 
scenarios are thoroughly tested. Existing scenarios can be extended composing 
additional components/features. 
 
OPNFV is primarily focused on building NFVI, VIM and, in latest releases, MANO. 
It builds upon open source projects such as OpenDaylight, OpenStack, Ceph 
Storage, KVM, Open vSwitch, and Linux. OPNFV supports OVS, fd.io and DPDK 
as forwarding solutions. Similarly to Openstack, it is comprised of several core 
projects and other approved projects. Based on the selection of 
components/features, several scenarios can be deployed.  
 
The OPNFV scenarios that implement the SFC ODL feature are labelled “os-
odl_l2-sfc-ha” and “os-odl_l2-sfc-noha”. Other scenarios implement interesting 
NFV features, like KVM tuned for NFV, OVS with DPDK or BGPVPN, that 
implements layer 3 MPLS-based VPNs. But they have not been considered as 
some features from these scenarios are not compatible with the SFC feature. The 
scenario naming convention follows the scheme below: 
 

os-[controller]-[feature]- [mode]-[option] 
 

                                            
8 Virtual eXtensible Local Area Network (VXLAN) is a layer 2 overlay network encapsulation 
commonly used in OpenStack project networks as it supports a much larger tenant number than 
classical VLANs (24-bit segment ID versus 12 bit vlan VLAN ID). VXLAN generic protocol 
extension (GPE) brings support for payloads other than Ethernet to VXLAN. 



State of the art in open source NFV   27 

Name Short name 

Accelerated Open vSwitch os-nosdn-ovs 

Layer 3 overlay using OpenDaylight os-odl-l2-bgpvpn 

FD.io based forwarding using OpenDaylight os-odl-12-fdio-noha 

High availability service function chaining os-odl-l2-sfc-ha 

Service function chaining os-odl-l2-sfc-noha 

Accelerated KVM hypervisor os-nosdn-kvm-ha 

LXD container hypervisor os-nosdn-lxd-noha 

High availability LXD container hypervisor os-nosdn-lxd-ha 

 
Table 2.2: Partial list of OPNFV scenarios for the Colorado release 

 

2.6.1 OPNFV architecture 

 
OPNFV serves the purpose of building a carrier-grade platform for predictable, 
repeatable and validated NFV deployment and testing of the provided scenarios. 
In order to do that, OPNFV integrates all the required tools to  deploy end-to-end 
VNF-based services. Figure 2.10 shows the OPNFV architecture aligned with the 
project goals: 
   

● VNF life-cycle management. 
● Underlay/overlay agnostic VNF/VNFC/PNF interconnectivity.   
● VNF instance scaling to meet current requirements. 
● Failure detection and remediation from any element of the infrastructure. 

 

  

Figure 2.10: OPNFV Architecture [44] 

 



28                                  Deployment of NFV and SFC scenarios 

2.6.2 Installers for OPNFV 

 
A typical OPNFV POD consists of an OpenStack cluster and compute nodes for 
VNF deployment. The POD is bootstrapped using a provisioning server. After 
installing the provisioning server the OpenStack and additional components are 
pushed to the nodes. 4 OPNFV projects are focusing on installation. Each one is 
based on a different OpenStack installer and implements the reference scenarios 
to a different extent: 
 

● Project Apex [73] relies on TripleO [74], an installer for theRed Hat 
Distribution of OpenStack (RDO) project [75]. TripleO stands for 
Openstack on OpenStack as an underlay Openstack instance is used to 
deploy the OPNFV OpenStack cluster. 
 

● Compass4NFV [76]  is based on Compass [77], which is an open source 
project that provides automated deployment and management for 
OpenStack. It can be considered what the LiveCD is to a single box but 
for a pool of servers. 

 
● Fuel [64] is the Mirantis OpenStack (MOS) [78] distribution installer. It 

provides deployment, management and validation workflows for 
OpenStack through an intuitive web interface. The additional OPNFV 
components are integrated as  plug-ins. 

 
● JOID (Juju OPNFV Infrastructure Deployer) project [79] is based on 

Canonical Juju [80] and MAAS [81]. Juju  is a service-oriented model 
deployment framework. MAAS (Metal as a Service) abstracts physical 
servers and turns a server farm into an on-demand server resource. 

 
TripleO and Fuel are the most featureful OPNFV installers. Both toolkits support 
the SFC scenarios. But after testing them, Fuel was chosen as the most suitable 
thanks to its excellent documentation and easy learning curve. Also, TripleO 
required intelligent platform management interface (IPMI) for node provisioning, 
which is not supported on the available computers in the lab 235G at EETAC, 
where the tests were conducted. 
 

2.6.3 Functional testing in OPNFV 

 
A fundamental tool in distributed platform and scenario deployments is a 
functional testing framework to validate from the most basic features to the most 
complex scenario combinations. In OPNFV, the Functest project provides test 
cases developed to validate the different supported features/scenarios and other 
tests from upstream projects.  
 
The Functest toolkit is provided in a Docker image [82]. This allows running 
Functest on any platform or operating system, but the most common place to 
install the container is on the jump server, as connectivity to the POD networks 
is required. Functest uses the different OpenStack APIs to interact with the Fuel 
deployment. 



State of the art in open source NFV   29 

The Functest Docker container automates the following tasks: 
● Retrieval of the OpenStack credentials. 
● Preparation of the environment according to the system under test (SUT). 
● Execution of the appropriate functional tests. 
● Storing of the results into the test result database. 

 
Table 2.3 show the test case categorization in Functest. 
 

Category Description 

ARMband Support for the AArch64 infrastructure. 

healthcheck Basic OpenStack commands. 

smoke vPings, Tempest and rally smoke tests. 

sdn_suites Specific SDN feature tests. 

features OPNFV feature project functional test suites. 

openstack Advanced, long duration OpenStack tests. 

vnf Complex scenario orchestration (e.g. vIMS) 

 
Table 2.3 OPNFV Colorado functional test categories [83] 

 





Deployment and testing of SFC scenarios   31 

CHAPTER 3. DEPLOYMENT AND TESTING OF SFC 
SCENARIOS 

 
This chapter contains the technical implementation details of the tested OPNFV 
scenarios. First of all, a high level overview of what constitutes an OPNFV point 
of delivery9 (POD) is introduced. Then, both virtual and hardware environment 
deployments are described. Finally, the deployment based on Fuel and SFC 
scenario tests common to virtual and hardware labs are covered in detail. Only 
functional tests have been performed due to hardware limitations and laboratory 
availability. 
 

 OPNFV reference POD 

 
An OPNFV POD supports the installation of the provided scenarios to test NFV 
use-cases. In order to build an OPNFV POD a virtual or physical laboratory has 
to be set up based on a recommended reference architecture. A Fuel-based 
OpenStack architecture design consists of determining how many nodes to 
deploy and which roles to assign to each node.  
 
The node and role planning is a decision that will impact on the performance and 
high availability of the POD. Spreading the roles and workloads over many 
servers will maximize performance and minimize bottlenecks. For smaller 
hardware configurations multiple roles can be combined on fewer nodes and 
networks can be grouped into a limited number physical NICs. 
 
For a basic testing POD, at least a compute node and 3 controller nodes are 
required, or 1 controller and 3 compute nodes. Ideally, storage nodes should be 
separated from the controllers to avoid resource contention, but this would need 
a total of 7 nodes (3 OpenStack and 3 Ceph OSD controllers). Based on a trade-
off decision, as shown in Figure 3.1, 6 servers have been decided to build an 
OPNFV SFC scenario: 
 

 1 Jump server10 acting as a provisioning node 

 3 Controller nodes to conform the OpenStack Cluster 

 2 Compute nodes for VNF deployment 
 
On the networking side, the following networks/VLANs are required [84]: 
 

 2 Networks requiring routed access to the Internet: 
o Admin/PXE VLAN between the Fuel master and slaves. 
o Public VLAN for used for controllers, HA VIPs, neutron floating IPs 

and optionally for control nodes. 

 3 non-routed networks: 
o Private VLAN for NFV data-path such as VxLAN tunnels. 

                                            
9 In network architecture design, a point of delivery (POD) defines a repeatable building block 
which can be deployed in the same way multiple times to simplify network complexity. 
10 A jump server or jump host is server used to manage devices in a separate security zone. 



32                                  Deployment of NFV and SFC scenarios 

o MGMT VLAN for OpenStack communications and Keystone 
endpoint URL. 

o Storage VLAN for network storage communication. 

 

 

Figure 3.1: OPNFV generic POD architecture 

 

 Scenario Deployment Workflow 

 
The deployment of an OPNFV POD based on Fuel consists of several phases. 
The following list contains a high level overview of the tasks involved: 
 

1. Set up POD (in the case of bare-metal environment). 
2. Gather parameters for the given POD topology. 
3. Install Fuel master. This can be either: 

a. Bare metal server: Fuel setup is included on a CentOS ISO. 
b. Virtual Machine: Ubuntu 14.04 as base OS and Fuel VM. 

4. Configure Fuel parameters before post-install. 
5. Connect via SSH and install the scenario required Fuel plugins. 

 
After these steps, the Fuel Web UI can be accessed via HTTPs and is ready for 
scenario creation and deployment. 
 

6. Boot Fuel slave nodes so they are booted via Fuel PXE server. 
7. Configure a deployment environment: 
8. Assign node roles. 
9. Configure node disk partitioning. 
10. Configure node network interface mapping. 
11. Configure scenario features 
12. Test networking. 
13. Execute the deployment. 



Deployment and testing of SFC scenarios   33 

14. Validate the deployment. 
 

3.2.1 Automated Scenario Deployment 

 
The SFC scenario deployment through the Fuel web UI has proven unreliable 
and error-prone. The most convenient way to deploy the scenario has been 
installing Fuel by script. The deployment script makes use of the Fuel CLI and is 
included as part of the continuous integration (CI) pipeline provided in the Fuel 
Gerrit code repository [85]. The script features: 
 

● Automatic Fuel master installation and configuration. 
● Automatic scenario configuration with validated templates. 
● Automatic deployment on a Pharos-compliant lab. 

 

Figure 3.2: OPNFV Fuel GIT repository [85] 

 
As shown in Figure 3.2, the CI pipeline contains a set of scripts and configuration 
files invoked by the OPNFV CI Infrastructure (Jenkins [86]) to automatically 
deploy and validate the Fuel-based supported scenarios. It was contributed by 
Ericsson and interacts with the Fuel CLI in an automated manner. The Fuel 
master is installed as VM using libvirt [87], which is the most flexible option. 
 
The Fuel GIT repository contains three main folders: 
 

● Build: contains the tools responsible for the Fuel ISO build. 
● Deploy: contains Python scripts and templates for POD deployments. 
● CI: contains Bash wrappers for the Build and Deploy tool-chains. 

 

3.2.2 Deploy Script Overview 

 
The CI deployment script is a shell script that takes care of the several installation 
phases. The bash script is a wrapper for a Python script which, once invoked, it 



34                                  Deployment of NFV and SFC scenarios 

performs different tasks depending on the configuration files interacting with the 
Fuel CLI. The main deploy.py requires mainly 3 inputs: 
 

● Fuel ISO image to deploy. 
● Deployment environment adapter (DEA) configuration file, dea.yaml, 

contains the parametrization of a Fuel deployment (network node settings, 
roles, scenario features, etc.) 

● Deployment Hardware Adapter (DHA) configuration file, dha.yaml, 
specifies the number of nodes and type/properties for the specific  
hardware adapter. 

 
The dea.yaml is combined by deploy.sh from the following inputs: 
 

● DEA POD override configuration file, dea-pod-override.yaml, containing 
the deployment configuration parameters that supersede the base DEA 
definition (dea_base.yaml). 

● The scenario configuration file, which overrides the settings in the generic 
scenario.yaml definition. For the HA SFC deployment, this is: 

 
ha_odl-l2_sfc_heat_ceilometer_scenario.yaml 

 

3.2.3 Deployment hardware adapter customization 

 
The Deployment Hardware Adapters are implementations of the DHA API for a 
specific hardware platform. The API implements bindings for out-of-band 
management such as IPMI (Intelligent Platform Management Interface) in order 
to power-cycle the Fuel slave nodes to boot them into PXE and make them 
available for the scenario deployment once they are bootstrapped by Fuel.  
 
There are adapters for both virtual and physical servers. There is also a hybrid 
libvirt/IPMI adapter (virtual fuel master and bare metal fuel slaves) which is 
suitable for the EETAC’s 235G lab. However, as the lab computers lack an IPMI, 
a custom adapter has been implemented. The adapter is a dummy API 
implementation that relies on human interaction to manually boot the computers. 
 

 Virtual lab environment 

 
In the virtual environment, the OPNFV platform is installed on a single server 
using Linux Kernel-based Virtual Machines (KVM) to deploy guests acting as fuel 
master and slaves. The virtual lab environment has been used to test the 
installation and deployment procedures and familiarize with the scenarios as 
nesting hypervisors is not a viable option for real NFV performance tests. 
 
The virtual POD consists of 5 KVM guests and 4 libvirt networks interconnecting 
them as shown in Figure 3.3. The virtual networks are Linux bridges with NAT for 
inbound/outbound traffic. During the deployment, a Fuel master VM and all the 
virtual networks are set up. Then, the Fuel slave VMs are booted in PXE mode 
to be bootstrapped prior to the scenario deployment launch. 



Deployment and testing of SFC scenarios   35 

 

 

Figure 3.3: OPNFV virtual POD logical topology 

 
An IBM x3550 M3 server has been available to build this POD. The following 
table compares the requirements against the available hardware. 
 

Component Required Available 

Processor Sandy Bridge CPU with support for 5 virtual 
cores (5 physical cores at least) 

Nehalem (previous 
than Sandy Bridge) 
CPU with 4 physical 
cores 

Memory 54GB at least (10GBs per node and 4 for the 
jump server) 

70GB 

Disk 704GB at least (128GBs per node and 64GB 
for the jump server) 

1.4TB 

 
Table 3.1: OPNFV requirements for a virtual lab 

 

 Bare-metal lab environment 

 
The OPNFV bare metal lab specification lies within the scope of the Pharos 
project, which defines the hardware environment that can host a fully featured 
OPNFV platform able to run all kind of scenarios and tests. The Pharos 



36                                  Deployment of NFV and SFC scenarios 

specification also defines remote access to serve as a community lab and 
connect to the Continuous Integration Infrastructure. The specification provides: 
 

● A secure, scalable, standard HA environment 
● Full release deployment lifecycle support and CI/CD integration 
● Full functional and performance testing 
● Secure remote access to the lab 

The 235G lab at EETAC has been made available as a bare-metal environment 
for the scenarios tested during this project. The lab has a total of 24 HP Compaq 
8100 Elite Convertible Minitower PCs. A row of 6 computers can act as an 
OPNFV POD. The required networks can be implemented with a pair of Netgear 
unmanaged switches. Access to the BIOS is needed to modify boot settings. 
Table 3.2 compares the requirements against the available hardware: 

 

Component Required Available 

Processor Xeon E5-2600v2 Series (Ivy Bridge 
or newer) 4–12 cores 

Core i5-650 Series (Westmere) 2 
cores  

Memory 32G RAM Minimum 4/8/16GB depending on the lab 
row/column 

Disk 2x1TB + 1x100GB SSD: 
-1TB: OS and tools 
-1TB: Ceph storage 
-100GB: Ceph journal 

500GB 

Network 2x1G Control 
2x10G Data (DPDK) 
2x40G Storage 

5x100Mbps Intel 82557 
(no DPDK) 

Out-of-band 
Management 

IPMI Not Available 

Power supplies 2 Recommended 1 

 
Table 3.2: OPNFV requirements for a bare-metal deployment 

 
Although these requirements are difficult to fulfill without enterprise-grade 
hardware, scenarios can be deployed bearing in mind the following constraints: 
 

● Processor: number of VNFs deployed and vCPUs per VM. 
● Memory: amount assigned per VM and extra RAM for the controller nodes. 
● Storage: local drive/volumes per VM and object storage. 
● Network: bandwidth per virtual machine and network storage. 

 

The deployed OPNFV POD at lab 235G consisted of 6 servers and 2 Netgear 
switches interconnecting them. 3 NICs are used in the Fuel master and 2 in each 
Fuel slave as shown in Figure 3.4. VLAN tagging is used. Connectivity is 
achieved via the lab structured cabling. For PXE booting, the fuel slave servers 
use interface eth4 to bypass the lab’s Rembo PXE server. Table 3.3 defines the 
networking details of the deployed lab: 

 
 



Deployment and testing of SFC scenarios   37 

Name BRIDGE / VLAN  Subnet 

Admin/PXE Switch 1 / Untagged 10.20.0.0/24 

Public Switch 2 / Untagged 172.16.0.0/24 

Management Switch 2 / 101 192.168.0.0/24 

Storage Switch 2 / 102 192.168.1.0/24 

Private Switch 2 / 103 192.168.2.0/24 

 
Table 3.3: OPNFV POD networks for a virtual deployment 

 

 

 

Figure 3.4: OPNFV bare-metal POD physical topology 

 
As shown in Figure 3.5, three servers are used as controllers (blue boxes) and 
two as compute (green boxes). The remaining server is the jump server which 
hosts a VM for the fuel-master. The fuel-master VM is linked to the physical 
network with Linux bridged networking via two interfaces. The third interface 
provides Internet access to the jump server OS and also to the Admin/PXE and 
Public networks through each NAT provided by libvirt networks. 
 



38                                  Deployment of NFV and SFC scenarios 

 
 

Figure 3.5: OPNFV bare-metal POD logical topology 

 
Once the Fuel deployment is completed and validation succeeds, the SFC 
scenario is ready for VNF deployment and SFC creation. The 5 Fuel slaves  
contain a highly available OpenStack environment integrated with a standalone 
OpenDaylight SDN controller. Currently, the ODL Neutron plugin does not 
support ODL HA. Table 3.4 shows the node mapping for this deployment and the 
management IPs. 
 

Hostname Roles Admin IP MAC 

LXAR-HP-01 Controller, OpenDaylight 10.20.0.3 78:e7:d1:c6:69:d9 

LXAR-HP-07 Controller, Mongo, Tacker 10.20.0.4 78:e7:d1:89:91:5d 

LXAR-HP-08 Controller, Ceph OSD 10.20.0.5 78:e7:d1:c6:68:87 

LXAR-HP-10 Compute, Ceph OSD 10.20.0.7 78:e7:d1:c6:68:fa 

LXAR-HP-11 Compute, Ceph OSD 10.20.0.8 78:e7:d1:c6:68:e2 

 
Table 3.4: Role to server mapping in the bare-metal POD 

 

 Details of the SFC scenario 

 
The details on the SFC scenario further developed in this section are based on 
the virtual OPNFV POD alone due to performance limitations in the bare-metal 
lab. This limitations prevented Tacker to complete the VNF deployment. 



Deployment and testing of SFC scenarios   39 

In this case, 4 Fuel slave VMs were used in a non-HA OpenStack environment 
integrated with an OpenDaylight SDN controller. Table 3.5 shows the node 
mapping for this deployment. 
 

