
Edit, Compile, Execute and
Debug C++ on the Web

Degree in Informatics Engineering
Fundamentals of Computing

Final Project

Albert Lobo Cusidó

Advisor

Jordi Petit Silvestre

January, 2017

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya - BarcelonaTech

Abstract

The aim of this project is to create a web application to edit, compile, and de-
bug C++ code. This application can be used by instructors to make introductory
programming courses more engaging. The first phase of this project provides
the planning and design of a software solution to build the application. The
main phase describes the implementation of the solution using rapid applica-
tion development methodology. In the final phase, the implemented solution is
evaluated, concluding it is a good candidate for the aforementioned application.

Resum

El propòsit d’aquest projecte és crear una aplicació web per editar, compilar, i
depurar codi C++. Els professors poden servir-se d’aquesta aplicació per fer més
atractius els primers cursos de programació. La primera fase del projecte aporta
la planificació i el disseny d’una solució de software per a construir l’aplicació.
La fase principal del projecte descriu la implementació de la solució usant la
metodologia de desenvolupament RAD. En la fase final del projecte, la solució
implementada s’avalua, concloent que és una bona candidata per l’aplicació
mencionada.

Contents

1 Introduction 1
1.1 Brief introduction to IDEs . 1
1.2 Personal motivation . 2
1.3 Report structure . 3

I Formulation 4

2 Analysis 5
2.1 Context . 5
2.2 The problem . 5
2.3 The requirement . 6
2.4 State of the art . 6
2.5 Stakeholders . 6

3 Objectives 8
3.1 Main objectives . 8
3.2 Secondary objectives . 8

3.2.1 Create an extensible plugin system for customizing the
environment . 8

3.2.2 Make the infrastructure scalable, stable and secure 9
3.2.3 Create a step-by-step debug mode 9
3.2.4 Detect memory errors in the student’s programs 9
3.2.5 Import and export code from GitHub.com 9

4 Design 10
4.1 Security concerns . 10
4.2 Debugger . 10
4.3 Architecture . 11

4.3.1 Client tier . 11
4.3.2 Server tier . 12

4.4 General application workflow . 12

i

5 Licenses 14
5.1 Code . 14
5.2 Documents . 14

II Planning 15

6 Time Plan 16
6.1 Estimated project duration . 16
6.2 Tasks . 16

6.2.1 Analysis and design . 17
6.2.2 Environment setup . 17
6.2.3 Sandbox . 17
6.2.4 Drivers . 18
6.2.5 Server application . 18
6.2.6 Client application . 19
6.2.7 Testing and polishing . 19
6.2.8 Project management course 19
6.2.9 Project report . 20
6.2.10 Project presentation . 20

6.3 Time table . 20
6.4 Gantt chart . 21

7 Budget 23
7.1 Hardware . 23
7.2 Software . 23
7.3 Staff . 24
7.4 Other costs . 25
7.5 Total . 25

8 Sustainability Analysis 27
8.1 Economic sustainability . 27
8.2 Social sustainability . 28
8.3 Environmental sustainability . 28

8.3.1 Sustainability matrix . 28

III Implementation 29

9 Methodology 30
9.1 Rapid Application Development 30
9.2 Version control . 31

ii

10 Debugger Prototype 32
10.1 C++ utilities . 32

10.1.1 GCC . 33
10.1.2 GDB . 33

10.2 The solution stack . 33
10.2.1 Full-stack JavaScript . 33

10.3 Design . 34
10.3.1 gdb-mi-parser . 34
10.3.2 gdb-mi . 35

10.4 Configuring the C++ tools . 36
10.4.1 g++ . 36
10.4.2 gdb . 36

10.5 Testing . 36
10.6 Integration with npm . 38

10.6.1 gdb-mi . 38
10.6.2 gdb-mi-parser . 38

10.7 Summary . 39

11 Express Prototype 40
11.1 Web framework . 40
11.2 Node.js, Express.js and Socket.io 41
11.3 Design . 41
11.4 Testing . 42
11.5 GDBServer . 43
11.6 Summary . 43

12 Sandbox Prototype 45
12.1 The sandbox . 45
12.2 Linux Containers . 46
12.3 Design . 46

12.3.1 Master and Slave servers 47
12.3.2 JavaScript components . 47

12.4 Security measures . 47
12.4.1 SSH . 47
12.4.2 Low-privilege user . 47
12.4.3 Memory-usage and network restriction 48
12.4.4 Limited number of processes 48

12.5 Testing . 48
12.6 Summary . 48

13 Angular Prototype 50
13.1 SPA . 50
13.2 Web browser JavaScript framework 51
13.3 AngularJS . 51
13.4 CSS styling and UI elements . 51
13.5 Bower . 52

iii

13.6 Design . 53
13.6.1 AngularJS architecture 53
13.6.2 Controllers . 53
13.6.3 Directives . 54
13.6.4 Service providers . 55

13.7 Testing . 55
13.8 Summary . 55

14 Plugins Prototype 57
14.1 The workbench . 57
14.2 Web application design . 57

14.2.1 The workbench module 58
14.2.2 The workbench controller 58
14.2.3 The workbench provider 59
14.2.4 The workbench directives 59
14.2.5 Plugins . 59

14.3 Server application design . 62
14.3.1 The Workbench Controller 62
14.3.2 Plugins . 63

14.4 Sandboxes . 63
14.5 Creation of the C++ plugin . 64

14.5.1 Web application plugin 64
14.5.2 Server application plugin 66
14.5.3 Sandboxes . 67

14.6 Testing . 67
14.7 Summary . 68

15 EasyUI Prototype 69
15.1 EasyUI . 69

15.1.1 Additional features . 70
15.1.2 Changes in the client application 70

15.2 Menu bar . 70
15.2.1 File menu . 70
15.2.2 Edit menu . 71
15.2.3 View menu . 71
15.2.4 Help menu . 71

15.3 Documentation HTTPS endpoint 72
15.4 Status bar . 72
15.5 Adapting the IDE . 72

15.5.1 Custom AngularJS directives 72
15.5.2 The workbench . 73

15.6 Client C++ plugin . 73
15.6.1 Selected templates . 73
15.6.2 Templates menu . 74
15.6.3 C++ expressions . 74

15.7 Testing . 75

iv

15.8 Summary . 75

16 ide.jutge Prototype 77
16.1 C++ execution modes . 78
16.2 Slow motion . 78
16.3 Run . 79

16.3.1 Client application . 79
16.3.2 Server application . 79

16.4 Valgrind . 80
16.4.1 Client application . 80
16.4.2 Server application . 80
16.4.3 Sandbox . 80

16.5 Gists . 80
16.5.1 Client application . 81
16.5.2 Server application . 82

16.6 Testing . 82
16.7 Summary . 83

IV Evaluation 84

17 Usability 85
17.1 Usability test . 86

17.1.1 Feedback . 86
17.1.2 Results . 87

17.2 Enhancements . 87
17.3 Summary . 88

18 Performance 89
18.1 Memory usage . 89

18.1.1 Storage . 89
18.1.2 RAM . 90

18.2 Network . 90
18.3 CPU . 91

18.3.1 Client tier . 92
18.3.2 Server tier . 92

18.4 CPU stress tests . 93
18.4.1 Tools . 93
18.4.2 Results . 94

18.5 Summary . 94

19 Validation 96
19.1 Validation summary . 96

19.1.1 Main objectives . 96
19.1.2 Secondary objectives . 97

19.2 Planning review . 97

v

19.2.1 Time management . 97
19.2.2 Economic cost . 98

20 Legal Aspects 100

21 Conclusions 101
21.1 Summary . 101
21.2 Future work . 102
21.3 Personal thoughts . 102
21.4 Acknowledgements . 103

Bibliography 104

vi

Chapter 1

Introduction

This project details the design and implementation of a web application to
edit, compile, and debug C++ programs. The goal is to use this application in
introductory programming courses in the Facultat d’Informàtica de Barcelona,
and is available at:

https://ide.jutge.org

The solution presented in this project is what is known as a Web IDE
(Integrated Development Environment). This chapter presents a brief introduc-
tion to IDEs, states the personal motivation of the author, and describes the
structure of this report.

1.1 Brief introduction to IDEs

An IDE is essentially a program in which development is done. This contrasts
with software development using unrelated tools, such as a text editor and a
terminal. IDEs typically provide features for editing source files and compiling
them, as well as deploying and inspecting the resulting software.