Hostname Roles Admin IP MAC 

controller1 Controller, Mongo, Tacker 10.20.0.3 52:54:00:a9:4a:fa 

controller2 Ceph OSD, OpenDaylight 10.20.0.4 52:54:00:a5:23:08 

compute1 Compute, Ceph OSD 10.20.0.5 52:54:00:bd:90:f8 

compute2 Compute, Ceph OSD 10.20.0.6 52:54:00:91:65:47 

 
Table 3.5: Role to server mapping in the virtual POD 

 
Each role performs the following functions: 

● The Controller provides central management for the OpenStack cluster. 
● Mongo provides NoSQL database backend for Ceilometer.  
● Tacker acts as a VNF Manager and SFC Orchestrator. 
● The Ceph OSD (Object Storage Daemon) provides clustered storage. 
● OpenDaylight controls all the OVSs deployed in the OpenStack cluster. 
● Compute hosts VMs/VNFs. It Provides SFF in the “br-int” OVS bridge.  

 

3.5.1 Tacker workflow for VNF and SFC 

 
Tacker CLI is used as VNF manager in this scenario. The included Tacker version 
is a pre-Mitaka release with also support the SFC API. All the required 
configuration, service chains and classifiers, can be performed using Tacker 
installed in the second OpenStack controller. Tacker creates service chains, 
classification rules, creates SFs through Heat and communicates the relevant 
configuration to ODL. 
 

 

Figure 3.6: Tacker configuration flow for SFC scenario 

 



40                                  Deployment of NFV and SFC scenarios 

3.5.2 Scenario high level logical topology 

 
The OPNFV SFC scenario allows the creation of service chains, classifiers, and 
VNFs. Client to server traffic can be directed through the provisioned service 
chains. The chaining feature is showcased creating two separate Firewall Service 
Functions implementing a different set of filtering rules via one chain or another 
to prove the ability to send traffic based on classification. 
 
The service chain creation is achieved configuring the OpenDaylight SFC feature. 
This configuration will, in-turn, configure service function forwarders to route 
traffic to the service functions. The br-int OVS in the compute nodes acts as SFF. 
The classifier used in this scenario is implemented with Netvirt [88]. The following 
are the installed ODL SFC and Netvirt Karaf features: 
 

SFC Features Netvirt Features 

odl-sfc-model 
odl-sfc-provider 
odl-sfc-provider-rest 
odl-sfc-ovs 
odl-sfc-openflow-renderer 

odl-ovsdb-openstack 
odl-mdsal-xsql 
odl-neutron-service 
odl-neutron-northbound-api 
odl-neutron-spi 
odl-neutron-transcriber 
odl-mdsal-apidocs 
odl-ovsdb-southbound-impl-rest 
odl-ovsdb-southbound-impl-ui 

 
Table 3.6: ODL features installed in the SFC scenario 

 
The classifiers are configured through the ODL Netvirt feature as shown in Figure 
3.7. Alternatively could be configured via group based policy (GBP) [89]. Netvirt 
handles VM networking and can create basic classification rules to steer specific 
traffic to a service chain. The rules are 5-tuple based on the TCP/IP connection 
values: source IP address/port, destination IP address/port and protocol. 
 

 

Figure 3.7: SFC scenario high level virtual network topology 

 



Deployment and testing of SFC scenarios   41 

3.5.3 Scenario limitations 

 
In all SDN-based scenarios, VXLAN tunnel segmentation is a requirement for the 
ML2 Neutron plugin. When VXLAN segmentation is used, tenant traffic is 
encapsulated in tunnels. This is more flexible than using VLANs as there is no 
need to configure the external switches. Moreover the tenant space is much 
larger and subnet overlapping is supported. Other possible encapsulation 
mechanisms in Neutron tunneling segmentation topologies is GRE, but the 
number of tenants is smaller.  
 
Currently, OpenStack terminates the VXLAN tunnels in the br-int OVS bridge 
instead of the service function VNF. This does not work correcty with the ODL 
SFC feature as the tunnel should be terminated in the VNF so the SF can access  
the NSH header. As per [90], a workaround was developed  and it is implemented 
in the OPNFV SFC scenario. The workaround works by sending the packets to 
the SF VNF with the intact VXLAN-GPE header as shown in Figure 3.8. 
 

 

Figure 3.8: SFC scenario VXLAN workaround [91] 

 

 Tests over the SFC scenario 

 
Due to hardware limitations, deployment on the bare-metal lab was completed 
successfully but tests were not able to complete due to a bug [92] in the Fuel 
Tacker plugin which prevented the instantiation of  VNFs. In the conclusions, 
workarounds for these limitations are proposed. The tests conducted on the 
virtual lab only include functional testing as performance tests in a nested virtual 
environment do not make sense. 
 



42                                  Deployment of NFV and SFC scenarios 

3.6.1 Scenario functional tests 

 
Functest [93] has been used to test the deployed scenario SFC features. Functest 
project provides a Docker image with a set of predefined functional tests. As 
some glitches have been observed during subsequent POD installations it is 
recommended to run at least a full health check in addition to the checks already 
performed by Fuel. Table 3.7 shows how to run the tests. 
 

 Command Description 

1 sudo docker pull opnfv/functest:colorado.3.0 Download Docker image 

2 sudo docker run --net=docker-fuel1 --rm --
privileged --name Functest -it 
opnfv/functest:colorado.3.0 

Run Docker container 

3 ./repos/releng/utils/fetch_os_creds.sh -d 
/home/opnfv/functest/conf/openstack.creds -i 
fuel -a 10.20.0.2 -v 

Load OpenStack credentials 

4 functest env prepare Prepare test environment 

5 functest tier run healthcheck OpenStack checks 

7 functest tier run sdn_suites ODL integration checks 

8 functest tier run odl-sfc SFC scenario checks 

 

Table 3.7:  Functional tests run on the virtual scenario 
 
The tests consist on instantiating a pair of virtual firewalls, one filtering HTTP and 
the other one SSH. Two additional VMs are used to generate traffic on ports 80 
and 22 alternatively. The traffic is redirected to one firewall or the other depending 
on the classification criteria mapped to a service function chain. Figure 3.9 shows 
all the VMs and service functions involved in the test topology.  
 

 

Figure 3.9: SFC scenario service chaining tests 

 



Deployment and testing of SFC scenarios   43 

Functional test categories are ordered by layers. If the first layer succeeds, 
Functest proceeds with the following. The SFC scenario with an High Availability 
(HA) OpenStack cluster did not pass the most basic test as shown in Table 3.8. 
Thus, all other tests failed. The issue was that VM instances were not getting IP 
via DHCP. Troubleshooting yet another failure was out of the scope of the project, 
so the rest of the tests were performed in the non-HA scenario. 
 

Scenario: os-odl_l2-sfc-noha 

Test suite / Test case Description Result 

OpenStack tests Verify basic operation in VIM PASS 

ODL integration tests ODL-Neutron M2L integration PASS 

ODL-SFC tests Test 1 FW1 blocks SSH PASS 

Test 2 FW1 allows HTTP PASS 

Test 3 FW2 blocks HTTP PASS 

Test 4 FW2 allows SSH PASS 

Scenario: os-odl_l2-sfc-ha 

Test suite / Test case Description Result 

OpenStack tests Verify basic operation in VIM FAIL 

ODL integration tests ODL-Neutron M2L integration FAIL 

ODL-SFC tests Test 1 FW1 blocks SSH FAIL 

Test 2 FW1 allows HTTP FAIL 

Test 3 FW2 blocks HTTP FAIL 

Test 4 FW2 allows SSH FAIL 

 
Table 3.8:  Functional test results 

 
The tests are run creating all the VMs and VNF in the same compute node. 
Additional tests have been conducted to verify the VXLAN network overlay 
between the compute nodes by migrating VMs and VNF between nodes.  
Creating more complex service function chains with multiple service functions 
has not been successfully as it is currenly unsupported in OPNFV Colorado. 

 





Conclusions   45 

CHAPTER 4. Conclusions 
 
This chapter concludes the main part of the document with finishing thoughts on 
the project achievements and gaps. Then a brief consideration on the NFV 
environmental effects precedes a list of proposals to further expand on related 
NFV topics in terms of open source platforms not covered in the experimentation 
phases and other trends more focused on academic research. 
 

4.1. Conclusions  

 
NFV SFC scenarios on both virtual and physical infrastructure have been 
deployed successfully. OPNFV has proven a comprehensive framework to 
experiment with the cutting-edge reference implementations of the selected 
technologies during the state-of-the art analysis initial project phase. The faced 
difficulties typical to open source projects have been overcome with lots of effort 
and a bit of help of the OPNFV community. 
 
The installation procedures intended for regular users have been a big stopper 
for the project development, especially for the technical part. After doing a lot of 
trial and error, the continuous integration automated deployment tools have been 
the only way to complete deployments successfully. The CI pipeline scripts has 
been adapted to the Physical lab in the EETAC with a bit of development work 
although it was not intended to engage in software modifications in the beginning. 
 
The OPNFV integration model allows to implement new use cases before the 
upstream projects implement them. This serves the purpose of filling the gaps in 
the technology between upstream projects. However, downstream bug tracking 
is not well managed and components using customized releases of the parent 
projects contain bugs already solved in more recent upstream releases. This is a 
point where OPNFV lags as an integration project. 
 
Although the NFV approach is software-based, the server computing platform is 
a key element. Modern hardware is required to fulfill the performance 
requirements of the NFV architecture. The Pharos OPNFV lab specification [94] 
counts on high-spec hardware and constrained resources in the used computers 
can prevent successful POD deployment and testing. More processor and 
memory resources are undoubtedly required.  
 
This shortage in resources can make the deployment time to be very long, which 
collides with the limited availability of an academic lab. And, in some cases, the 
installer can even fail due to race conditions11. As the deployments are tested in 
the CI/CD pipeline with cutting-edge enterprise-grade server platforms, this kind 
of race conditions caused by resource contemption are not detected and 
diagnosing them can be very difficult.  
 

                                            
11 A race condition in computer software is a failure that happens when the events do not happen 
in the order or timing they were expected due uncontrolled conditions in the environment.  



46                                  Deployment of NFV and SFC scenarios 

The testing phase of the project has been contrained to great extent by the limited 
resources in the bare-metal environment at EETAC’s lab 235G, the memory 
requirements gap almost made the controller nodes unusable due to constant 
disk thrashing12, especially the Opendaylight controller. A workaround would be 
upgrading memory and deploying a non-HA OpenStack deployment, which would 
require less nodes, and install a standalone ODL controller. 
 
In regards of the SFC tests, the limited availability of VNF images leads to just a 
few VNF sample images, which in addition are very heavy (more than 2GB). This 
heavy-duty image caused timeouts during the Tacker/Heat template deployment 
preventing the setup of the test scenario. A workaround could be installing a more 
recent Tacker version potentially breaking the integration or using a compressed 
image recently shared in the OPNFV mailing lists [95]. 
 
The current SFC implementation is a bit of a kludge. It contains the OVS patches, 
tweaks on ODL openflow tables, the VXLAN workaround for service function 
traffic delivery and a customized Tacker version for SFC and VNF management. 
Under these conditions, developing tests other than the supported out of the box 
has proven unfeasible due to the time constraints of the project. In fact, ongoing 
feature freeze in the next OPNFV release is requiring a great deal of debugging, 
which indicates that the implementation is not solid enough.  
 

4.2. Environmental impact 

 
One of the promises of NFV technology is the cost reduction by means of making 
a more efficient use of hardware resources. In this sense, the environmental 
impact would be the similar to cloud computing. In cloud computing, the highly 
dense data-centres can have a different environmental footprint in terms of 
emissions depending on the source of energy. In this area over-the-top providers 
also lead the race in the energy source transformation of their data-centres 
towards renewable energies [96]. 
 
But as stated in [97], carbon emissions are not the only contributors in the 
ecological balance of the premises likely to host the NFV infrastructure. For 
instance, batteries and other kinds of electronic waste, coolant, water, fuel and 
fire supressing products used in DC environmental maintenance have a high 
impact which is usually overlooked. In that regard, additional electronic waste due 
to the high replacement rate of COTS hardware can have an adverse outcome if 
no recycling policies are enforced. 
 

4.3. Future lines of study 

 
The next release of OPNFV, Danube, will not add new features relating to ODL 
as it will use the same ODL release. But successive versions will include new 
features that will allow the realization of more complex scenarios like the ones 

                                            
12 Thrashing occurs when the virtual memory sytem of a computer is paging constantly, that is 
querying the swap memory stored on disk, which is much slower than real memory. 



Conclusions   47 

allowing SFC and L3VPN interoperability. The project practical research can be 
further extended working on combining the current scenarios or creating new 
ones to validate other NFV use cases. Work can be done to integrate the MANO 
open source tools in OPNFV to try to orchestrate complex services. A great deal 
of additional testing can be implemented with the suite of testing tools already 
available for OPNFV. 
 
Conducting proof of concepts on different SDN controllers can also be another 
line of study. Besides OpenDaylight, other controllers such as ONOS implement 
NSH, so comparing the two implementations can be an interesting exercise. Also 
other service chaining approaches exist. OpenContrail does not use NSH which 
can also be the object of a gap analysis. The Danube release of OPNFV includes 
a Kubernetes scenario. The differences that networking with containers will 
introduce can be a matter of study on the architectural strengths of the current 
implementation. 
 
In the late phase of writing the Sonata NFV framework was discovered by chance. 
An evaluation of the Sonata value proposition can also be done and tests over 
the first release can be conducted. A more promising framework is expected to 
be OpenECOMP, that will deserve further attention when it is finally released 
jointly by AT&T, Amdocs and the Linux Foundation [98]. OpenECOM is expected 
to become a de facto standard changing the whole NFV landscape. 
 
To conduct more specific practical studies, there are multiple open source 
implementations of the IP multimedia subsystem, for examples Project 
Clearwater [99], or Open IMS core [100]. Other examples that can serve as 
testbed for NFV are CORD [101] or OpenAirInterface [102], which aims to 
develop an open 5G cellular stack on COTS hardware. In the field of strictly 
academic research, several ideas can also be developed instance: 
 

● Research on the evolving IETF standards with the additional drafts that 
are refining the SFC architecture and adding new NSH use cases like 
multi-domain services, an application on broadband service provider 
networks or network security. 
 

● Service chaining algorithms to provide high availability mechanisms for 
SFC. HA in a SFC domain will be a combination of individual components 
and dynamic chain re-route. Interaction between VNF, SDN, MANO and 
NFVI will be required. 

 
● Big data analytics for quality of experience, performance monitoring and 

reliability of network services will be a masterpiece in cutting-edge self-
optimizing and self-healing networks. MANO will be a broad field of 
experimentation in this direction. 
 

● Energy-efficient NFV architecture study is a mandatory research  field if 
environmental impact is taken seriously. Energy optimization in terms of 
the ratio between power consumption and useful outcome needs to be 
benchmarked. The virtualization efficiency needs also to be taken into 
account in comparison with bare-metal equivalent resource pools.





References   49 

REFERENCES 
 
[1] P. Maillé, Telecommunication Network Economics. Cambridge University Press, 2014. 
[2] OPNFV Project, “Virtualizing Customer Premises with Service Function Chaining.” 

[Online]. Available: https://www.opnfv.org/wp-
content/uploads/2016/11/opnfv_odl_vcpe_sfc_brief.pdf. [Accessed: 31-Jan-2017]. 

[3] Z. Yao, J. Bagga, and H. Morsy, “Introducing Backpack: Our second-generation modular 
open switch,” Facebook Code Engineering Blog. [Online]. Available: 
https://code.facebook.com/posts/864213503715814/introducing-backpack-our-second-
generation-modular-open-switch/. [Accessed: 01-Feb-2017]. 

[4] Lerner. Andrew, “Networking Hype Cycle 2016,” Gartner Blog Network, 2016. [Online]. 
Available: http://blogs.gartner.com/andrew-lerner/2016/07/28/networking-hype-cycle-
2016/. [Accessed: 01-Feb-2017]. 

[5] M. Chiosi et al., “Network Functions Virtualisation Introductory White Paper,” 2012. 
[Online]. Available: https://portal.etsi.org/nfv/nfv_white_paper.pdf. [Accessed: 24-Jan-
2017]. 

[6] T. D. N. Ken Gray, Network Function Virtualization. Morgan Kaufmann, 2016. 
[7] Verizon, “SDN-NFV Reference Architecture,” 2016. 
[8] M.-P. Odini and A. Manzalini, “SDN in NFV Architectural Framework,” IEEE Software 

Defined Networks Newsletter, 2016. [Online]. Available: 
http://sdn.ieee.org/newsletter/may-2016/sdn-in-nfv-architectural-framework. [Accessed: 
02-Feb-2017]. 

[9] “ETSI - European Telecommunications Standards Institute.” [Online]. Available: 
http://www.etsi.org/. [Accessed: 02-Feb-2017]. 

[10] “ETSI NFV ISG Team Board.” [Online]. Available: 
https://portal.etsi.org/tb.aspx?tbid=789&SubTB=789,795,796,801,800,798,799,797,802. 
[Accessed: 02-Feb-2017]. 

[11] ETSI, “Network Functions Virtualisation (NFV) Use Cases,” 2013. [Online]. Available: 
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/001/01.01.01_60/gs_nfv001v010101p.pd
f. [Accessed: 02-Feb-2017]. 

[12] M. Cohn, “Why Operators Will Deploy Virtualized CPE,” SDxCentral, 2015. [Online]. 
Available: https://www.sdxcentral.com/articles/contributed/why-operators-deploy-
virtualized-cpe/2015/10/. [Accessed: 02-Feb-2017]. 

[13] Juniper, “VCPE &amp; Cloud CPE Solutions - Juniper Networks.” [Online]. Available: 
https://www.juniper.net/us/en/solutions/nfv/cloudcpe/. [Accessed: 02-Feb-2017]. 

[14] M. Chiosi et al., “NFV White Paper #2.” [Online]. Available: 
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper2.pdf. [Accessed: 
02-Feb-2017]. 

[15] M. Chiosi et al., “NFV White Paper #3.” [Online]. Available: 
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf. [Accessed: 
02-Feb-2017]. 

[16] “ETSI - Open Source MANO.” [Online]. Available: http://www.etsi.org/technologies-
clusters/technologies/nfv/open-source-mano. [Accessed: 02-Feb-2017]. 

[17] “Open Networking Foundation.” [Online]. Available: https://www.opennetworking.org/. 
[Accessed: 03-Feb-2017]. 

[18] “Software-Defined Networking Definition.” [Online]. Available: 
https://www.opennetworking.org/sdn-resources/sdn-definition. [Accessed: 03-Feb-2017]. 

[19] Open Networking Foundation, “OpenFlow Switch Specification Version 1.5.1,” 2015. 
[Online]. Available: https://www.opennetworking.org/images//openflow-switch-v1.5.1.pdf. 
[Accessed: 08-Feb-2017]. 

[20] K. Grzegorz and A. Sanchez, MPLS in the SDN Era. 2015. 
[21] “ONOS - A new carrier-grade SDN network operating system designed for high 

availability, performance, scale-out.” [Online]. Available: http://onosproject.org/. 
[Accessed: 08-Feb-2017]. 