IDEs are designed to maximize programmer productivity by providing
tight-knit components with a common user interface. They take care of the
configuration necessary to piece together multiple development utilities, and
present the same set of capabilities as a cohesive unit. This increases developer
productivity because learning to use the IDE is faster than manually integrating
all of the individual tools (see [43] and [55]).

When programmers started using the console to develop, IDEs natu-

1

https://ide.jutge.org

Chapter 1. Introduction

rally appeared. A good example of this is GNU Emacs [21], an extensible editor
that is commonly used as an IDE on Unix-like systems. Since then, many IDEs
have been created; some of them are dedicated to a particular language (such as
Pharo [57] for Smalltalk [62]), and others support multiple languages (such as
Eclipse [28]). According to [4], the most popular IDEs as of today (December
2016) are Visual Studio [54] and Eclipse [28].

With the advent of cloud computing, many IDEs are available online
and run within web browsers. According to [5], the most popular Web IDEs are
Cloud9 [6] and JSFiddle [46]. However, Web IDEs have a much more limited
feature-set because they are operating in a web browser; in particular, there is
currently no Web IDE that allows debug of C++ programs.

1.2 Personal motivation

I have always used IDEs to do my programming projects. The first programming
language I learned was C++, and I used an IDE called Turbo C++. One of the
first things I was taught was that I could see what my program was doing at any
moment, using a feature called the debugger. With just a few button clicks, I
managed to stop execution in the middle of the program, and saw what variables
I had and what their value was. I could even see which functions had been called
before the program paused!

The value of using an IDE to learn was not so clear to me until I
actually came to university. Surely using a text editor and a terminal to code
C++ was an act of masochism! Before I could even get the program running,
I had to find and install a C++ compiler, and figure out the correct command
options. On top of that, there was still no way to pause the program and see the
variables —I had to get a debugger and learn how it worked. In practice, though,
students ended up plaguing their code with unnecessary print statements. Why
all this complication, I wonder, when all students need is to learn the basics of
C++?

One of my passions is programming —learning more and honing my
skills is the reason I started the Degree in Informatics Engineering in the first
place. Being offered this project was perfect for me, because I would be able to
use my programming abilities, and mindset, to create something genuinely use-
ful, as well as learning the wide range of technologies involved in the process, and
applying knowledge gained in the Fundamentals of Computing specialization.

Edit, Compile, Execute and Debug C++ on the Web 2

Chapter 1. Introduction

1.3 Report structure

This report consists of four different parts. Each part describes an essential
phase of the project’s development.

Formulation: Identifies and analyzes the problem to solve, specifies the scope
of the project, and shows the design of the solution.

Planning: Describes the time plan and budget to develop the project.

Implementation: Describes the development of the different components
that integrate the solution.

Evaluation: Describes the validation methodology, reviews time management
and costs, and discusses the sustainability and legality issues of the project.

Edit, Compile, Execute and Debug C++ on the Web 3

Part I

Formulation

4

Chapter 2

Analysis

This chapter describes the problem that this project aims to solve, and decides
whether there is an existing solution that may apply to solve such problem.

2.1 Context

Jutge.org [45] is a programming judge specially built with an educational aim.
For the past ten years, this tool has played an essential role in the task of
improving the teaching in the programming courses at UPC [44].

The advisor of this project is a founder of the Jutge.org platform.
The work produced in this project intends to provide an enhancement to the
platform: to build a web application for students to inspect their C++ programs
in an easy and practical way (C++ is the most used programming language
amongst Jutge.org users [44]).

Indeed, this new web application for Jutge.org hopes to help teachers
make the introductory programming courses more engaging by providing an
environment in which students can write C++ code and immediately see the
results of its execution.

2.2 The problem

The inspection of programs is typically done with a utility called the debugger
(debug: to identify and remove errors from software). This is a key part of

5

Chapter 2. Analysis Part I. Formulation

software development, although it proves to be difficult for newer students.

The first step for programming students is to find and install both
the compiler and debugger programs. This can be tricky, depending on which
operative system they are using. But the hardest problem lies in the interaction
with said utilities —the debugger in particular—, which requires learning and
combining a lot of commands that will only make sense to someone who has a
deeper knowledge of what is going on under the hood.