[22] L. Peterson, “CORD: Central Office Re-Architected as a Datacenter,” IEEE Software 
Defined Networks Newsletter, 2015. [Online]. Available: 
http://sdn.ieee.org/newsletter/november-2015/cord-central-office-re-architected-as-a-
datacenter. [Accessed: 02-Feb-2017]. 



50                                  Deployment of NFV and SFC scenarios 

[23] “OpenFlow-enabled SDN and Network Functions Virtualization,” 2014. [Online]. 
Available: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-sdn-nvf-solution.pdf. [Accessed: 03-Feb-2017]. 

[24] P. Quinn and T. Nadeau, “RFC7498 - Problem Statement for Service Function 
Chaining,” Request for Comments (RFC) Pages - IETF, 2015. [Online]. Available: 
https://tools.ietf.org/html/rfc7498. [Accessed: 02-Feb-2017]. 

[25] V. Suazo and S. Dasgupta, “Network Service Chaining Solutions,” Cisco Live Sessions, 
2015. [Online]. Available: 
https://www.ciscolive.com/online/connect/sessionDetail.ww?SESSION_ID=84148&tclass
=popup. [Accessed: 02-Feb-2017]. 

[26] “IETF Service Function Chaining Working Group Charter.” [Online]. Available: 
https://datatracker.ietf.org/wg/sfc/charter/. 

[27] J. Halpern and C. Pignataro, “RFC7665 - Service Function Chaining (SFC) Architecture,” 
IETF Datatracker, 2015. [Online]. Available: https://tools.ietf.org/html/rfc7665. 

[28] P. Quinn and U. Elzur, “Network Service Header,” 2016. [Online]. Available: 
https://tools.ietf.org/html/draft-ietf-sfc-nsh-10. 

[29] “Cisco NSH Service Chaining Configuration Guide.” [Online]. Available: 
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/wan_nsh/configuration/xe-16/wan-nsh-
xe-16-book.html. [Accessed: 03-Feb-2017]. 

[30] M. Ricchome, “VNF Mindmap.” [Online]. Available: 
https://framindmap.org/c/maps/295778/embed?zoom=1. [Accessed: 09-Feb-2017]. 

[31] “ETSI Network Function Virtualization enters Phase 2.” [Online]. Available: 
http://www.etsi.org/news-events/news/850-2014-12-news-etsi-network-function-
virtualization-enters-phase-2?highlight=YToxOntpOjA7czo1OiJwaGFzZSI7fQ==. 
[Accessed: 09-Feb-2017]. 

[32] R. Mijumbi, “Network Functions Virtualization Conception, Present &amp; Future.” 
[Online]. Available: http://www.slideshare.net/rmijumbi/nfv-tutorial-61544473. [Accessed: 
09-Feb-2017]. 

[33] “Depurando el estándar ETSI NFV: La primera plugtest de ETSI NFV.” [Online]. 
Available: http://blogthinkbig.com/depurando-el-estandar-etsi-nfv/. [Accessed: 09-Feb-
2017]. 

[34] “OpenStack - Open Source Cloud Computing Software.” [Online]. Available: 
https://www.openstack.org/. [Accessed: 09-Feb-2017]. 

[35] “OpenStack ML2 plug-in.” [Online]. Available: 
http://docs.openstack.org/mitaka/networking-guide/config-ml2.html. [Accessed: 09-Feb-
2017]. 

[36] “The OpenDaylight Platform.” [Online]. Available: https://www.opendaylight.org/. 
[Accessed: 09-Feb-2017]. 

[37] “OpenDaylight Project - Service Function Chaining,” OpenDaylight Wiki. [Online]. 
Available: https://wiki.opendaylight.org/view/Service_Function_Chaining:Main. 
[Accessed: 12-Feb-2017]. 

[38] “XOS: Service Orchestration for CORD.” . 
[39] “OpenContrail.” [Online]. Available: http://www.opencontrail.org/. [Accessed: 02-Feb-

2017]. 
[40] “Open vSwitch.” [Online]. Available: http://openvswitch.org/. [Accessed: 09-Feb-2017]. 
[41] “The Fast Data Project (FD.io).” [Online]. Available: https://fd.io/. [Accessed: 09-Feb-

2017]. 
[42] “fd.io - What is VPP?” [Online]. Available: https://wiki.fd.io/view/VPP/What_is_VPP%3F. 

[Accessed: 09-Feb-2017]. 
[43] “fd.io - NSH SFC Project.” [Online]. Available: https://wiki.fd.io/view/NSH_SFC. 

[Accessed: 09-Feb-2017]. 
[44] OPNFV, “OPNFV Technical Overview.” [Online]. Available: 

https://www.opnfv.org/software/technical-overview. [Accessed: 10-Feb-2017]. 
[45] “SONATA NFV.” [Online]. Available: http://sonata-nfv.eu/content/about-sonata. 

[Accessed: 11-Feb-2017]. 
[46] “5G-PPP - The 5G Infrastructure Public Private Partnership.” [Online]. Available: 

https://5g-ppp.eu/. [Accessed: 11-Feb-2017]. 
[47] “ECOMP (Enhanced Control, Orchestration, Management &amp; Policy) Architecture 

White Paper.” 
[48] Yyang13, “Open vSwitch NSH patches.” . 



References   51 

[49] “OpenStack Releases: OpenStack Releases.” [Online]. Available: 
https://releases.openstack.org/. [Accessed: 14-Feb-2017]. 

[50] Ericsson, “OpenStack as the API framework for NFV,” 2015. . 
[51] “OpenStack Foundatio Board of Directors.” [Online]. Available: 

https://www.openstack.org/foundation/board-of-directors/. [Accessed: 14-Feb-2017]. 
[52] O. Foundation, “Accelerating NFV Delivery with OpenStack.” [Online]. Available: 

https://www.openstack.org/assets/telecoms-and-nfv/OpenStack-Foundation-NFV-
Report.pdf. [Accessed: 09-Feb-2017]. 

[53] “Heat - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Heat. [Accessed: 
12-Feb-2017]. 

[54] “Neutron’s developer documentation! — neutron 10.0.0.0rc2.dev43 documentation.” 
[Online]. Available: http://docs.openstack.org/developer/neutron/. [Accessed: 12-Feb-
2017]. 

[55] “Tacker - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Tacker. 
[Accessed: 12-Feb-2017]. 

[56] “Kingbird - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Kingbird. 
[Accessed: 12-Feb-2017]. 

[57] “Tricircle - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Tricircle. 
[Accessed: 12-Feb-2017]. 

[58] A. Lemke, “5 areas OpenStack needs help to support NFV | Insight | Nokia.” [Online]. 
Available: https://insight.nokia.com/5-areas-openstack-needs-help-support-nfv. 
[Accessed: 10-Feb-2017]. 

[59] “OpenStack Docs: Scheduling.” [Online]. Available: 
http://docs.openstack.org/mitaka/config-reference/compute/scheduler.html. [Accessed: 
12-Feb-2017]. 

[60] A. Otto, M. Ptl, D. Architect, R. C. Peters, and B. E. Whitaker, “Exploring Opportunities: 
Containers and OpenStack,” 2015. [Online]. Available: www.openstack.org. [Accessed: 
10-Feb-2017]. 

[61] “Ansible is Simple IT Automation.” [Online]. Available: https://www.ansible.com/. 
[Accessed: 12-Feb-2017]. 

[62] “Puppet - The shortest path to better software.” [Online]. Available: https://puppet.com/. 
[Accessed: 12-Feb-2017]. 

[63] “ETSI VNFFG integration into Tacker NFVO : Blueprints : tacker.” [Online]. Available: 
https://blueprints.launchpad.net/tacker/+spec/tacker-vnffg. [Accessed: 12-Feb-2017]. 

[64] “Fuel - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Fuel. [Accessed: 
12-Feb-2017]. 

[65] “Cobbler - Linux install and update server.” [Online]. Available: http://cobbler.github.io/. 
[Accessed: 12-Feb-2017]. 

[66] “Marionette Collective — Documentation — Puppet.” [Online]. Available: 
https://docs.puppet.com/mcollective/. [Accessed: 12-Feb-2017]. 

[67] “OpenDaylight Boron.” [Online]. Available: https://www.opendaylight.org/odlboron. 
[Accessed: 10-Feb-2017]. 

[68] I. Yamahata, “Opendaylight Summit - NetVirt Basic Tutorial.” [Online]. Available: 
http://schd.ws/hosted_files/opendaylightsummit2016/c9/ODL Summit 2016 NetVirt Basic 
Tutorial %282%29.pdf. [Accessed: 10-Feb-2017]. 

[69] “OpenJDK.” [Online]. Available: http://openjdk.java.net/. [Accessed: 12-Feb-2017]. 
[70] “Apache Karaf.” [Online]. Available: http://karaf.apache.org/. [Accessed: 12-Feb-2017]. 
[71] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,” 2013. 

[Online]. Available: https://tools.ietf.org/html/rfc7047. [Accessed: 14-Feb-2017]. 
[72] Ericsson, “Open vSwitch gets massive performance increase,” Blog - The journey to 

NFV. [Online]. Available: 
https://www.ericsson.com/spotlight/cloud/blog/2016/11/07/open-vswitch-gets-massive-
performance-increase/. [Accessed: 18-Jan-2017]. 

[73] “Apex - OPNFV Wiki.” [Online]. Available: https://wiki.opnfv.org/display/apex/Apex. 
[Accessed: 12-Feb-2017]. 

[74] “TripleO quickstart — RDO.” [Online]. Available: https://www.rdoproject.org/tripleo/. 
[Accessed: 12-Feb-2017]. 

[75] “RDO.” [Online]. Available: https://www.rdoproject.org/. [Accessed: 12-Feb-2017]. 
[76] “Compass4NFV - OPNFV Wiki.” [Online]. Available: 

https://wiki.opnfv.org/display/compass4nfv/Compass4nfv. [Accessed: 12-Feb-2017]. 



52                                  Deployment of NFV and SFC scenarios 

[77] “Compass - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Compass. 
[Accessed: 12-Feb-2017]. 

[78] “Mirantis OpenStack.” [Online]. Available: https://www.mirantis.com/software/openstack/. 
[Accessed: 12-Feb-2017]. 

[79] “JOID - OPNFV Wiki.” [Online]. Available: https://wiki.opnfv.org/display/joid/JOID+Home. 
[Accessed: 12-Feb-2017]. 

[80] “Canonical - Juju.” [Online]. Available: https://www.ubuntu.com/cloud/juju. [Accessed: 
11-Feb-2017]. 

[81] “Canonical Metal as a Service.” [Online]. Available: https://maas.io/. [Accessed: 11-Feb-
2017]. 

[82] “opnfv/functest - Docker image.” [Online]. Available: 
https://hub.docker.com/r/opnfv/functest/. [Accessed: 14-Feb-2017]. 

[83] “OPNFV Colorado Functest release notes.” [Online]. Available: 
http://artifacts.opnfv.org/functest/colorado/docs/release-notes/index.html. [Accessed: 14-
Feb-2017]. 

[84] “Mirantis OpenStack: Fuel logical networks.” [Online]. Available: 
https://docs.mirantis.com/openstack/fuel/fuel-9.1/mos-planning-
guide/network/logical_networks.html. [Accessed: 12-Feb-2017]. 

[85] “OPNFV Gerrit Fuel Master GIT repository.” [Online]. Available: 
https://gerrit.opnfv.org/gerrit/gitweb?p=fuel.git;a=tree. [Accessed: 10-Feb-2017]. 

[86] “OPNFV Platform CI [Jenkins].” [Online]. Available: https://build.opnfv.org/ci/. [Accessed: 
14-Feb-2017]. 

[87] “libvirt: The virtualization API.” [Online]. Available: https://libvirt.org/. [Accessed: 12-Feb-
2017]. 

[88] “NetVirt - OpenDaylight Project.” [Online]. Available: 
https://wiki.opendaylight.org/view/NetVirt. [Accessed: 12-Feb-2017]. 

[89] “Group Based Policy (GBP) - OpenDaylight Project.” [Online]. Available: 
https://wiki.opendaylight.org/view/Group_Based_Policy_(GBP). [Accessed: 12-Feb-
2017]. 

[90] Y. Yang, “Fix VxLAN Issue in SFC Integration by Using Eth+NSH and VxLAN-gpe+NSH 
Hybrid Mode.” 

[91] “OPNFV SFC Architecture.” [Online]. Available: 
http://artifacts.opnfv.org/sfc/colorado/docs/design/architecture.html. [Accessed: 17-Feb-
2017]. 

[92] “Bug #1521323 ‘Increase default heat stack configurations to acco...’ : Bugs : tacker.” 
[Online]. Available: https://bugs.launchpad.net/tacker/+bug/1521323. [Accessed: 15-Feb-
2017]. 

[93] “Functest: Opnfv Functional Testing- OPNFV Wiki.” [Online]. Available: 
https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing. [Accessed: 12-Feb-
2017]. 

[94] “OPNFV Pharos specification.” [Online]. Available: 
http://artifacts.opnfv.org/pharos/colorado/docs/specification/index.html. [Accessed: 17-
Feb-2017]. 

[95] “[opnfv-tech-discuss] [SFC] Using compressed sf_nsh_colorado.qcow2 VM image.” 
[Online]. Available: https://lists.opnfv.org/pipermail/opnfv-tech-discuss/2017-
January/014803.html. [Accessed: 17-Feb-2017]. 

[96] B. Walsh, “New Greenpeace Report Shows the Environmental Impact of the Internet | 
Time.com,” Time Science, 2014. [Online]. Available: http://time.com/46777/your-data-is-
dirty-the-carbon-price-of-cloud-computing/. [Accessed: 13-Feb-2017]. 

[97] J. Kozlowicz, “8 Ways Data Center Environmental Impact Goes Beyond Emissions,” 
Green House Data Blog, 2015. [Online]. Available: 
https://www.greenhousedata.com/blog/data-center-environmental-impact-goes-beyond-
emissions. [Accessed: 13-Feb-2017]. 

[98] “Amdocs Joins Forces with Linux Foundation to Accelerate OpenECOMP Adoption in 
Open Source.” [Online]. Available: http://www.amdocs.com/news/pages/amdocs-joins-
forces-with-linux-foundation-to-accelerate-openecomp-adoption-in-open-source.aspx. 
[Accessed: 13-Feb-2017]. 

[99] “Project Clearwater.” [Online]. Available: http://www.projectclearwater.org/. [Accessed: 
13-Feb-2017]. 

[100] “OpenIMS – The Open Source IMS Core Project.” [Online]. Available: 



References   53 

http://www.openimscore.org/. [Accessed: 13-Feb-2017]. 
[101] “CORD (Central Office Re-architected as a Datacenter): the killer app for SDN &amp; 

NFV.” [Online]. Available: http://opencord.org/. [Accessed: 08-Feb-2017]. 
[102] “OpenAirInterface | 5G software alliance for democratising wireless innovation.” [Online]. 

Available: http://www.openairinterface.org/. [Accessed: 13-Feb-2017]. 
[103] M. Ersue, “ETSI NFV Management and Orchestration Update.” [Online]. Available: 

https://www.ietf.org/proceedings/89/slides/slides-89-opsawg-7.pdf. [Accessed: 03-Feb-
2017]. 

[104] M. Bjorklund, “RFC7950 - The YANG 1.1 Data Modeling Language,” 2016. [Online]. 
Available: http://www.rfc-editor.org/rfc/rfc7950.txt. 

[105] “OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC | 
OASIS.” [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca. [Accessed: 03-Feb-2017]. 

[106] “OASIS - Organization for the Advancement of Structured Information Standards.” 
[Online]. Available: https://www.oasis-open.org/. [Accessed: 09-Feb-2017]. 

[107] “Topology and Orchestration Specification for Cloud Applications Version 1.0.” [Online]. 
Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html. [Accessed: 
03-Feb-2017]. 

[108] “TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0.” [Online]. 
Available: https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html. 
[Accessed: 03-Feb-2017]. 

[109] Heavy Reading, “NFV MANO: What’s wrong and how to fix it,” 2015. [Online]. Available: 
http://getcloudify.org/brochures/Heavy Reading NFV MANO Cloudify Snapshot.pdf. 
[Accessed: 09-Feb-2017]. 

[110] “Open Source NFV Part Four: Open Source MANO.” [Online]. Available: 
http://thenewstack.io/opensource-nfv-part-4-opensource-mano/. [Accessed: 09-Feb-
2017]. 

[111] “OpenMANO.” [Online]. Available: http://www.tid.es/long-term-innovation/network-
innovation/telefonica-nfv-reference-lab/openmano. [Accessed: 11-Feb-2017]. 

[112] “RIFT.io RIFT.ware.” [Online]. Available: https://riftio.com/riftware/. [Accessed: 09-Feb-
2017]. 

[113] “Telefónica NFV Reference Lab.” [Online]. Available: http://www.tid.es/long-term-
innovation/network-innovation/telefonica-nfv-reference-lab. [Accessed: 11-Feb-2017]. 

[114] “OpenVIM installation (Release One).” [Online]. Available: 
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_One). [Accessed: 
11-Feb-2017]. 

[115] “Canonical - Jujucharms.” [Online]. Available: https://jujucharms.com/. [Accessed: 11-
Feb-2017]. 

[116] “Open-O - Open Orchestrator.” [Online]. Available: https://www.open-o.org/. [Accessed: 
09-Feb-2017]. 

[117] “Open Baton: an open source reference implementation of the ETSI Network Function 
Virtualization MANO specification.” [Online]. Available: http://openbaton.github.io/. 
[Accessed: 09-Feb-2017]. 

[118] “Cloudify - Network Function Virtualization Orchestration.” [Online]. Available: 
http://getcloudify.org/network-function-virtualization-vnf-nfv-orchestration-sdn-
platform.html. [Accessed: 09-Feb-2017]. 

[119] “Intel Network Builders - RIFT.io.” [Online]. Available: 
https://networkbuilders.intel.com/ecosystem/rift.io. [Accessed: 09-Feb-2017]. 

[120] ETSI, “OSM - Open Source MANO.” [Online]. Available: https://osm.etsi.org/. [Accessed: 
09-Feb-2017]. 

[121] “OSM Release ONE.” [Online]. Available: 
https://osm.etsi.org/wikipub/index.php/OSM_Release_ONE. [Accessed: 11-Feb-2017]. 

[122] A. Hoban and C. Buerger, “Open Source MANO technical overview,” 2016. 
[123] “VMware vCloud Director.” [Online]. Available: 

https://www.vmware.com/products/vcloud-director.html. [Accessed: 11-Feb-2017]. 
[124] “Floodlight OpenFlow Controller.” [Online]. Available: 

http://www.projectfloodlight.org/floodlight/. [Accessed: 11-Feb-2017]. 
[125] “Nokia CloudBand.” [Online]. Available: https://networks.nokia.com/solutions/cloudband. 

[Accessed: 09-Feb-2017]. 
[126] “Ericsson Cloud Manager.” [Online]. Available: 



54                                  Deployment of NFV and SFC scenarios 

http://www.ericsson.com/hyperscale/cloud-infrastructure/cloud-manager. [Accessed: 09-
Feb-2017]. 

[127] “Oracle Communications Application Orchestrator.” [Online]. Available: 
https://www.oracle.com/industries/communications/service-
providers/products/application-orchestrator/index.html. [Accessed: 09-Feb-2017]. 