2.3 The requirement

To help students focus on the more important aspects of programming, such
as learning basic techniques (for example, recursion and iteration), this project
aims to build an application for students to debug their programs using only a
modern web browser.

2.4 State of the art

There are quite a few Web IDEs that support the C++ language. Some of the
most popular free ones are:

• Cloud9 [6]

• TutorialsPoint - Coding Ground [69]

• ideone [51]

As much as these IDEs allow editing and executing C++ code, none
of them currently provide debugger features.

Given that there are no readily-available tools that fulfill the project’s
requirement, a new brand solution is necessary.

2.5 Stakeholders

Given the previously described requirement, the different individuals who will
use the platform are considered:

Edit, Compile, Execute and Debug C++ on the Web 6

Chapter 2. Analysis Part I. Formulation

Students: They want to code and debug their programs easily, without having
to worry about details on how the debug process actually works.

UPC staff: They will supervise and, potentially, improve upon the project
platform by making plugins for other languages or updating the C++ plu-
gin.

Project staff: The author of this project will have to take the roles of a
project manager, a software engineer, and a software developer, in order
to complete it.

Edit, Compile, Execute and Debug C++ on the Web 7

Chapter 3

Objectives

This chapter describes the different objectives that the project must fulfill in
order to satisfy the requirement stated in the previous chapter.

3.1 Main objectives

The main objective of this project is to build a Web IDE for students to create
and inspect their C++ programs. The name of this tool will be, appropriately
enough, ide.jutge.

This objective involves creating all the individual components or utili-
ties that will make up the IDE. More details about each one of these components,
and how they interact, will be provided in chapter 4, Design.

3.2 Secondary objectives

This project also pursues the following secondary objectives:

3.2.1 Create an extensible plugin system for customizing
the environment

Much like Eclipse, or IntelliJ, the ide.jutge should allow extra features and
functionality to be added through a plugins system. This way, the application

8

Chapter 3. Objectives Part I. Formulation

would be able to support other languages such as Java, or help to solve Jutge.org
problems by automatically executing public test cases.

3.2.2 Make the infrastructure scalable, stable and secure

The underlying infrastructure must be able to handle a large amount of users
without hindering performance. Moreover, the solution must be secure and
fault-tolerant; user programs must not be able to break or affect the solution
negatively.

3.2.3 Create a step-by-step debug mode

The IDE must be able to execute programs one instruction at a time, with a
brief pause of a few seconds between instructions. This execution mode will be
referred to from here on as Slow motion debug.

3.2.4 Detect memory errors in the student’s programs

The IDE must be able to pinpoint memory-related errors in the programs, such
as an illegal memory access, or memory leaks.

3.2.5 Import and export code from GitHub.com

Support to read and write Gists [37] must be provided. Many programmers,
including students, are currently using GitHub to manage their programming
projects -even the source code of this project is hosted in a private repository
at GitHub.com.

Edit, Compile, Execute and Debug C++ on the Web 9

Chapter 4

Design

This chapter describes the design and general workflow of the solution, states
the security concerns taken into account, and details the architecture on which
ide.jutge is built.

4.1 Security concerns

The architecture of ide.jutge is largely dependant on the possible attacks such
a system must deal with, the requirement to debug C++ programs in real time,
and the need to make such a system scalable.

As any IT system, ide.jutge will have to cope with several threats.
Unlike many other systems, ide.jutge will welcome students to submit their
potentially malicious codes and execute them on their behalf. An analysis of
the risks in such environments can be found in [18]. These include: accessing
restricted information; misusing the network; modifying or harming the environ-
ment; exploiting covert channels; misusing additional services; and exploiting
bugs in the OS. Consequently, this system must provide a secure execution en-
vironment to execute arbitrary programs without comprising the stability of the
system nor its confidential information.

4.2 Debugger

A debugging tool is going to be necessary to allow programs to be inspected.
It will be the underlying utility that ide.jutge will operate to provide debugger

10

Chapter 4. Design Part I. Formulation

features.

Therefore, it is convenient to look for a debugger which offers support
to front-ends (applications which take the debugger’s output and presents the
state of the program being debugged). For this reason, the GBD [14] debugger
will be used, as it features a machine-oriented text interface to communicate
with ide.jutge.

4.3 Architecture

Figure 4.1: Solution architecture

A figure 4.1 diagrams the solution’s architecture. As it is shown,
ide.jutge is divided into two main tiers.