[128] “HPE NFV Director.” . 
[129] “Wind River Titanium Server - NFV Carrier Grade Server.” [Online]. Available: 

https://www.windriver.com/products/titanium-server/. [Accessed: 09-Feb-2017]. 
[130] “Blue Planet: a division of Ciena.” [Online]. Available: 

http://www.blueplanet.com/products. [Accessed: 09-Feb-2017]. 
[131] Amdocs, “NFV: It’s not just the network - it´s all about the service!,” 2016. . 
[132] Juniper, “NFX250 Network Services Platform.” [Online]. Available: 

https://www.juniper.net/us/en/products-services/sdn/nfx250/. [Accessed: 02-Feb-2017]. 
[133] Juniper, “Understanding How MX Series Router Cloud CPE Services Virtualize 

Customer Premises Equipment (CPE) Services.” [Online]. Available: 
https://www.juniper.net/techpubs/en_US/junos13.3/topics/concept/ccpe-overview.html. 
[Accessed: 02-Feb-2017]. 

[134] Juniper, “vSRX Integrated Virtual Firewall.” [Online]. Available: 
http://www.juniper.net/uk/en/products-services/security/srx-series/vsrx/. [Accessed: 02-
Feb-2017]. 

[135] Juniper, “vMX Virtual Router for Enterprise &amp; Service Provider Networks.” [Online]. 
Available: http://www.juniper.net/uk/en/products-services/routing/mx-series/vmx/. 
[Accessed: 02-Feb-2017]. 

[136] T. Herbert, M. Gray, and C. Price, “NFV vSwitch Requirements,” fd.dio. [Online]. 
Available: https://wiki.fd.io/view/File:NFV_vSwitch_Requirements.pptx. [Accessed: 03-
Feb-2017]. 

[137] J. Drake, E. Rosen, and J. Uttaro, “BGP Control Plane for NSH SFC - draft-mackie-bess-
nsh-bgp-control-plane-00,” 2016. [Online]. Available: https://tools.ietf.org/html/draft-
mackie-bess-nsh-bgp-control-plane-00. 

[138] S. Dredge, “The Missing Link: Service Function Chaining and Its Relationship to NFV,” 
Metaswitch blog, 2015. [Online]. Available: http://www.metaswitch.com/the-switch/the-
missing-link-service-function-chaining-and-its-relationship-to-nfv. [Accessed: 03-Feb-
2017]. 

[139] E. Wang, K. Leung, and A. Ossipov, “Network Service Header (NSH) Context Header 
Allocation (Network Security),” draft-wang-sfc-nsh-ns-allocation-02, 2016. [Online]. 
Available: https://www.ietf.org/id/draft-wang-sfc-nsh-ns-allocation-02.txt. 

[140] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated Performance 
Comparison of Virtual Machines and Linux Containers An Updated Performance 
Comparison of Virtual Machines and Linux Containers,” 2014. [Online]. Available: 
http://domino.watson.ibm.com/library/CyberDig.nsf/home. [Accessed: 09-Feb-2017]. 

[141] “QEMU.” [Online]. Available: http://www.qemu-project.org/. [Accessed: 09-Feb-2017]. 
[142] “XenServer.” [Online]. Available: http://xenserver.org/. [Accessed: 09-Feb-2017]. 
[143] “Microservices Architecture in the Telco Cloud.” [Online]. Available: 

https://www.sdxcentral.com/nfv/definitions/microservices-architecture-telco-cloud/. 
[Accessed: 09-Feb-2017]. 

[144] Nuage Networks, “Nuage Networks VSP: Virtual Networking and SDN Infrastructure for 
Containers.” [Online]. Available: http://www.nuagenetworks.net/blog/containers/. 
[Accessed: 09-Feb-2017]. 

[145] “Kubernetes - Production-Grade Container Orchestration.” [Online]. Available: 
https://kubernetes.io/. [Accessed: 09-Feb-2017]. 

[146] “Mesosphere - Cloud-native Technology, Hybrid Cloud Freedom.” [Online]. Available: 
https://mesosphere.com/. [Accessed: 09-Feb-2017]. 

[147] “MirageOS.” [Online]. Available: https://mirage.io/. [Accessed: 09-Feb-2017]. 
[148] “Docker - Containerization platform.” [Online]. Available: https://www.docker.com/. 

[Accessed: 09-Feb-2017]. 
[149] Ericsson, “Unikernels meet NFV,” Ericsson Research Blog. [Online]. Available: 

https://www.ericsson.com/research-blog/sdn/unikernels-meet-nfv/. [Accessed: 09-Feb-
2017]. 

[150] Unikernel.org, “NFV Platforms with MirageOS Unikernels.” [Online]. Available: 
http://unikernel.org/blog/2016/unikernel-nfv-platform. [Accessed: 09-Feb-2017]. 



References   55 

[151] “Iron.io - Serverless Multi-cloud for Enteprise.” [Online]. Available: https://www.iron.io/. 
[Accessed: 09-Feb-2017]. 

[152] “Mirantis + Iron.io: Bringing Serverless Computing to OpenStack.” [Online]. Available: 
https://www.mirantis.com/blog/mirantis-iron-io-bringing-serverless-computing-to-
openstack-2/. [Accessed: 09-Feb-2017]. 

[153] “Iron.io IronFunctions.” [Online]. Available: http://open.iron.io/. [Accessed: 09-Feb-2017]. 
[154] “AWS Lambda | Product Details.” [Online]. Available: 

https://aws.amazon.com/lambda/details/. [Accessed: 09-Feb-2017]. 
[155] “Cloud Functions - Serverless Microservices  |  Google Cloud Platform.” [Online]. 

Available: https://cloud.google.com/functions/. [Accessed: 09-Feb-2017]. 
[156] “Memory Deep Dive: NUMA and Data Locality - frankdenneman.nl.” [Online]. Available: 

http://frankdenneman.nl/2015/02/27/memory-deep-dive-numa-data-locality/. [Accessed: 
09-Feb-2017]. 

[157] Intel, “An Introduction to SR-IOV Technology,” 2011. . 
[158] “Accelerating the NFV Data Plane: SR-IOV and DPDK… in my own words.” [Online]. 

Available: http://www.metaswitch.com/the-switch/accelerating-the-nfv-data-plane. 
[Accessed: 09-Feb-2017]. 

[159] “Ethernity Networks Launches Flow Processing Network Interface Cards (NICs) for SDN 
and NFV Acceleration.” [Online]. Available: http://www.ethernitynet.com/news/ethernity-
networks-launches-flow-processing-network-interface-cards-nics-for-sdn-and-nfv-
acceleration/. [Accessed: 09-Feb-2017]. 

[160] “Napatech NT200B01 NFV NIC.” [Online]. Available: 
http://www.napatech.com/resources/nt200b01-nfv-nic. [Accessed: 09-Feb-2017]. 

[161] “Mirantis Open NFV Platform.” [Online]. Available: 
https://www.mirantis.com/solutions/network-functions-virtualization-nfv/open-nfv-
platform/. [Accessed: 09-Feb-2017]. 

[162] “Mirantis OpenStack NFVI Deployment Guide.” [Online]. Available: 
https://content.mirantis.com/MOS-7-NFVI-Whitepaper-Landing-Page.html. [Accessed: 
09-Feb-2017]. 

[163] “OpenStack Tacker Enhanced Placement Awareness Usage Guide.” [Online]. Available: 
http://docs.openstack.org/developer/tacker/devref/enhanced_placement_awareness_usa
ge_guide.html. [Accessed: 09-Feb-2017]. 

[164] “OpenStack Enhanced Platform Awarenes.” 
[165] “Yardstick: Inftrastructure verification - OPNFV Wiki.” [Online]. Available: 

https://wiki.opnfv.org/display/yardstick/Yardstick. [Accessed: 12-Feb-2017]. 
[166] “VSPerf - OPNFV Wiki.” [Online]. Available: 

https://wiki.opnfv.org/display/vsperf/VSperf+Home. [Accessed: 12-Feb-2017]. 
[167] “Project Bottlenecks - OPNFV Wiki.” [Online]. Available: 

https://wiki.opnfv.org/display/PROJ/Project+Proposals+Bottlenecks. [Accessed: 12-Feb-
2017]. 

[168] P. Capdevila, “fuel-deploy git repository,” 2017. [Online]. Available: 
https://github.com/pcapdevila/fuel-deploy. 

 





Acronyms   57 

ACRONYMS 
 

ADC  Application Delivery Controller 
API  Application Programming Interface 
APN   Access Point Name 
BGP  Border Gateway Protocol 
BNG  Broadband Network Gateway 
BSS   Business Support System 
CAPEX Capital Expenditures 
CLI  Command Line Interface 
COTS  Commercial Off-the-Shelf 
CORD  Central Office Re-architected as a Datacentre 
CPE   Customer Premises Equipment 

 CSP   Communication Service Provider 
 DC  Data Centre 
 DCI  Data Centre Interconnect 
 DHCP  Dynamic Host Configuration  Protocol 

EMS  Element Management System 
EPC  Evolved Packet Core 

 EPS  Evolved Packet System 
 ETSI  European Telecommunications Standards Institute 

FW  Firewall 
 GRE  Generic Routing Encapsulation 

HA  High Availability 
IOT  Internet of Things  

 IMS  IP Multimedia Subsystem 
 IPMI  Intelligent Platform Management Interface 
 L3VPN Layer 3 Virtual Private Network 
 LAN  Local Area Network 

LISP   Locator/ID Separation Protocol 
LSO  Lifecycle Service Orchestration 
LTE  Long-Term Evolution 

 MANO Management and Orchestration 
 MPLS  Multi-Protocol Label Switching 
 NAT  Network Address Translation 
 NF  Network Function 
 NFFG  NF Forwarding Graph (ETSI Terminology for chaining) 
 NFV  Network Function Virtualization 
 NFVI  Network Function Virtualization Infrastructure 
 NFVO  Network Function Virtualization Orchestrator 
 NS  Network Service 
 NSD  Network Service Descriptor 
 NSH  Network Services Header (Service chaining encapsulation) 

NVGRE  Network Virtualization Using Generic Routing Encapsulation 
NVO   Network Virtualization Overlay 
OASIS Organization for the Advancement of Structured Information 

Standards 
 ODL  OpenDaylight SDN Controller 
 OLT  Optical Line Terminal 



58                                  Deployment of NFV and SFC scenarios 

 ONOS Open Network Operating System 
 ONU  Optical Network Unit 

OVS  Open vSwitch 
OVSDB Open vSwitch Database 
OPEX  Operating Expense 
OSS  Open Source Software 
OSS  Operations Support System 

 POC  Proof of Concept 
 POD  Point of Delivery 

PNF  Physical Network Function 
PNFD  Physical Network Function Descriptor 
PGW   Packet Data Network Gateway 
PXE   Preboot Execution Environment 

 RAN  Radio Access Network 
 REST  Representational State Transfer 

ROI  Return of Investment 
 RSP  Rendered Service Path 
 SDN  Software-Defined Networking 
 SDO  Standards Developing Organizations 

SF  Service Function 
 SFC  Service Function Chaining (IETF Terminology) 
 SFF  Service Function Forwarder 
 SFP  Service Function Path 
 SMBs  Small and Medium Business 
 TLV  Type Length Value 

TOSCA Topology and Orchestration Specification for Cloud 
Applications 

UI User Interface 
 VLAN  Virtual Local Area Network 
 VLD  Virtual Link Descriptor 

VNF  Virtual Network Function 
 VNFC  VNF Component 

VNFD  Virtual Network Function Descriptor. 
 VNFM  Virtual Network Function Manager 
 VNFFG Virtual Network Function Forwarding Graph 

VNFFGD Virtual Network Function Forwarding Graph Descriptor 
 VIM  Virtual Infrastructure Manager 
 VRF  Virtual Routing and Forwarding 
 VXLAN Virtual Extensible Local Area Network 
 VXLAN-GPE Virtual Extensible LAN Generic Protocol Extension 
 WAN  Wide Area Network 
 YAML  Yet Another Markup Language 
 YANG  Yet Another Next Generation 
 XML  Extensible Markup Language 



NFV Management and Orchestration   59 

 NFV MANAGEMENT AND ORCHESTRATION 
 

A.1. Standardization of MANO 

 

The  Management and Orchestration (MANO) of VNFs is a part of the ETSI 
specification which lacked initial attention in the standardization efforts leading to 
the development of a variety of commercial orchestrators covered in following 
sections. Standard data models are required to abstract end-to-end services and 
achieve seamless NFV deployment and operation over diverse infrastructure.  
 
In the MANO information model, several kind of descriptors are used to abstract 
the behavior of a complete NFV solution. Descriptors are organized in catalogs: 
 

● Service catalog: 
○ Network Service Descriptors 
○ VNFFG/SFC Descriptors 

● Element catalog: 
○ VNF Descriptors 
○ PNF Descriptors 
○ Virtual Link Descriptors 

 
The descriptors are templates that try to capture all the essential features of each 
modeled entity in a way that the orchestrator can use them to translate requests 
from the OSS layer to instantiate the resulting resources into a real-life NFV-
based service. Figure A.1 shows the MANO descriptor files. 
 

 

Figure A.1: Overview of MANO Descriptor Files [103] 

 



60                                  Deployment of NFV and SFC scenarios 

Instead of implementing an NFV specific modeling language, two preexisting 
languages play a complementary role in NFV MANO: 
 

● YANG [104] is the IETF data modeling language for the IETF NETCONF 
(network configuration protocol), which is a management protocol for 
network devices aimed to be the successor of SNMP (simple network 
management protocol). NETCONF is mainly used for network devices but 
could eventually act as element management system (EMS) in the NFV 
stack but is out-of-scope in the thesis. 

 
● TOSCA (Topology and Orchestration Specification for Cloud Applications) 

[105] is an OASIS [106] standard for Lifecycle Service Orchestration 
(LSO). TOSCA is a language originally used to model cloud services but, 
due to its extensibility, it also supports NFV use cases. TOSCA uses 
templates to control workflow and describe the relationships and 
dependencies in an NFV infrastructure. 

 
In the next section, the main features of the TOSCA NFV application are 
described to gain an understanding of the fundamentals of NFV MANO. Some 
basic templates will be used in the practical scenarios implementation later 
described in this document.  
 

A.1.1. TOSCA 

 
TOSCA is an OASIS (Organization for the Advancement of Structured 
Information Standards) standard originally intended for web services but useful 
also for NFV. The TOSCA specification introduces the Service Template concept 
to specify the structure, properties and behaviors which define the topology and 
orchestration of a platform. Several use cases can be fulfilled. For example, 
service composition, service topology modeling, inter-domain service templates 
and virtual images templates. 
 
The TOSCA language defines a grammar to create Topology Templates and 
Plans focusing the description of services. The life-cycle management aspects 
are specified in the management plan models of service instances. TOSCA uses 
XML (eXtensible Markup Language), but simplified profiles of the TOSCA 
specification also exist in YAML (Yet Another Markup Language) to simplify the 
human writing of TOSCA service templates. 
 
The TOSCA specification defines:  
 

● Service template provides values for the build plan of the various nodes. 
● Topology template puts together Node and Relationship Templates 

defining a service as a directed graph. 
● Nodes are components of a service. A Node Type defines: 

○ Node properties providing the definitions of the Node Template. 
○ Interfaces Meaning the operations available to manage the node. 

● Relationship templates specify communication between nodes. 
● Plans describe the service instance life-cycle management processes. 



NFV Management and Orchestration   61 

Figure A.2. show the service template schema and the relations between the 
node, relationship and topology elements. 
 

 

Figure A.2: TOSCA Service Template schema  [107] 

 

A.1.2. TOSCA NFV Profile 

 
TOSCA use cases have been adapted to the NFV architecture. The TOSCA data 
model top level entity is the service template. The Service Template lower 
elements are the different node templates. Similarly, In NFV MANO, the Network 
Service Descriptor (NSD) is the top level element, and below the NSD there are: 
 

 VNFD: Virtual Network Function Descriptor. 

 VNFFGD: Virtual Network Function Forwarding Graph Descriptor. 

 VLD: Virtual Link Descriptor. 

 PNFD: Physical Network Function Descriptor. 
 
The mapping between TOSCA and NFV takes the following approach as shown 
in Figure A.3: 
 

 

 

Figure A.3: Mapping between TOSCA and NFV descriptors [108] 



62                                  Deployment of NFV and SFC scenarios 

A.2. Management software for NFV 

 
NFV MANO is one part the ETSI specification which was initially left open to 
vendor interpretation leading to a profusion of incompatible and non-standard 
solutions. This is seen by [109] as a stopper for a wider NFV adoption. It was not 
until ETSI NFV Release 2 when the interfaces between each MANO module 
(NFVO, VNFM and VIM) started to be defined. 
 
[110] discusses if besides of using a VIM, almost always based in OpenStack, 
other MANO layers should also be implemented within OpenStack, which is not 
the chosen option in most of the cases. Another point in current implementations 
is that they are not compliant to the 3 MANO layers due to the confusion splitting 
resource management between the VIM and the NFVO. 
 
The introduction of the TOSCA standard will settle the existing orchestrators to 
more interoperable implementations and integrations between open source 
projects may take place as it has already occurred between OpenMANO [111] 
and Rift.ware [112] merging code into Open Source MANO [16].  
 
OpenMANO was the NFV management reference implementation from the 
Telefonica NFV Reference Lab [113]. OpenMANO implemented the three MANO 
layers: NFVO, VNFM and VIM. OpenVIM [114] was just a simple virtual 
infrastructure manager for demo purposes. But as it now forms part of Open 
Source MANO it has not been taking into consideration. 
 

A.2.1. Open source MANO implementations 

 
The following list presents a comprehensive selection of open source MANO 
offerings: 

 
● Canonical’s Juju [80] is an open source modeling tool for service oriented 

and application oriented deployments. In the context of NFV MANO, Juju 
implements a generic VNF manager (VNFM), so it requires an external 
VNF Orchestrator. It does not employ TOSCA but implements its own 
language. Current Juju version is 2.0.2 and it has the following features: 

○ Support for multi-cloud and multi-DC modeling, deploying and 
managing of VNF components and services. 

○ Service descriptors take the form of Charms [115] in Juju. Charms 
are organized in a public marketplace acting as a service catalog. 

○ Charms can be grouped in bundles, which become reusable forms 
of network scenario definitions.  

○ Can provide VNFM services across both OpenStack and MAAS13. 
 

● Open-O [116] is a recent project competing with OSM under the Linux 
Foundation umbrella. Its aim is to provide orchestration for NFV, SDN and 
legacy networks. Release 1.0, codenamed Sun, features 5 projects: 

                                            
13 Metal-as-a-Service is Canonical’s bare-metal provisioning and deployment platform supporting 
of a range of operating systems and hardware platforms to realize physical network functions. 



NFV Management and Orchestration   63 

○ Global Service Orchestrator (GS-O) provides end-to-end services. 
○ SDN Orchestrator (SDN-O) provides connectivity services across 

SDN and legacy networks. 
○ NFV Orchestrator (NFV-O) provides an ETSI-compliant 

orchestrator. 
○ Common Services provide a Microservice bus, HA, Driver 

Manager, Log, Authentication and Protocol Stack to the remaining 
projects.  

○ Common TOSCA project provides a parser, an execution engine 
and a model designer. 

 
● Open Baton [117] is an interoperable and extensible ETSI and TOSCA-

compliant NFVO. With three releases already it provides an extensive list 
of features: 

○ An NFVO strictly adhering to the ETSI MANO specification. 
○ Generic and Juju-based VNF Managers based on VNF descriptors. 
○ A VNF autoscaling engine. 
○ A runtime management system of faults at any layer. 
○ A VIM plugin architecture independent on the orchestration logic. 
○ A powerful event engine based on a pub/sub mechanism for the 

dispatching of lifecycle events execution. 
○ Zabbix monitoring integration. 
○ Libraries to build or customize the VNFM. 

 
● Cloudify [118] is an orchestration-centric suite for cloud orchestration 

focusing on optimizing NFV orchestration and management. It is also a 
mature open source framework (Version 3.4.1). The open source version 
includes: 

○ Cloudify Command-Line Interface (CLI) 
○ Cloudify manager provides added a web interface, REST APIs, 

security features, blueprint catalogs, multiple blueprint 
deployments, concurrent workflow executions, etc. 

○ TOSCA standards-based orchestration. 
○ Topology-driven VNF lifecycle management and monitoring. 
○ Support multiple application stacks: OpenStack, bare metal, and 

virtual appliance support (enabling portability to any cloud and 
hybrid cloud models). 

○ Support for containerized workloads. 
○ Designed for federated deployments. 
○ Support for legacy networks. 
○ Auto-healing and auto-scaling policy engine. 

 



64                                  Deployment of NFV and SFC scenarios 

A.2.2. Case study: Tacker 

Three main building blocks conform the Tacker architecture: 

● VNF catalog contains descriptors for VNFs, NSs and SF chains. 
● VNFM manages the VNF placement and life-cycle. 
● NFVO deploys services based on templates using VNFs. 

 

 

Figure A.4: OpenStack Tacker positioning in the NFV architecture 

 
Tacker parses TOSCA templates and translates to the VIM orchestrator API, in 
this case OpenStack Heat. Other VIMs are supported and multiple VIMs can be 
orchestrated from a single Heat instance to support multi-site deployments. The 
VNFM takes care of policy-based VNF placement. VNF configuration, health 
monitoring and auto-healing according to the VNF descriptor policy. It also 
performs resource check for efficient VNF allocation. Figure 3.5 shows Tacker 
and Heat  orchestrating several virtual infrastructure managers. 
 

 

Figure A.5: OpenStack Tacker high-level overview 

 



NFV Management and Orchestration   65 

A.2.3. Case study: RIFT.ware 

 
RIFT.ware [112] is an open source model-driven ETSI-compliant orchestration 
and automation solution. Its latest version is 4.3.3.1 at the time of writing. 
RIFT.ware offers a holistic approach to the NFV ecosystem where VNFs can be 
created, onboarded, deployed and managed at Webscale14 on multiple Cloud 
Infrastructures. Figure 2.10 shows the Rift.ware architecture: 
 

 

Figure A.6: Rift.ware MANO framework architecture [119] 

 
The RIFT.ware architecture is compound of 4 main blocks: 

 
● Lifecycle management is an ETSI MANO VNFM/NFVO with: 

○ Enhanced Platform Awareness (EPA) capabilities. 
○ Automated end-to-end service lifecycle management.  
○ VNF and NS scaling capabilities from 1 to hundreds. 
○ Carrier and enterprise-grade levels of availability. 

 
● Hyperscale engine is a set of libraries and APIs enabling massive 

horizontal elasticity which offers: 
○ Configuration management across multiple VMs and multi-VM VNF 

grouping as a single entity. 
○ A programmable distributed control and forwarding planes which 

can present a multi-VM service with a single IP address. 
○ High performance data paths such as OVS, DPDK, and SR-IOV.  
○ Trusted platform for securing management, control, and data 

planes.  
 

● Cloud Abstraction Layer decouples underlying cloud infrastructure and 
network so VNFs can be created, managed and migrated between 
different cloud systems/data-centers. 

                                            
14 Architectural approach used to deliver the capabilities of large cloud service achieving high 

levels of agility and scalability leveraging distributed software abstractions. 



66                                  Deployment of NFV and SFC scenarios 

● WebUI and automation offer development and management interfaces to 
manage and monitor pools arranged in environments and organizations. 

 

 

Figure A.7: Rift.ware Hyperscale engine APIs 

 

A.2.4. Case study: Open Source MANO 

 
Open Source MANO (OSM) [120] is a project hosted by ETSI implementing an 
NFV management framework. It has just seen its first release (OSM Release 
ONE) [121] earlier than the expected in 6-month initial cycle. The project aims to 
deliver a VIM-independent full MANO stack supporting open information models 
and suitable for all kinds of VNFs. Figure 2.12 shows the OSM architecture: 
 

 

Figure A.8: Open Source MANO framework architecture [122] 

https://osm.etsi.org/wikipub/index.php/OSM_Release_ONE
https://osm.etsi.org/wikipub/index.php/OSM_Release_ONE


NFV Management and Orchestration   67 

The 5 main components of OSM are: 
 

 GUI and design tools, which allow: 
o Easy VNF onboarding and packaging. 
o Simple service modeling. 
o Access to all features either through GUI, CLI or REST APIs.  

 Network Service Orchestrator component, which is taken from Rift.ware. 

 VNF configuration and abstraction, which relies on external VNFM such 
as Juju and, thus, requires a data model translator to support multiple 
template definition formats.  

 Resource Orchestrator (RO) is an abstraction layer providing a plug-in 
model to support different types of VIMs, such as: 

o OpenStack [34]. 
o VMware vCloud Director [123]. 
o OpenVIM [114].  

and SDN Controllers: 
o OpenDaylight [36]. 
o Floodlight [124]. 

 OpenVIM, which provides a reference virtual infrastructure with EPA 
support for all-in-one installations. 

 
OSM supports EPA-based resource allocation to permit high-performance VNF 
to be deployed on capable hosts. It also has Multi-Site for service delivery across 
multiple DCs. Other interesting features are easy install and upgrade procedures.  
 
 

A.2.5. Proprietary MANO implementations 

 
For completion, a selection of commercial MANO offerings is also listed: 
 

● CloudBand [125] groups the Nokia portfolio for integrated end-to-end 
MANO, which includes:  

○ Infrastructure Software: Multi-purpose NFVI and VIM. 
○ Application Manager:  VNF management and onboarding. 
○ Network Director: Network service and resource orchestration. 

 
● Cloud Manager [126] is Ericsson’s Cloud Management System (CMS) 

which regarding MANO implements NFVO and VNFM. 
 

● Oracle Communications Application Orchestrator [127] provides lifecycle 
management of both VNFs, PNFs or a mixture of both in Composite 
Network Functions (CNF). 

 
● NFV Director [128] is the Hewlett Packard Enterprise ETSI compliant 

NFVO. It also includes an embedded VNFM and support for external 
VNFMs. 

 



68                                  Deployment of NFV and SFC scenarios 

● NFV Carrier Grade Server is the MANO offering from Wind River 
integrated on the Titanium Server offering [129], which is a comprehensive 
portfolio around OpenStack NFV with carrier-grade capabilities. 
 

● Blueplanet [130] is a multi-domain service orchestrator including NFVO, 
analytics and health prediction and support for ONOS SDN controller. 

 

A.2.6. State of the art in MANO summary 

 
After reviewing all the presented options, the VNF vendor ecosystem is found to 
be the weakest link in the NFV supply chain. As stated in [131], NFV is all about 
the service. So a diverse VNF offer is required to compose first-class services. 
Although commercial MANO tools have some partners which provide a set of 
viable options, the open source approach is the one expected to succeed as it is 
the only one removing commercial barriers between competing companies. 
 
It is obvious that there is a big market fragmentation in MANO, which is an entry 
barrier preventing the looming of a potent VNF offer. In [20], NFV is stated to be 
unable to scale vertically at the increasing pace of traffic demand due to the 
hardware architectures in use. Then, MANO is the only place where horizontal 
scaling can be realized.  
 
Such is the importance of MANO, that currently there is a race between different 
open source projects with very fancy web pages trying to gain early adopters. But 
a leader in this area is yet to be decided once the solutions mature. The first one 
that truly leverages the virtuous circle of service life-cycle fulfillment with the aid 
of data analytics continuous monitoring will prevail.



NFV use case example   69 

 NFV USE CASE EXAMPLE 

B.1. Virtualization of the CPE 

 
This example is based on Juniper Networks’ actual portfolio. The CPE is the edge 
device with sits in the customer premises connecting to the provider over a Wide-
Area Network (WAN) link. Each subscriber usually has a physical appliance 
implementing functions like local DHCP, NAT, firewall, etc. The CPE functions 
can be virtualized and brought to the cloud to simplify or eliminate the CPE as 
shown in figure B.1. Given the number of subscribers, the savings can be huge. 
 

 

Figure B.1: Juniper Networks Cloud CPE solution [133]  

 
Strictly speaking, this is network virtualization, not NFV, because it runs on the 
MX platform. This is an example of a vendor pre-NFV offering. Later, Juniper 
developed a truly NFV product based on the NFX250, which is a Juniper branded 
white-box network appliance following the COTS model. The vCPE helps 
reducing the number of CPE models to maintain and is orchestrated via the 
Contrail SDN controller. Figure B.2 shows the front chassis view of the NFX250. 
 
 

 

Figure B.2: Juniper Networks NFX250 Network Services Platform [132] 

 
This specific solution was designed for AT&T targeting small and medium 
business (SMBs). It consists of an orchestration framework based on the Contrail 
Virtual Network Controller [39]. The NFX250 supports up to 8 Juniper VNFs 
(basically vSRX [134] and vMX [135]) although it can also run Cisco or Brocade 
virtual appliances. It follows a decentralized model in application of distributed 
NFV and is the first commercially available vCPE offering.





SFC encapsulation: NSH   71 

 SFC ENCAPSULATION: NSH 

C.1. Service Function Chains and Paths 

 
A Service Function Chain (SFC) is a graph specifying the required SFs in the 
order that traffic must traverse them. Each node in the graph is a service function 
and can be part of zero or more SFCs.  A given SF can appear one or more times 
in an SFC. SFs can be branching nodes in case of reclassification in one SF, 
leading to a new SFC. 
 
SFCs may be unidirectional or bidirectional. An unidirectional SFC only specifies 
one traffic forwarding direction whereas bidirectional SFCs require symmetric 
path in both directions. Hybrid SFCs contain SFs which require symmetric or 
asymmetric treatment. SFCs can also contain cycles where traffic needs to 
traverse a SF more than once. 
 
A Service Function Path (SFP) is a constrained SFC resulting from applying more 
granular policy to the SFC abstract requirements. Some SFPs specify exactly 
which SFF and SF packets must traverse, while others can be less specific on 
what sequence is to be used to execute the SFC. This final sequence is called 
the Rendered Service Path (RSP) as illustrated in Figure C.1. 
 

 

Figure C.1: SFC Service Path rendering [136] 

 

C.2. SFC Control Plane 

 
The SFC control plane is responsible for constructing SFPs, translating SFCs to 
forwarding paths, and propagating path information to participating nodes to 
achieve requisite forwarding behavior to construct the service overlay. The 
control plane manages and communicates SF capabilities, availability, and 
location in fashions suitable for the transport and SFC operations in use.   
 



72                                  Deployment of NFV and SFC scenarios 

The control plane is also responsible for the creation of the context based on 
metadata so that the orchestrator can interpret them ant take action. The RFC 
does not specify if the control plane has to be distributed or centralized nor 
mandates which protocols it must use. There is a proposal for a BGP-based SFC 
control plane [137]. The SFC control plane should provide: 
 

 A domain-wide view of all available SFs and their network locators. 

 Policy to construct SFCs and associated SFPs. 

 Static or dynamic selection of specific SFs for a given SFC. 

 Provide SFC data-plane information to the SFFs. 

 Provide metadata and usage information to classifiers. 

 Provide policy information so the other SFC elements can interpret 
metadata. 

 

C.3. NSH: the SFC encapsulation 

 

Network Services Header (NSH) is the SFC encapsulation. It enables both SFP 
identification and exchange of metadata/context information between SFC-aware 
functions, such as SFFs, SFs and proxies. NSH carries an SFP identifier but it is 
not a transport encapsulation itself, because it is not used for packet forwarding. 
An outer encapsulation is used for forwarding ensuring transport independence.  
 
NSH, as defined in [28], is topology-independent, allowing service insertion 
independently of its location in the network topology or the underlying transport 
protocol in use. NSH works best with VXLAN-GPE (VXLAN Generic Protocol 
Extension) with NSH payload. But it also supports LISP (Locator/ID Separation 
Protocol), GRE (Generic Routing Encapsulation), NVGRE (Network Virtualization 
Using GRE), amongst others.15  
 
The encapsulation header contains the Base header and the Service Path 
Header. All other fields are optional based on the metadata (MD) field. Metadata 
context headers contain network platform information (VRF, Segment, etc.).  
 
Base header carries the service header and payload protocol information. Valid 

values are IPv4, IPv6, Ethernet, NSH, MPLS, etc. Figure 1.11 shows de detailed 

base header: 
 

 

Figure C.2: NSH base header format detail 

 

                                            
15 VXLAN-GPE, LISP, etc. are network overlay encapsulation protocols commonly used in 
virtualized environments. 



SFC encapsulation: NSH   73 

Service Path Header includes Service Path Identifier (SPI) and Service Index 

(SI). The SPI/SI combination provides the identification of a logical SF and its 

order within the service plane. It is used in the SFF to select the actual network 

locators for forwarding in the overlay. 

 

The SPI is just an identifier, alone cannot be used to forward packets. It rather 

provides a level of indirection between the service path and the network transport. 

The SI provides service path location and can also serve as loop avoidance 

mechanism since each SF decrements SI along the path.  

 

Context headers carry metadata (context data) along the service path and SFs 

can use this information for local decisions and policy enforcement. SFs can, in 

turn, inspect application information and impose additional metadata. As shown 

in Figure C. 3, depending on MD Type field context headers are composed of: 

○ MD-Type 1: Four fixed 32-bit context headers. 

○ MD-Type 2: A variable number of TLVs16 

 

Figure C.3: NSH header format [138] 

 

An example of context header usage can be found in [139], which defines the 
MD-Type 2 context header allocation for network security service functions 
forming a SFC.  This context header provides information to support SFC 
operations in a generic security environment. Metadata is exchanged between 
Security SFs for local policy enforcement, security-based re-classification, etc. 
Figure C.4 shows the recommended context header allocation: 
 

 

Figure C.4: Example of Type 2 context header allocation for security 

                                            
16 Type-Length-Value is a common way to encode optional information in data communication 
protocols. Type and length are typically fixed in size and value is of variable size. 





State of the art in virtualized computing   75 

 STATE OF THE ART IN VIRTUALIZED 
COMPUTING 

D.1. Advances in virtualization and hardware architectures 

 
The NFV technology challenges seek solutions from several fields of innovation, 
such as virtualization computing models or hardware architecture enhancements. 
While NFV proves that it can fulfill its promises, each field is evolving in a non-
stop fashion. Iterative NFV implementations will have to deal with software and 
hardware platforms with different capabilities. 
 

D.1.1. Virtualized computing 

 
NFV has nourished vastly from Cloud computing regarding virtualization 
technologies. While the ETSI Phase 1 assumed that each VNF instance would 
map to one or more VMs (Virtual Machines) independently of the selected 
hypervisor, later discussions started considering containers, which would mean 
a lower resource consumption and better performance as stated in [140]. 
   
Virtual machines rely on the use a hypervisor which adds a hardware abstraction 
layer. Each VM runs a full guest Operating System (OS). There are two kinds of 
hypervisors depending if they run over a host OS such as Kernel-based Virtual 
Machine (KVM) or natively on bare-metal (QEMU) [141]. A further classification 
divides server virtualization regarding device driver emulation in Para-
virtualization (XenServer) [142] or full virtualization (KVM).  
 
Containers can be seen as a lightweight replacement for VMs. A Container is a 
kernel abstraction in which applications share the same kernel, libraries and 
binaries in a sandbox fashion. This architectural approach leads to a lower 
runtime overhead and shorter provisioning times. This shift in the VNF packaging 
aligns with the trend to implement Microservices Architectures for NFV Clouds 
[143]. 
 
Containers will not be a feasible replacement for virtual machines in all cases, 
though. VMs have some advantages in terms of security, high-availability and 
orchestration. For instance, VMs offer better isolation, compatibility and mobility, 
but container-based solutions might reach feature parity over the time with 
orchestration solutions like Kubernetes [145] or Mesosphere [146]. Container-
based VNFs will probably co-exist with VM VNFs. 
 
Another option for packaging VNFs is with Unikernels. Unikernels can be 
understood as streamlined VMs with a specialized OS instead of a general 
purpose one. A Unikernel is library Operating System kernel written in a high-
level language. MirageOS [147] is an example of Unikernels running on top of a 
Xen hypervisor. Unikernels provide better isolation than Containers and can be 
orchestrated with the same container frontends, such as Docker [148]. Figure D.1 
compares all the available VNF packaging options: 
 



76                                  Deployment of NFV and SFC scenarios 

 

Figure D.1: Comparison of VNF packaging options [149] 

 

Unikernels are a young technology not yet production ready. But [149] performed 
a NFV POC based on MirageOS early in 2016 [150]. The POC consists of a 
network slice orchestrator with a chaining mechanism based on shared memory. 
VNFs are instantiated in a just-in-time fashion to run a given service only when 
needed. As shown in Figure 2.5, three service Unikernels are used and a 4th one 
provides the network stack. The achieved memory footprints and boot times are 
quite impressive: 
 

 

Figure D.2: Ericsson’s Unikernel POC diagram  

 
An even more cutting edge technology which could re-shape the whole NFV 
landscape is Serverless Computing. The idea behind Serverless Computing is 
invoking Application Functions17 in the Cloud without having to instantiate a full 
VM. The overlapping nomenclature leaves no room for the imagination, and 
Mirantis showcased a POC porting Iron.io [151] Framework to OpenStack 
Murano in the Mirantis OpenStack Distribution [152]. 
 

                                            
17 Functions in the context of code programming, not as virtual network functions. 



State of the art in virtualized computing   77 

 

Figure D.3: Iron.io IronFunctions high-level overview  

 
IronFunctions [153] is an open source Serverless Computing framework 
contender to Commercial Cloud Provider offerings like Amazon Lambda [154] or 
Google Cloud Functions [155]. The technology behind IronFunctions allows 
deploying event-triggered containerized applications and then passing jobs to 
them. This approach promises unprecedented speeds and scaling capabilities for 
several use-cases such as NFV, not only Web-Scale applications. 
 

D.1.2. Hardware architecture enhancements 

 
One of the main promises of NFV is the substitution of specialized network 
appliances by commodity computing hardware, also called COTS (Commercial 
off-the-shelve), which in practice refers to Intel Architecture (IA) devices. The IA, 
or x86 architecture provides a proven and flexible computing platform but is not 
optimized for networking data plane applications. 
 