4.3.1 Client tier

The client tier consists of application clients that access the ide.jutge web server.
In particular, these clients are C++ applications running in a web browser (ie.
Google Chrome, Mozilla Firefox).

The ide.jutge C++ client application will provide a GUI (Graphical User
Interface) for the students to code and debug their programs. It is worth noting
that, since web browsers are available for a wide range of devices, students will
be able to control the IDE with mobile devices such as tablets, as well as laptops
and PCs.

Edit, Compile, Execute and Debug C++ on the Web 11

Chapter 4. Design Part I. Formulation

4.3.2 Server tier

The server tier harbors the engine of the ide.jutge. Its purpose is to manage
the compilation, execution, and debugging of the C++ programs. In essence, it
must supply all the core functionality of the IDE to the client application.

In order to protect the integrity of the system, the compilation, ex-
ecution and debug of the student’s programs is performed inside sandboxed
environments —virtual machines. These sandboxes are given a low-privilege
user with limited file system access, and have no network access (ie. no Inter-
net). Also, memory usage is restricted, as well as the number of concurrent
processes (as suggested in [73]).

A set of servers working together compose the server tier:

Web server

The Web server acts as an intermediary between the client applications and
the backing sandboxes. It serves the C++ client application, and handles its
incoming requests (such as executing a program, or debugging). Because the
underlying utilities work asynchronously, ie. the debugger, and responses must
arrive quickly, most of the communication with the client application will use
web sockets.

To enforce security, all connections with the client tier go over HTTPS,
and connections with the slave servers use SSH.

Slave servers

Their only purpose is to run the sandboxes. Having separate slave servers helps
enforce security by further isolating the execution of the student’s programs. It
also alleviates work from the web server and adds horizontal scalability to the
system.

4.4 General application workflow

Students will access the ide.jutge website. The web server will respond by
serving the client application in the form of HTML and JavaScript files. When
the application is fully initialized in the client, it will request a sandbox. This
request will be passed from the web server to the slave server, which will get a

Edit, Compile, Execute and Debug C++ on the Web 12

Chapter 4. Design Part I. Formulation

new virtual machine ready. Once that is done, the client will be notified, and
the student can start executing or debugging.

As previously stated, once execution or debug starts, there is no way
to anticipate when the C++ program will finish, or pause at a given breakpoint.
Hence, a socket between the client app and the web server is opened, granting
bidirectional, instantaneous communication. In other words, when something
happens in the executing program, the ide.jutge GUI will react accordingly,
notifying the student in the process.

Finally, when the student closes the connection with the web server
(for instance, by closing the browser, or navigating to another site), the virtual
machine will be destroyed, thus freeing all allocated resources.

Edit, Compile, Execute and Debug C++ on the Web 13

Chapter 5

Licenses

All code and documentation for ide.jutge will be hosted in a public repository
at https://github.com/llop.

5.1 Code

The code for ide.jutge will be released under the the MIT licence [67].

5.2 Documents

This report and additional documentation related with the ide.jutge will be
released under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International licence [8].

14

https://github.com/llop

Part II

Planning

15

Chapter 6

Time Plan

This chapter describes the project’s time plan, and gives an estimation of the
total cost of production.

6.1 Estimated project duration

The project starts on February 2, 2016 and will be finished by June 2, 2016.
Hence, its duration will be of 4 months —however, given that its presentation
will be in January 2017, additional upgrades will make it into the final delivery.
These improvements will be noted where appropriate in Part III and Part IV of
this report.

6.2 Tasks

This section describes the various tasks and subtasks that need to be accom-
plished in order to complete the project. The following details are provided for
each task: its description, expected duration and assignee, resources used, pos-
sible complications, and task dependencies —if any exist. The resources needed
will also be listed.

16

Chapter 6. Time Plan Part II. Planning

6.2.1 Analysis and design

To satisfy the project requirements, a choice of technologies and software will
be made. It is important to establish the architecture of the solution, and
determine how all the components will connect.

Expected duration: 20 hours.

Assignee: Software engineer.

Resources: Extensive information about the available technologies and soft-
ware, requiring in-depth investigation to find the most suitable utilities.

Possible complications: Some components could change during the imple-
mentation of the project, especially on the web front-end.