There are several techniques used in order to achieve the performance 
requirements of NFV, such as optimizing CPU instruction sets, introducing layers 
of cache memory between the processor and the CPU and increase the CPU 
frequency. When increasing further the frequency of a single CPU stopped 
scaling, CPU manufacturers introduced multiple-socket and multiple-core 
platforms such as Intel Sandy Bridge.  
 
Originally, x86 systems memory access times were equal regardless the CPU in 
Uniform Memory Access (UMA) mode. In more recent architectures higher 
performance was achieved grouping CPU cores and memory into cells. This way 
processor systems are built upon different Non-Uniform Memory Access (NUMA) 
cells interconnected by a QPI (QuickPath Interconnect) bus so that all CPUs can 
still access the whole memory albeit at a slower speed. 
  



78                                  Deployment of NFV and SFC scenarios 

 

 

Figure D.4: Sandy Bridge-like NUMA architecture with VM pinning [156] 

 
The CPU to memory affinity concept has also been extended to PCIe I/O 
channels between CPUs, with the same properties as memory. Virtual to physical 
CPU core pinning as represented in Figure 2.7 implements this optimization at 
the VM level. The performance improvements which can be achieved help 
realizing specialized workloads for VM-based NFV deployments. 
 

D.1.3. Network I/O acceleration 

 
As most of the VNFs will be more I/O-bound18 than CPU-bound, a brief 
introduction on the state-of-the-art network I/O acceleration has been considered 
useful to understand how the high-performance requirements are technically 
addressed. There are several approaches to maximize throughput and minimize 
latency at the host level (without the use of a virtual switch): PCI pass-through 
and NIC offloading with specialized adapters. 
 
PCI pass-through works by assigning a physical NIC to a VM bypassing the 
hypervisor. An example of this is Single Root Input/Output Virtualization (SR-IOV) 
[157]. SR-IOV is a PCI Express (PCIe) extension for network interface cards 
(NICs) that enables NIC physical port virtualization. Each virtual port, called 
Virtual Function (VF)19, can be associated to a VM. The NIC hardware to offload 
functions from the CPU improving latency and the overall server performance. 
 
Figure D.5 compares three network pass-through models: normal (no pass-
through), operation through bottleneck eradication with Virtual Machine Device 
Queues (VMDq) and interrupt mitigation with Single Root Input/Output 
Virtualization (SR-IOV): 

                                            
18 Where data reading/writing consumes more resources than CPU processing. 
19 Again, not to be confused with the NFV virtual network functions. 



State of the art in virtualized computing   79 

 

 

Figure D.5: Comparison of datapath acceleration options [158] 

 

Specialized NICs can process server networking functions sparing CPU 
resources back to the applications. The so-called NFV NICs use either System-
on-a-Chip (SOC) [159] or Field Programmable Gate Arrays (FPGAs) [160] that 
run as a high-speed programmable switch. They are more expensive than regular 
NICs used in SR-IOV mode, but they provide a higher performance useful in I/O 
centric deployments. 
 

D.2. Nova NFV infrastructure platform awareness 

 
A virtual infrastructure manager NFV solution will have to be aware of the 
available enhancements presented in the former sections in case a VNF instance 
requires special features. Mirantis Open NFV platform [161] will be used as an 
example on how OpenStack is leveraged for NFV use cases in terms of hardware 
features that help to realize the NFV requirements. 
 
As per [162], an OpenStack platform has to provide the following features in Nova 
to fulfill the NFV high performance and low latency requirements: 
   

● Guaranteed workload resources to avoid shared resource contention. 
● Huge pages for faster memory lookups. 
● NUMA/CPU pinning to ensure that CPU and memory proximity. 
● SR-IOV for hypervisor pass-through. 
● Anti-affinity groups that spread workloads to prevent resource contention. 

 
Enhanced Platform Awareness (EPA) [163] is the OpenStack feature which takes 
care of intelligent VNF placement on the most appropriate compute node based 
on best matching capabilities. Compute nodes can be organized in Nova 
availability zones20 for special NFV purposes. Using TOSCA VNFD templates 
that allow specifying special Virtual Deployment Unit (VDU) requirements for a 
VNF. 

                                            
20 Nova availability zones (AZs) are a concept linked to the host aggregates concept and not 
relating to other implementations of so-called availability zones. Host aggregates group hosts by 
means of key-value pair attributes. 



80                                  Deployment of NFV and SFC scenarios 

Enhanced feature support is dependent on the hypervisor and the underlying 
platform. For example, Intel Architectures support fine-grained requirement 
selection for several use-cases: compute, encryption/compression acceleration, 
etc. Figure 2.9 shows how EPA enables the Nova filter scheduler to select a 
server that can deliver a flavor with specific hardware requirements: 
 

 

Figure D.6: Nova support for Enhanced Platform Awareness [164]



OPNFV projects overview   81 

 OPNFV PROJECTS OVERVIEW 
 
There are several building blocks that conform the OPNFV architecture to 
achieve the project goals. In the following table all the OPNFV stack components 
are grouped according to their function: 
 

Building block Function Project/Tool 

Compute VM Control Openstack Nova 

Hypervisor KVM 

Storage Store VNF images Openstack Glance 

Virtual Disks Openstack Cinder 

Volumes Ceph 

Network Network Control OpenDaylight 

Network Forwading Open vSwitch 

Infrastructure Message Bus RabbitMQ 

Cluster Communication Corosync 

HA and Loadbalance PaceMaker 

Database MySQL 

MANO Portal Openstack Horizon 

Identity Openstack Keystone 

Orchestration Openstack Heat 

VNF Manager Openstack Tacker 

Telemetry Openstack Ceilometer 

Testing Verify Openstack Tempest 

Benchmark Rally 

Test VNFs Sample VNFs 

Table D.1: OPNFV project to NFV architecture mapping 

 

E.1. OPNFV software stack 

 
Depending on the installation toolchain, OPNFV currently supports Linux on 
target machines, basically Ubuntu 14.04 and CentOS 6.5. SUSE is expected for 
the Danube release. Virtual Infrastructure Management functionality is achieved 
via OpenStack. OPNFV consumes a sub-set of OpenStack projects relevant to 
NFV. As an network focused project it has a broad range of controllers and 
forwarding technologies.  
Neutron provides connectivity between VNF interfaces managed by other 
services, namely Nova. Neutron can be integrated with several external 



82                                  Deployment of NFV and SFC scenarios 

controllers providing a rich set of features. OPNFV extends Linux virtual 
networking with virtual switching and routing components like OVS or FD.io 
 
Platform validation and measurement is a key point in a carrier-grade 
environment. To address this requirement efforts in OPNFV have been put on 
automated testing tools. Release and scenario validation is implemented thanks 
to the functional testing project (Functest [93]) and the performance test project 
(Yardstick [165]). Functest leverages OpenStack and SDN controllers’ testing 
frameworks to make sure that the OPNFV platform is running correctly. Yardstick 
benchmarks performance metrics. 
 
Additional testing tools address the validation of specific features of the OPNFV 
platform further extending test cases provided by Functest and Yardstick. 
Examples of projects focused on these areas are VSperf [166], which is a generic 
virtual switch testing framework and project Bottlenecks [167], a proposal 
intended to address the system limitations by isolating platform bottlenecks. 
Table E.1 lists all the approved projects for the Colorado release: 
 

Project Goal 

ARMband Support for the AArch64 infrastructure. 

Copper Add the OpenStack Congress policy framework. 

Doctor Fault management and maintenance framework HA. 

Domino TOSCA based service distribution for NS/VNF descriptors. 

Fast Data Stacks Provide a FD.io scenario for high performance networking. 

IPv6 Produce an IPv6 compliant  OPNFV distribution. 

KVM for NFV Framework to enhance the KVM Hypervisor for NFV. 

Moon Provide a security management framework. 

Multisite Enable the OpenStack to support multi-site NFV clouds. 

NetReady Evolve Neutron to fulfill the NFV requirements. 

ONOSFW Integrate ONOS SDN controller to OPNFV. 

OVS for NFV Improve Open vSwitch performance. 

Parser YANG to TOSCA to Heat templates translation. 

Pharos Provide an overview for setting up a Pharos lab. 

Promise Implement resource reservation and management. 

SDN VPN Extend Neutron to create BGP/MPLS based VPNs. 

SFC Integrate the OpenDaylight SFC project into OPNFV. 

Bottlenecks Automate system limitation testing and benchmarking.  

Functest Functional testing framework for OPNFV and upstream. 

VSPerf Traffic generator framework for virtual switches. 

Yardstick Deliver Framework for automated scenario testing. 

Table D.2: List of OPNFV projects and their goals 

 



OPNFV projects overview   83 

Figure E.1 shows a categorized view of the projects grouped in PaaS (Platform-
as-a-Service), cloud infrastructure and tools, infrastructure and continuous 
integration and continuous deployment (CI/CD). Installation related projects are 
explained in more detail in the following section. 
 

 

Figure D.1: OPNFV Projects categorization [2]





Linux networking   85 

 LINUX NETWORKING 

 

This annex collects information relevant to virtual networking for Linux.  
 

F.1. Linux networking 

 
The Linux Kernel distinguishes two kinds of network devices: 

● Physical interfaces represent a hardware device and are available as soon 
as the Kernel modules is loaded. 

● Virtual interfaces are just point-to-point devices which exchange packets 
with user-space programs instead of physical interfaces. Besides the 
loopback interface, virtual interfaces are associated to a physical interface 
or to another virtual interface. 

 
A non-exhaustive list of virtual interface types follows: 
 

● Aliases are an obsolete mechanism to define secondary IPs which is now 
supported via iproute2, the toolkit that replaced net-tools (ifconfig, etc.) 

● VLANs create virtual segments of a layer 2 networks based on the 802.1Q 
twelve bit tag allowing 4096 virtual LANs. 

● QinQ stacks VLAN tags according to 802.1ad standard addressing 
provider bridging requirements. 

● Bridges can be used to connect multiple ethernet segments in a 
transparent way. 

● TUN (TUNnel) interfaces are used to encapsulate packets at network layer 
over tunneling protocols such as GRE, IPSec or IPv6 tunneling 
mechanisms.. 

● TAP interfaces use the same kernel driver than TUN but represent a link 
layer device operating at layer 2 allowing to provide virtual network 
adaptors to guest machines in virtualization systems. 

 

F.1.1. Linux bridges 

 
The Linux bridge is a kernel module that implements a virtual switch in software. 
It bridges two or more network segments transparently. Both physical and virtual 
interfaces can be associated to it. It is used with the KVM hypervisor and can be 
managed with the user-space tool brctl although it has also been superseded by 
the iproute2 toolkit. Advanced processing can be done at layer 2 thanks to 
ebtables similar to layer 3 iptables. 
 
The workflow with bridges is the following: 
 

● Create a linux bridge 
● Associate interfaces to the bridge 
● Optionally define a virtual IP for the bridge 
● Define bridge settings 



86                                  Deployment of NFV and SFC scenarios 

● Control switch runtime parameters  
● Optionally make bridge settings persistent. This is distribution dependant. 

 

F.1.2. Linux Namespaces 

 
Namespaces are a construct used in Neutron introduced in the Linux Kernel 
allowing several scopes of isolation without the need of a full virtualization layer. 
There are namespaces for IPC message queues, process IDs, user IDs, mount 
points, hostnames and network related resources. A global space of each kind 
exist and additional namespaces can be defined if necessary. Namespaces 
provide the following features: 

● The same identifier can be used multiple times in different namespaces. 
● Objects within a namespace are isolated from objects belonging to global 

or the rest of namespaces. 
 
Similar to VRFs (Virtual Routing and Forwarding), the network namespaces 
provide a separate network stack. Several network resources are scoped within 
a namespace: 

● Interfaces within a namespace cannot communicate  outside the 
namespaces unless an external mechanism is put in place (bridge, veth 
pair). Overlapping Interface names and addresses can be used in different 
namespaces. 

● Network addresses can overlap between different namespaces leveraging 
multi-tenancy schemes in OpenStack. 

● Different routing tables can be mapped to a namespace, allowing for 
advanced features such as Policy Based Routing. 

● Each namespace has an independent IPtables tables and chains applying 
to the namespace-specific netfilter hooks. 

 
The network namespage workflow uses the iproute2 toolkit and involves: 

● Create a namespace 
● Associate interfaces to namespaces 
● Assign address to interfaces 
● Configure routes/iptables rules for the given namespace 
● Optionally connect to interfaces belonging to other namespaces by means 

of bridge/router/veth pair 
● Execute commands within the namespace 

 
Table F.1 shows how to interact with a network namespace: 
 
 

root@node-2:~# ip netns  

qdhcp-b49acc33-dbcf-4a8f-87ba-0ae957e0221d 

qrouter-0a86afb9-dae2-4c17-9d4b-59664dbd678e 

qdhcp-afd571bb-0b11-445a-8898-ec44582b9088 

haproxy 

vrouter 

root@node-2:~# ip netns exec qdhcp-b49acc33-dbcf-4a8f-87ba-0ae957e0221d ip add 

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default  

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 

    inet 127.0.0.1/8 scope host lo 

       valid_lft forever preferred_lft forever 

    inet6 ::1/128 scope host  

       valid_lft forever preferred_lft forever 



Linux networking   87 

42: tap72f0bc96-97: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state 

UNKNOWN group default  

    link/ether fa:16:3e:fc:15:0f brd ff:ff:ff:ff:ff:ff 

    inet 22.22.22.2/24 brd 22.22.22.255 scope global tap72f0bc96-97 

       valid_lft forever preferred_lft forever 

    inet 169.254.169.254/16 brd 169.254.255.255 scope global tap72f0bc96-97 

       valid_lft forever preferred_lft forever 

    inet6 fe80::f816:3eff:fefc:150f/64 scope link  

       valid_lft forever preferred_lft forever 

root@node-2:~# ip netns exec qdhcp-b49acc33-dbcf-4a8f-87ba-0ae957e0221d ip route 

default via 22.22.22.1 dev tap72f0bc96-97  

22.22.22.0/24 dev tap72f0bc96-97  proto kernel  scope link  src 22.22.22.2  

169.254.0.0/16 dev tap72f0bc96-97  proto kernel  scope link  src 169.254.169.254 

 

Table D.1: CLI command workflow example for a Neutron namespace 

 

F.1.3. Veth pairs 

 
Linux tap interfaces cannot be used to link namespaces. But veth interfaces can. 
Veth interfaces are software ethernet adapters connected back-to-back. That is, 
they always exist in pairs acting as a virtual pipe. As they support carrier detection 
they can be seen as a virtual cable. Deleting one end of the pair causes both 
interfaces to be removed.





Detailed scenario setup guide   89 

 DETAILED SCENARIO SETUP GUIDE 
 
In this section the details to deploy the scenarios presented in Chapter 4 are 
collected. The configuration files have been included in a Git repository [168] 
forked from the OPNFV Gerrit Fuel repository [85] as shown in Figure AI.1: 
 

 

Figure D.1: fuel-deploy git repository on github.com 

 

G.1. Common preliminary tasks 

 
Install the Jump server OS and required packages 
 
On the freshly installed and upgraded Ubuntu 14.04 jump server the following Ubuntu 
packages are needed prior to being able to run the OPNFV Fuel installation: 
 
sudo apt install -y git make curl libvirt-bin libpq-dev qemu-kvm qemu-system sshpass 

fuseiso genisoimage blackbox python-pip python-git python-dev python-oslo.config python-

pip python-dev libffi-dev libxml2-dev libxslt1-dev libffi-dev libxml2-dev libxslt1-dev 

expect curl python-netaddr p7zip-full libvirt-bin qemu-kvm python-pip fuseiso mkisofs 

genisoimage python-dev libz-dev libxml2-dev libxslt-dev libyaml-dev kvm bridge-utils 

vlan libffi-dev libssl-dev screen 

 
Logout and login in order to make sure the user id has been included in libvirtd group. 
 
pcapdevila@eul1900636:~$ id 

uid=1000(pcapdevila) gid=1000(pcapdevila) groups=1000(pcapdevila),27(sudo),111(libvirtd) 

 



90                                  Deployment of NFV and SFC scenarios 

The following Python packages are also required: 
 
sudo python -m pip install -U pip 

sudo pip install -U pip setuptools 

sudo pip install --upgrade GitPython pyyaml netaddr paramiko lxml scp pycrypto ecdsa 

debtcollector netifaces enum cryptography certifi urllib3[secure] 
 
Download the installer source code 
 
In the jump server run: 
 
git clone -b 'stable/colorado' https://github.com/pcapdevila/fuel-deploy.git 
 
Configuration files are in the following folders: 
 
pcapdevila@eul1900636:~$ ls -l fuel-deploy/deploy/config/labs/devel-

pipeline/kvm/fuel/config/ 
total 12 
-rw-r--r-- 1 pcapdevila pcapdevila 5868 Jan 25 09:08 dea-pod-override.yaml 
-rw-r--r-- 1 pcapdevila pcapdevila 2087 Jan 25 09:08 dha.yaml 
pcapdevila@eul1900636:~$ ls -l fuel-deploy/deploy/config/labs/devel-

pipeline/lab235/fuel/config/ 
total 12 
-rw-r--r-- 1 pcapdevila pcapdevila 5797 Jan 25 09:08 dea-pod-override.yaml 
-rw-r--r-- 1 pcapdevila pcapdevila 1331 Jan 25 09:08 dha.yaml 
 
The installer takes a few hours depending on the hardware specs. It is 
recommended to run the installer in a terminal multiplexer able to restore the login 
session from another connection point: 
 
screen -RD 
 
Enter the CI folder: 
 
cd fuel-deploy/ci 
 

G.2. Virtual lab deployment 

 
Launch the deployment: 
 
sudo bash ./deploy.sh -b file:///home/pcapdevila/fuel-deploy/deploy/config -l devel-

pipeline -p kvm -s no-ha_odl-l2_sfc_heat_ceilometer_scenario.yaml -i 

http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.3.0.iso 
 
Once the Fuel master is installed and configured, the deployment progress can 
be monitored also through the web UI available at https://10.20.0.221 
(admin/admin) as shown in Figure A.2 
 

                                            
21 In the virtual lab a graphical user interface for Linux is recommended to be able to access the 
OpenStack and Opendaylight administration web portals. 

https://github.com/pcapdevila/fuel-deploy.git
http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.3.0.iso
https://10.20.0.2/


Detailed scenario setup guide   91 

 

Figure D.2: Fuel environment deployment progress trough the web UI 

 
Once deployment is completed, all health checks should pass as showin in 
Figure: 
 

 
 

Figure D.3: Fuel environment deployment progress trough the web UI 

 



92                                  Deployment of NFV and SFC scenarios 

G.3. Bare-metal lab deployment 

 
For the bare-metal lab, the procedure is the same until this point. To launch the 
deployment, execute: 
 
pau@LXAR-HP-02:~/fuel-deploy/ci$ sudo bash ./deploy.sh -f -b file:///home/pau/fuel-

deploy/deploy/config -l devel-pipeline -p lab235 -s ha_odl-l2_sfc_heat_ceilometer_scenario.yaml -i 

file:///home/pau/opnfv 
-colorado.3.0.iso 
 

(Output omitted) 
 

Fuel Master installed successfully ! 

 

Power OFF Node 122 
Power OFF Node 2 
Power OFF Node 3 
Power OFF Node 4 
Power OFF Node 5 
Set boot order ['pxe', 'disk'] on Node 1 
Set boot order ['pxe', 'disk'] on Node 2 
Set boot order ['pxe', 'disk'] on Node 3 
Set boot order ['pxe', 'disk'] on Node 4 
Set boot order ['pxe', 'disk'] on Node 5 
Power ON Node 1 
Power ON Node 2 
Power ON Node 3 
Power ON Node 4 
Power ON Node 5 
 
Check prerequisites 
Check supported release: Mitaka on Ubuntu 14.04 
Check previous installation 
Deleting environment 2 
Deleting node 7 
Wait for discovered blades 
Blade 4 discovered as Node 14 with MAC 78:e7:d1:c6:68:ab 
Blade 3 discovered as Node 15 with MAC 78:e7:d1:c6:68:87 
Blade 1 discovered as Node 16 with MAC 78:e7:d1:c6:69:d9 
Blade 2 discovered as Node 18 with MAC 78:e7:d1:89:91:5d 
Blade 5 discovered as Node 17 with MAC 78:e7:d1:c6:68:fa 
Deleting file /home/pau/fuel-deploy/ci/config/.dea.yaml 
 
START CLOUD DEPLOYMENT 
 
Command: fuel release -l 
id | name                       | state       | operating_system | version 
---+----------------------------+-------------+------------------+----------- 
2  | Mitaka on Ubuntu 14.04     | available   | Ubuntu           | mitaka-9.0 
3  | Mitaka on Ubuntu+UCA 14.04 | available   | Ubuntu           | mitaka-9.0 
1  | Mitaka on CentOS 6.5       | unavailable | CentOS           | mitaka-9.0 
Configure environment 
 
Deleting directory /var/lib/opnfv 
Creating directory /var/lib/opnfv 
Creating environment lab235 release 2 net-segment-type tun 
 
Command: fuel env create --name lab235 --release 2 --net-segment-type tun 
Environment 'lab235' with id=3 was created! 
Command: fuel env --list 
id | status | name   | release_id 
---+--------+--------+----------- 
3  | new    | lab235 | 2 
Configure settings 
 
(Output omitted) 
 
Environment 3 successfully deployed 
 
Command: fuel --env 3 node 
id | status | name             | cluster | ip        | mac               | roles                      

                                            
22 In the bare-metal environment these actions are expected to be performed manually once the 
Fuel master installation is successfully completed. 



Detailed scenario setup guide   93 

---+--------+------------------+---------+-----------+-------------------+--------------------------- 
17 | ready  | Untitled (68:fa) |       3 | 10.20.0.7 | 78:e7:d1:c6:68:fa | ceph-osd, compute          
14 | ready  | Untitled (68:ab) |       3 | 10.20.0.8 | 78:e7:d1:c6:68:ab | ceph-osd, compute          
16 | ready  | Untitled (69:d9) |       3 | 10.20.0.3 | 78:e7:d1:c6:69:d9 | controller, opendaylight   
15 | ready  | Untitled (68:87) |       3 | 10.20.0.5 | 78:e7:d1:c6:68:87 | ceph-osd, controller      

18 | ready  | Untitled (91:5d) |       3 | 10.20.0.4 | 78:e7:d1:89:91:5d | controller, mongo, tacker  

 

Now running sanity and smoke health checks 
 
Command: fuel health --env 3 --check sanity,smoke --force 
[ 1 of 27] [success] 'Ceilometer test to list meters, alarms, resources and events' (2.485 s) 
[ 2 of 27] [success] 'Create instance flavor' (3.559 s) 
[ 3 of 27] [success] 'Request flavor list' (0.2009 s) 
[ 4 of 27] [success] 'Request image list using Nova' (3.45 s) 
[ 5 of 27] [success] 'Check create, update and delete image actions using Glance v2' (3.581 s) 
[ 6 of 27] [success] 'Request instance list' (1.072 s) 
[ 7 of 27] [success] 'Request absolute limits list' (0.04518 s) 
[ 8 of 27] [success] 'Request snapshot list' (1.616 s) 
[ 9 of 27] [success] 'Request volume list' (0.1665 s) 
[10 of 27] [success] 'Request image list using Glance v1' (0.02409 s) 
[11 of 27] [success] 'Request image list using Glance v2' (0.03343 s) 
[12 of 27] [success] 'Request stack list' (0.02779 s) 
[13 of 27] [success] 'Request active services list' (0.274 s) 
[14 of 27] [success] 'Request user list' (0.1318 s) 
[15 of 27] [success] 'Check that required services are running' (16.1 s) 
[16 of 27] [success] 'Check internet connectivity from a compute' (0.3064 s) 
[17 of 27] [success] 'Check DNS resolution on compute node' (0.5205 s) 
[18 of 27] [success] 'Request list of networks' (0.4317 s) 
[19 of 27] [success] 'Create volume and boot instance from it' (98.82 s) 
[20 of 27] [success] 'Create volume and attach it to instance' (72.31 s) 
[21 of 27] [success] 'Check network connectivity from instance via floating IP' (177.3 s) 
[22 of 27] [success] 'Create keypair' (0.5829 s) 
[23 of 27] [success] 'Create security group' (1.01 s) 
[24 of 27] [success] 'Check network parameters' (0.1734 s) 
[25 of 27] [success] 'Launch instance' (27.87 s) 
[26 of 27] [success] 'Launch instance, create snapshot, launch instance from snapshot' (62.24 s) 
[27 of 27] [success] 'Create user and authenticate with it.' (19.08 s) 
[ 1 of 27] [success] 'Ceilometer test to list meters, alarms, resources and events' (2.485 s) 
[ 2 of 27] [success] 'Create instance flavor' (3.559 s) 
[ 3 of 27] [success] 'Request flavor list' (0.2009 s) 
[ 4 of 27] [success] 'Request image list using Nova' (3.45 s) 
[ 5 of 27] [success] 'Check create, update and delete image actions using Glance v2' (3.581 s) 
[ 6 of 27] [success] 'Request instance list' (1.072 s) 
[ 7 of 27] [success] 'Request absolute limits list' (0.04518 s) 
[ 8 of 27] [success] 'Request snapshot list' (1.616 s) 
[ 9 of 27] [success] 'Request volume list' (0.1665 s) 
[10 of 27] [success] 'Request image list using Glance v1' (0.02409 s) 
[11 of 27] [success] 'Request image list using Glance v2' (0.03343 s) 
[12 of 27] [success] 'Request stack list' (0.02779 s) 
[13 of 27] [success] 'Request active services list' (0.274 s) 
[14 of 27] [success] 'Request user list' (0.1318 s) 
[15 of 27] [success] 'Check that required services are running' (16.1 s) 
[16 of 27] [success] 'Check internet connectivity from a compute' (0.3064 s) 
[17 of 27] [success] 'Check DNS resolution on compute node' (0.5205 s) 
[18 of 27] [success] 'Request list of networks' (0.4317 s) 
[19 of 27] [success] 'Create volume and boot instance from it' (98.82 s) 
[20 of 27] [success] 'Create volume and attach it to instance' (72.31 s) 
[21 of 27] [success] 'Check network connectivity from instance via floating IP' (177.3 s) 
[22 of 27] [success] 'Create keypair' (0.5829 s) 
[23 of 27] [success] 'Create security group' (1.01 s) 
[24 of 27] [success] 'Check network parameters' (0.1734 s) 
[25 of 27] [success] 'Launch instance' (27.87 s) 
[26 of 27] [success] 'Launch instance, create snapshot, launch instance from snapshot' (62.24 s) 
[27 of 27] [success] 'Create user and authenticate with it.' (19.08 s) 
 
 





Detailed scenario walkthrough   95 

 DETAILED SCENARIO WALKTHROUGH 
 
Once the environment is successfully installed, access to the OpenStack Horizon 
and OpenDaylight is active and should be reachable from the Jump server at: 
 

 OpenStack Horizon: http://172.16.0.3 

 Opendaylight DLUX: http://172.16.0.3:8181/index.html 
 
Figure H.1 shows the ODL DLUX UI: 
 

 

Figure E.1: Opendaylight DLUX UI showing the OpenFlow topology 

 
Access to the node’s CLI is done via the Fuel master. For example, to log into 
the OpenStack controller, from the jump server: 
 
pcapdevila@eul1900636:~$ sshpass -p r00tme ssh root@10.20.0.2 

Last login: Thu Feb 16 12:46:26 2017 from 10.20.0.1 

[root@fuel ~]# fuel node 

id | status | name             | cluster | ip        | mac               | roles                     

| pending_roles | online | group_id 

---+--------+------------------+---------+-----------+-------------------+--------------------------- 

 2 | ready  | Untitled (1d:95) |       1 | 10.20.0.6 | 52:54:00:57:1d:95 | ceph-osd, compute          

 3 | ready  | Untitled (e2:b8) |       1 | 10.20.0.4 | 52:54:00:9c:e2:b8 | ceph-osd, opendaylight     

 4 | ready  | Untitled (01:b0) |       1 | 10.20.0.7 | 52:54:00:eb:01:b0 | controller, mongo, tacker  

 1 | ready  | Untitled (e2:56) |       1 | 10.20.0.5 | 52:54:00:53:e2:56 | ceph-osd, compute          

[root@fuel ~]# ssh 10.20.0.7 

Warning: Permanently added '10.20.0.7' (ECDSA) to the list of known hosts. 

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-103-generic x86_64) 

 

 * Documentation:  https://help.ubuntu.com/ 

 

Last login: Thu Feb 16 12:42:47 2017 from 10.20.0.2 

root@node-4:~# source openrc 

root@node-4:~# source tackerc 

root@node-4:~# openstack service list 

+----------------------------------+----------------+----------------+ 

| ID                               | Name           | Type           | 

+----------------------------------+----------------+----------------+ 

| 081102419f6f4624b4bdcffb80cd2bbb | tacker         | servicevm      | 

| 0e9596c19dd24b1d8bb1b160c9c73835 | heat-cfn       | cloudformation | 

| 15344b79ba0546dd849bc22c158da4df | cinderv2       | volumev2       | 

| 3124631e0ee948a0a320463ff2df52d0 | compute_legacy | compute_legacy | 

| 3171a17be0774fcfb519d32b0cd6ff43 | cinderv3       | volumev3       | 

| 60ca82caf8e54c89b714c069b9339b4c | neutron        | network        | 

| 8fbe6df3bdba4107abf37a4cab024f72 | keystone       | identity       | 

| 96e8072a8d0e4622b60d82f92cc1230a | swift          | object-store   | 

http://172.16.0.3/
http://172.16.0.3:8181/index.html


96                                  Deployment of NFV and SFC scenarios 

| 9f1e0a8176384db78a3dd3c6b5b2e2ed | heat           | orchestration  | 

| b281d03f48384a55923efc99c3c05ecc | glance         | image          | 

| c47e245fcb2f42b7949dbfd6e1d980fb | cinder         | volume         | 

| d35a8ab7746544d58e793e5a8dc58340 | nova           | compute        | 

| d6aa6d0fa22745d7a2c4eb91e94d1b76 | swift_s3       | s3             | 

| dee2ccc2bb0c4f25ba5353e8ba77ed29 | aodh           | alarming       | 

| f0c5c903f386475e8803e2abbe78b681 | ceilometer     | metering       | 

| fd3ceaaeee0049a0b9a291a2b3f3e79e | glare          | artifact       | 

+----------------------------------+----------------+----------------+ 

 

And to log into the Opendaylight Karaf shell to install the missing DLUX SFC UI, 
from the jump server: 

 
pcapdevila@eul1900636:~$ sshpass -p r00tme ssh root@10.20.0.2 

Last login: Thu Feb 16 12:46:26 2017 from 10.20.0.1 

[root@fuel ~]# fuel node 

id | status | name             | cluster | ip        | mac               | roles                     

| pending_roles | online | group_id 

---+--------+------------------+---------+-----------+-------------------+--------------------------- 

 2 | ready  | Untitled (1d:95) |       1 | 10.20.0.6 | 52:54:00:57:1d:95 | ceph-osd, compute          

 3 | ready  | Untitled (e2:b8) |       1 | 10.20.0.4 | 52:54:00:9c:e2:b8 | ceph-osd, opendaylight     

 4 | ready  | Untitled (01:b0) |       1 | 10.20.0.7 | 52:54:00:eb:01:b0 | controller, mongo, tacker  

 1 | ready  | Untitled (e2:56) |       1 | 10.20.0.5 | 52:54:00:53:e2:56 | ceph-osd, compute          

[root@fuel ~]# ssh 10.20.0.4 

root@node-3:~# /opt/opendaylight/bin/client 

client: JAVA_HOME not set; results may vary 

Logging in as karaf 

19352 [sshd-SshClient[ee7d9f1]-nio2-thread-1] WARN 

org.apache.sshd.client.keyverifier.AcceptAllServerKeyVerifier - Server at [/0.0.0.0:8101, RSA, 

62:9e:ff:a3:b7:f7:d2:55:45:20:fb:47:73:5c:5b:ed] presented unverified {} key: {} 

 

    ________                       ________                .__  .__       .__     __ 

    \_____  \ ______   ____   ____ \______ \ _____  ___.__.|  | |__| ____ |  |___/  |_ 

     /   |   \\____ \_/ __ \ /    \ |    |  \\__  \<   |  ||  | |  |/ ___\|  |  \   __\ 

    /    |    \  |_> >  ___/|   |  \|    `   \/ __ \\___  ||  |_|  / /_/  >   Y  \  | 

    \_______  /   __/ \___  >___|  /_______  (____  / ____||____/__\___  /|___|  /__| 

            \/|__|        \/     \/        \/     \/\/            /_____/      \/ 

 

 

Hit '<tab>' for a list of available commands 

and '[cmd] --help' for help on a specific command. 

Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown OpenDaylight. 

 

opendaylight-user@root>feature:install odl-sfc-ui 

 

 

Figure E.2: Opendaylight DLUX SFC UI service node view 

 



Detailed scenario walkthrough   97 

H.1. Functional test execution 

 
For functional testing OPNFV Functest is used. In order to install the Functest 
Docker image, run: 
 
pcapdevila@eul1900636:~$ sudo apt-get install docker-engine  

pcapdevila@eul1900636:~$ docker pull opnfv/functest:colorado.3.0 

pcapdevila@eul1900636:~$ docker run --privileged=true -id -e INSTALLER_TYPE=fuel -e 

INSTALLER_IP=10.20.0.2 -e DEPLOY_SCENARIO=os-odl_l2-sfc-noha -e CI_DEBUG=true --name sfc 

opnfv/functest:Colorado.3.0 

 

To log into the running container and prepare the Functest environment: 
 

pcapdevila@eul1900636:~$ docker exec -ti sfc bash 

 

root@2e5bd681631e:~# functest env prepare 

2017-02-16 01:18:36,149 - prepare_env - INFO - ######### Preparing Functest environment ######### 

2017-02-16 01:18:36,149 - prepare_env - INFO - ============================================== 

2017-02-16 01:18:36,149 - prepare_env - INFO - Checking environment variables... 

2017-02-16 01:18:36,149 - prepare_env - INFO -     INSTALLER_TYPE=fuel 

2017-02-16 01:18:36,150 - prepare_env - INFO -     INSTALLER_IP=10.20.0.2 

2017-02-16 01:18:36,150 - prepare_env - INFO -     DEPLOY_SCENARIO=os-odl_l2-sfc-noha 

2017-02-16 01:18:36,150 - prepare_env - INFO -     CI_DEBUG=true 

2017-02-16 01:18:36,150 - prepare_env - INFO - ============================================== 

2017-02-16 01:18:36,150 - prepare_env - INFO - Creating needed directories... 

2017-02-16 01:18:36,151 - prepare_env - INFO - ============================================== 

2017-02-16 01:18:36,151 - prepare_env - INFO - Fetching RC file... 

2017-02-16 01:18:36,151 - prepare_env - INFO - RC file not provided. Fetching it from the 

installer... 

fetch_os_creds.info: Verifying connectivity to 10.20.0.2... 

fetch_os_creds.info: 10.20.0.2 is reachable! 

fetch_os_creds.info: Fetching rc file from controller 10.20.0.7... 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.7' (ECDSA) to the list of known hosts. 

fetch_os_creds.info: Exchanging keystone public IP in rc file to http://172.16.0.3:5000/v2.0 

 

(Output omitted) 
 
2017-02-16 01:18:45,693 - prepare_env - INFO - ============================================== 

2017-02-16 01:18:45,693 - prepare_env - INFO - Verifying OpenStack services... 

2017-02-16 01:18:45,700 - prepare_env - INFO - Checking OpenStack endpoints: 

2017-02-16 01:18:45,707 - prepare_env - INFO - >>Verifying connectivity to the public endpoint  

2017-02-16 01:18:45,716 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:47,764 - prepare_env - INFO - >>Verifying connectivity to the admin endpoint  

2017-02-16 01:18:47,772 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:47,773 - prepare_env - INFO - Checking OpenStack basic services: 

2017-02-16 01:18:47,777 - prepare_env - INFO - >>Checking openstack service... 

2017-02-16 01:18:51,360 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:51,364 - prepare_env - INFO - >>Checking nova service... 

2017-02-16 01:18:53,988 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:53,991 - prepare_env - INFO - >>Checking neutron service... 

2017-02-16 01:18:55,975 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:55,980 - prepare_env - INFO - >>Checking glance service... 

2017-02-16 01:18:57,808 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:57,812 - prepare_env - INFO - >>Checking cinder service... 

2017-02-16 01:18:59,796 - prepare_env - INFO -   ...OK 

2017-02-16 01:18:59,796 - prepare_env - INFO - OpenStack services are OK. 

2017-02-16 01:18:59,796 - prepare_env - INFO - Checking External network... 

2017-02-16 01:19:03,929 - prepare_env - INFO - External network found: b878795e-9095-4c0f-939d 

2017-02-16 01:19:03,930 - prepare_env - INFO - ============================================== 

2017-02-16 01:19:03,930 - prepare_env - INFO - Creating Rally environment... 

 

(Output omitted) 
 

keystone endpoints are valid and following services are available: 

+-------------+----------------+-----------+ 

| services    | type           | status    | 

+-------------+----------------+-----------+ 

| __unknown__ | alarming       | Available | 

| __unknown__ | artifact       | Available | 

| __unknown__ | compute_legacy | Available | 

| __unknown__ | servicevm      | Available | 

| __unknown__ | volumev2       | Available | 

| __unknown__ | volumev3       | Available | 

| ceilometer  | metering       | Available | 

| cinder      | volume         | Available | 

| cloud       | cloudformation | Available | 

| glance      | image          | Available | 

| heat        | orchestration  | Available | 

| keystone    | identity       | Available | 



98                                  Deployment of NFV and SFC scenarios 

| neutron     | network        | Available | 

| nova        | compute        | Available | 

| s3          | s3             | Available | 

| swift       | object-store   | Available | 

+-------------+----------------+-----------+ 

NOTE: '__unknown__' service name means that Keystone service catalog doesn't return name for this 

service and Rally can not identify service by its type. BUT you still can use such services with 

api_versions context, specifying type of service (execute `rally plugin show api_versions` for more 

details). 

 

Images for user `admin` in tenant `admin`: 

+--------------------------------------+--------+----------+ 

| UUID                                 | Name   | Size (B) | 

+--------------------------------------+--------+----------+ 

| e5cc46f1-bef2-4906-ad38-390e5d2a6516 | TestVM | 22581248 | 

+--------------------------------------+--------+----------+ 

 

Flavors for user `admin` in tenant `admin`: 

+--------------------------------------+-----------+-------+----------+-----------+-----------+ 

| ID                                   | Name      | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) | 

+--------------------------------------+-----------+-------+----------+-----------+-----------+ 

| 1                                    | m1.tiny   | 1     | 512      | n/a       | 1         | 

| 2                                    | m1.small  | 1     | 2048     | n/a       | 20        | 

| 3                                    | m1.medium | 2     | 4096     | n/a       | 40        | 

| 4                                    | m1.large  | 4     | 8192     | n/a       | 80        | 

| 5                                    | m1.xlarge | 8     | 16384    | n/a       | 160       | 

| 5693da34-4d29-4aec-85e9-5a4e70553d2c | m1.micro  | 1     | 64       | n/a       | 0         | 

+--------------------------------------+-----------+-------+----------+-----------+-----------+ 

2017-02-16 01:19:18,860 - prepare_env - INFO - Functest environment installed. 

 

 

Some timers in the main testscase script may need tweaking to accommodate 
for slower performing systems: 
 

root@2e5bd681631e:~/repos/functest/testcases/features/sfc# grep -r 120 sfc.py 

sfc.py:    time.sleep(120) 

 

root@2e5bd681631e:~/repos/functest/testcases/features/sfc# vi sfc.py  

 

root@2e5bd681631e:~/repos/functest/testcases/features/sfc# grep -r 240 sfc.py 

sfc.py:    time.sleep(240) 

 

 

The actual SFC testcase can now be invoked: 
 

root@2e5bd681631e:~# functest testcase run odl-sfc 

2017-02-16 01:34:09,760 - run_tests - INFO -  

2017-02-16 01:34:09,760 - run_tests - INFO - ============================================ 

2017-02-16 01:34:09,760 - run_tests - INFO - Running test case 'odl-sfc'... 

2017-02-16 01:34:09,761 - run_tests - INFO - ============================================ 

+======================================================================+ 

| Testcase:  odl-sfc                                                   | 

+======================================================================+ 

| Description:                                                         | 

|    Test suite for odl-sfc to test two chains and two SFs             | 

| Criteria:  status == "PASS"                                          | 

| Dependencies:                                                        | 

|   - Installer:fuel                                                   | 

|   - Scenario :odl_l2-sfc                                             | 

|                                                                      | 

+----------------------------------------------------------------------+ 

 

2017-02-16 01:34:09,761 - openstack_snapshot - INFO - Generating OpenStack snapshot... 

 

Sourcing Credentials /home/opnfv/functest/conf/openstack.creds to run the test.. 

 

(Output omitted) 
 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.7' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

2017-02-16 01:34:40,037 - ODL_SFC - INFO - The presetup of the server worked  

2017-02-16 01:34:40,205 - ODL_SFC - INFO - Executing ssh to collect the compute IPs 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.5' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.5' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.5' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.6' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.6' (ECDSA) to the list of known hosts. 



Detailed scenario walkthrough   99 

Warning: Permanently added '10.20.0.2' (ECDSA) to the list of known hosts. 

Warning: Permanently added '10.20.0.6' (ECDSA) to the list of known hosts. 

2017-02-16 01:34:46,551 - ODL_SFC - INFO - Configuring iptables -P INPUT ACCEPT on contoller 

2017-02-16 01:34:49,459 - ODL_SFC - INFO - Configuring iptables -t nat -P INPUT ACCEPT on contoller 

2017-02-16 01:34:51,877 - ODL_SFC - INFO - Configuring iptables -A INPUT -m state                     

--state NEW,ESTABLISHED,RELATED -j ACCEPT on contoller 

2017-02-16 01:34:54,386 - ODL_SFC - INFO - Downloading image 

2017-02-16 01:38:35,021 - ODL_SFC - INFO - Using old image 

2017-02-16 01:38:35,919 - openstack_utils - INFO - Creating flavor 'custom' with '1500' RAM, '10' 

disk size, '1' vcpus... 

2017-02-16 01:38:43,627 - openstack_utils - INFO - Creating image 'sf_nsh_colorado' from 

'/home/opnfv/functest/data/sf_nsh_colorado.qcow2'... 

2017-02-16 01:42:42,075 - openstack_utils - INFO - Creating neutron network example-net... 

2017-02-16 01:42:50,058 - openstack_utils - INFO - Creating security group  'example-sg'... 

 

(Output omitted) 
 

2017-02-16 01:46:41,040 - ODL_SFC - INFO - Adding 'client' to security group example-sg 

2017-02-16 01:46:42,629 - ODL_SFC - INFO - Creating instance 'server'... 

 name=server  

 flavor=custom  

 image=d42664e2-e50f-4e27-9378-726093e7b303  

 network=4635b1f4-09e9-44cd-8584-abbc18dbe330  

 

2017-02-16 01:50:04,957 - ODL_SFC - INFO - Adding 'server' to security group example-sg 

Created a new vnfd: 

+---------------+-----------------------------------------------------------------------------+ 

| Field         | Value                                                                       | 

+---------------+-----------------------------------------------------------------------------+ 

| description   | firewall1-example                                                           | 

| id            | bdee6cc2-cec0-4dfa-a6fd-24445e066e9d                                        | 

| infra_driver  | heat                                                                        | 

| mgmt_driver   | noop                                                                        | 

| name          | test-vnfd1                                                                  | 

| service_types | {"service_type": "firewall1", "id": "800efd21-4ff4-41a6-b495-b93b64ff6b35"} | 

|               | {"service_type": "vnfd", "id": "ba6ba48a-f52e-4b8a-a4e4-c51c6355273d"}      | 

| tenant_id     | 7a619858c652488eba992c93e9f3d633                                            | 

+---------------+-----------------------------------------------------------------------------+ 

Created a new vnfd: 

+---------------+-----------------------------------------------------------------------------+ 

| Field         | Value                                                                       | 

+---------------+-----------------------------------------------------------------------------+ 

| description   | firewall2-example                                                           | 

| id            | b2c3c025-188f-4636-9550-ab764b0593a0                                        | 

| infra_driver  | heat                                                                        | 

| mgmt_driver   | noop                                                                        | 

| name          | test-vnfd2                                                                  | 

| service_types | {"service_type": "vnfd", "id": "672c897b-84da-49e6-ad5b-b16559c10533"}      | 

|               | {"service_type": "firewall2", "id": "80a87f68-04b4-4eeb-85da-3432be0d526a"} | 

| tenant_id     | 7a619858c652488eba992c93e9f3d633                                            | 

+---------------+-----------------------------------------------------------------------------+ 

Created a new vnf: 

+-------------+--------------------------------------+ 

| Field       | Value                                | 

+-------------+--------------------------------------+ 

| description | firewall1-example                    | 

| id          | 1315fdac-9977-481c-8eb0-994472347798 | 

| instance_id | a5f7e3e6-6b63-4ee2-b7db-bfc91df68a4d | 

| mgmt_url    |                                      | 

| name        | testVNF1                             | 

| status      | PENDING_CREATE                       | 

| tenant_id   | 7a619858c652488eba992c93e9f3d633     | 

| vnfd_id     | bdee6cc2-cec0-4dfa-a6fd-24445e066e9d | 

+-------------+--------------------------------------+ 

Created a new vnf: 

+-------------+--------------------------------------+ 

| Field       | Value                                | 

+-------------+--------------------------------------+ 

| description | firewall2-example                    | 

| id          | 3589bc12-4c35-4517-a20b-565367d7b799 | 

| instance_id | 1115ef31-b91b-4a90-a815-0728d7e3b191 | 

| mgmt_url    |                                      | 

| name        | testVNF2                             | 

| status      | PENDING_CREATE                       | 

| tenant_id   | 7a619858c652488eba992c93e9f3d633     | 

| vnfd_id     | b2c3c025-188f-4636-9550-ab764b0593a0 | 

+-------------+--------------------------------------+ 

 

(Output omitted) 
 

Created a new sfc: 

+--------------+--------------------------------------+ 

| Field        | Value                                | 

+--------------+--------------------------------------+ 

| attributes   | {}                                   | 

| chain        | 1315fdac-9977-481c-8eb0-994472347798 | 



100                                  Deployment of NFV and SFC scenarios 

| description  |                                      | 

| id           | 8e4477da-5abc-47b8-a607-d2596216c001 | 

| infra_driver | opendaylight                         | 

| instance_id  | Path-red-Path-52                     | 

| name         | red                                  | 

| status       | PENDING_CREATE                       | 

| symmetrical  | False                                | 

| tenant_id    | 7a619858c652488eba992c93e9f3d633     | 

+--------------+--------------------------------------+ 

Created a new sfc: 

+--------------+--------------------------------------+ 

| Field        | Value                                | 

+--------------+--------------------------------------+ 

| attributes   | {}                                   | 

| chain        | 3589bc12-4c35-4517-a20b-565367d7b799 | 

| description  |                                      | 

| id           | c3e626b4-04a4-4549-b45e-6f3ed6621378 | 

| infra_driver | opendaylight                         | 

| instance_id  | Path-blue-Path-84                    | 

| name         | blue                                 | 

| status       | PENDING_CREATE                       | 

| symmetrical  | False                                | 

| tenant_id    | 7a619858c652488eba992c93e9f3d633     | 

+--------------+--------------------------------------+ 

Created a new sfc_classifier: 

+--------------------+----------------------------------------------------+ 

| Field              | Value                                              | 

+--------------------+----------------------------------------------------+ 

| acl_match_criteria | {"source_port": 0, "protocol": 6, "dest_port": 80} | 

| attributes         | {}                                                 | 

| chain              | 8e4477da-5abc-47b8-a607-d2596216c001               | 

| description        |                                                    | 

| id                 | c84160e4-de9b-4329-93f1-405756bd5a94               | 

| infra_driver       | netvirtsfc                                         | 

| instance_id        | red_http                                           | 

| name               | red_http                                           | 

| status             | PENDING_CREATE                                     | 

| tenant_id          | 7a619858c652488eba992c93e9f3d633                   | 

+--------------------+----------------------------------------------------+ 

Created a new sfc_classifier: 

+--------------------+----------------------------------------------------+ 

| Field              | Value                                              | 

+--------------------+----------------------------------------------------+ 

| acl_match_criteria | {"source_port": 0, "protocol": 6, "dest_port": 22} | 

| attributes         | {}                                                 | 

| chain              | 8e4477da-5abc-47b8-a607-d2596216c001               | 

| description        |                                                    | 

| id                 | 692c03ce-225e-4f2a-a8c2-0174ea93a0a0               | 

| infra_driver       | netvirtsfc                                         | 

| instance_id        | red_ssh                                            | 

| name               | red_ssh                                            | 

| status             | PENDING_CREATE                                     | 

| tenant_id          | 7a619858c652488eba992c93e9f3d633                   | 

+--------------------+----------------------------------------------------+ 

+--------------------------------------+------+-------------+--------------+-------------+--------+ 

| id                                   | name | description | infra_driver | symmetrical | status | 

+--------------------------------------+------+-------------+--------------+-------------+--------+ 

| 8e4477da-5abc-47b8-a607-d2596216c001 | red  |             | opendaylight | False       | ACTIVE | 

| c3e626b4-04a4-4549-b45e-6f3ed6621378 | blue |             | opendaylight | False       | ACTIVE | 

+--------------------------------------+------+-------------+--------------+-------------+--------+ 

+--------------------------------------+----------+----------------------------------------+--------+ 

| id                                   | name     | acl_match_criteria                     | status | 

+--------------------------------------+----------+-------------+--------------------------+--------+ 

| 692c03ce-225e-4f2a-a8c2-0174ea93a0a0 | red_ssh  | { u'protocol': 6, u'dest_port': 22}    | ACTIVE | 

| c84160e4-de9b-4329-93f1-405756bd5a94 | red_http | { u'protocol': 6, u'dest_port': 80}    | ACTIVE | 

+--------------------------------------+----------+-------------+--------------------------+--------

2017-02-16 01:51:32,556 - ODL_SFC - INFO - Instance name and ip ta-bc12-4c35-4517-a20b-565367d7b799-

vdu1-vy3iwu7tr76w:172.16.0.134  

2017-02-16 01:51:32,556 - ODL_SFC - INFO - Waiting for instance ta-bc12-4c35-4517-a20b-565367d7b799-

vdu1-vy3iwu7tr76w:172.16.0.134 to come up 

2017-02-16 01:51:39,585 - ODL_SFC - INFO - SF:172.16.0.134 is reachable 

2017-02-16 01:51:43,834 - ODL_SFC - INFO - Instance name and ip ta-fdac-9977-481c-8eb0-994472347798-

vdu1-rox2f3fchptu:172.16.0.135  

2017-02-16 01:51:43,835 - ODL_SFC - INFO - Waiting for instance ta-fdac-9977-481c-8eb0-994472347798-

vdu1-rox2f3fchptu:172.16.0.135 to come up 

2017-02-16 01:51:45,513 - ODL_SFC - INFO - classification rules updated 

2017-02-16 01:51:45,514 - ODL_SFC - INFO - It took 19.2132349014 seconds 

2017-02-16 01:51:47,380 - ODL_SFC - INFO - SF:172.16.0.135 is reachable 

2017-02-16 01:51:50,758 - ODL_SFC - INFO - Instance name and ip server:172.16.0.136  

2017-02-16 01:51:50,760 - ODL_SFC - INFO - Waiting for instance server:172.16.0.136 to come up 

2017-02-16 01:51:54,564 - ODL_SFC - INFO - Server:172.16.0.136 is reachable 

2017-02-16 01:51:58,693 - ODL_SFC - INFO - Instance name and ip client:172.16.0.137  

2017-02-16 01:51:58,696 - ODL_SFC - INFO - Waiting for instance client:172.16.0.137 to come up 

2017-02-16 01:52:03,522 - ODL_SFC - INFO - Client:172.16.0.137 is reachable 

2017-02-16 01:52:03,523 - ODL_SFC - INFO - Checking SSH connectivity to the SFs with ips 

[u'172.16.0.135', u'172.16.0.134'] 

2017-02-16 01:52:05,736 - ODL_SFC - INFO - SSH connectivity to the SFs established 

2017-02-16 01:52:05,737 - ODL_SFC - INFO - Starting HTTP server on 172.16.0.136 



Detailed scenario walkthrough   101 

2017-02-16 01:52:06,781 - ODL_SFC - INFO - Starting HTTP firewall on 172.16.0.134 

2017-02-16 01:52:07,177 - ODL_SFC - INFO - Starting SSH firewall on 172.16.0.135 

2017-02-16 01:52:07,596 - ODL_SFC - INFO - Wait for ODL to update the classification rules in OVS 

2017-02-16 01:56:07,695 - ODL_SFC - INFO - Test SSH 

2017-02-16 01:56:13,782 - ODL_SFC - INFO - nc: connect to 11.0.0.4 port 22 (tcp) timed out: Operation 

now in progress 

2017-02-16 01:56:13,784 - ODL_SFC - INFO - TEST 1 [PASSED] ==> SSH BLOCKED 

2017-02-16 01:56:13,784 - ODL_SFC - INFO - Test HTTP 

2017-02-16 01:56:14,182 - ODL_SFC - INFO - Connection to 11.0.0.4 80 port [tcp/http] succeeded! 

2017-02-16 01:56:14,183 - ODL_SFC - INFO - TEST 2 [PASSED] ==> HTTP WORKS 

2017-02-16 01:56:14,183 - ODL_SFC - INFO - Changing the classification 

Deleted sfc_classifier: red_http 

Deleted sfc_classifier: red_ssh 

Created a new sfc_classifier: 

+--------------------+----------------------------------------------------+ 

| Field              | Value                                              | 

+--------------------+----------------------------------------------------+ 

| acl_match_criteria | {"source_port": 0, "protocol": 6, "dest_port": 80} | 

| attributes         | {}                                                 | 

| chain              | c3e626b4-04a4-4549-b45e-6f3ed6621378               | 

| description        |                                                    | 

| id                 | 3f3a631c-07af-4ca9-bdab-83e6fa8504f8               | 

| infra_driver       | netvirtsfc                                         | 

| instance_id        | blue_http                                          | 

| name               | blue_http                                          | 

| status             | PENDING_CREATE                                     | 

| tenant_id          | 7a619858c652488eba992c93e9f3d633                   | 

+--------------------+----------------------------------------------------+ 

Created a new sfc_classifier: 

+--------------------+----------------------------------------------------+ 

| Field              | Value                                              | 

+--------------------+----------------------------------------------------+ 

| acl_match_criteria | {"source_port": 0, "protocol": 6, "dest_port": 22} | 

| attributes         | {}                                                 | 

| chain              | c3e626b4-04a4-4549-b45e-6f3ed6621378               | 

| description        |                                                    | 

| id                 | 20ee26b7-f337-4b62-93d5-9b19f99fc7f0               | 

| infra_driver       | netvirtsfc                                         | 

| instance_id        | blue_ssh                                           | 

| name               | blue_ssh                                           | 

| status             | PENDING_CREATE                                     | 

| tenant_id          | 7a619858c652488eba992c93e9f3d633                   | 

+--------------------+----------------------------------------------------+ 

+--------------------------------------+-------------------------+-----------------------------------

| id                                   | name      | acl_match_criteria                    | status | 

+--------------------------------------+-----------+------------------------------------------------- 

| 20ee26b7-f337-4b62-93d5-9b19f99fc7f0 | blue_ssh  | { u'protocol': 6, u'dest_port': 22}   | ACTIVE | 

| 3f3a631c-07af-4ca9-bdab-83e6fa8504f8 | blue_http | { u'protocol': 6, u'dest_port': 80}   | ACTIVE | 

+--------------------------------------+-----------+-------------+----------------------------------- 

2017-02-16 01:56:26,301 - ODL_SFC - INFO - Wait for ODL to update the classification rules in OVS 

2017-02-16 01:56:43,146 - ODL_SFC - INFO - classification rules updated 

2017-02-16 01:56:43,146 - ODL_SFC - INFO - It took 16.8441061974 seconds 

2017-02-16 01:58:06,402 - ODL_SFC - INFO - Test HTTP 

2017-02-16 01:58:11,943 - ODL_SFC - INFO - nc: connect to 11.0.0.4 port 80 (tcp) timed out: Operation 

now in progress 

2017-02-16 01:58:11,943 - ODL_SFC - INFO - TEST 3 [PASSED] ==> HTTP Blocked 

2017-02-16 01:58:11,944 - ODL_SFC - INFO - Test SSH 

2017-02-16 01:58:12,455 - ODL_SFC - INFO - Connection to 11.0.0.4 22 port [tcp/ssh] succeeded! 

2017-02-16 01:58:12,455 - ODL_SFC - INFO - TEST 4 [PASSED] ==> SSH Works 

2017-02-16 01:58:12,474 - ODL_SFC - INFO - SFC ALL TESTS: PASS :) 