Task dependencies: None.

6.2.2 Environment setup

A development computer must be prepared to carry out the project. All the
required software must be installed, and the machine must be configured to run
the solution’s architecture.

Security enforcement will require that development SSH keys and SSL
certificates be generated.

Expected duration: 20 hours.

Assignee: Software engineer.

Resources: A laptop computer.

Possible complications: None.

Task dependencies: Analysis and design.

6.2.3 Sandbox

A virtual machine must be created and configured with the appropriate software
to run the students’ C++ programs.

Expected duration: 20 hours.

Edit, Compile, Execute and Debug C++ on the Web 17

Chapter 6. Time Plan Part II. Planning

Assignee: Software engineer.

Resources: A laptop computer.

Possible complications: None.

Task dependencies: Environment setup.

6.2.4 Drivers

Drivers for the SSH communication and debugger must be created. These will
allow the web server application to interact with the debugger. Extensive study
of debugger IO syntax will be required to code the second driver.

Expected duration: 100 hours.

Assignee: Software developer.

Resources: A laptop computer.

Possible complications: This task can is critical to the project; special care
must be taken to ensure:

• SSH communication is fast. For that, a test will be made to verify
the SSH session doesn’t close between messages.

• Changes in the debugger’s output format do not break the driver.
To avoid this, the driver will be coded and tested using the same
debugger utility that is installed in the sandbox.

Task dependencies: Environment setup. This task can be done at the same
time as the Sandbox.

6.2.5 Server application

In this task, the application that will handle all HTTPS communication with the
students must be created. This app will be running, eventually, in the Jutge.org
servers.

Expected duration: 100 hours.

Assignee: Software developer.

Resources: A laptop computer.

Possible complications: Complications can arise due to buggy code; the
author will have to learn the chosen web application framework.

Task dependencies: Drivers.

Edit, Compile, Execute and Debug C++ on the Web 18

Chapter 6. Time Plan Part II. Planning

6.2.6 Client application

This task requires to build the application that will be running in the students’
browser, and will allow them to debug their C++ programs.

Expected duration: 100 hours.

Assignee: Software developer.

Resources: A laptop computer.

Possible complications: Complications can arise due to buggy code; the
author will have to learn the chosen JavaScript components.

Task dependencies: Server application.

6.2.7 Testing and polishing

In this task, extensive testing will be conducted to ensure the whole system
works as expected.

Expected duration: 40 hours.

Assignee: Software developer.

Resources: A laptop computer.

Possible complications: Too many bugs in the tested components may in-
crease the time to complete the task. To avoid this, all the previously
created components’ API must be well defined, and each one individually
tested.

Task dependencies: Client application.

6.2.8 Project management course

The GEP (Project management) course aims to help lead the project in the
right direction. Different parts of the project will be outlined here: context and
scope, time planning and economic viability.

Expected duration: 75 hours.

Assignee: Project manager.

Edit, Compile, Execute and Debug C++ on the Web 19

Chapter 6. Time Plan Part II. Planning

Resources: A laptop computer.

Possible complications: None. The course aims to eliminate those by pro-
viding the author with feedback.

Task dependencies: None.

6.2.9 Project report

Writing a document explaining how the project was carried out.

Expected duration: 40 hours.

Assignee: Project manager.

Resources: A laptop computer.

Possible complications: None. The GEP course will have provided the
necessary indications to successfully finish it.

Task dependencies: Project management course.

6.2.10 Project presentation

An oral presentation will conclude the project.

Expected duration: 10 hours.

Assignee: Project manager.

Resources: A laptop computer.

Possible complications: Live examples have to be well prepared.

Task dependencies: Project report.

6.3 Time table

Table 6.1 shows the duration of every task described in the previous section.
The total duration of the project adds up to 525 hours. For the larger part
of the project (up until the Testing an polishing task), the author will need to
work for 400hours

16weeks ' 25 hours a week. This seems like a reasonable workload
for four months. The rest of the tasks can also be accomplished because the
presentation will be in January 2017, and that leaves the author 3 months to
do 125 hours of work, which is also reasonable.

Edit, Compile, Execute and Debug C++ on the Web 20

Chapter 6. Time Plan Part II. Planning

Task Expected duration (h)

Analysis and design 20
Environment setup 20
Sandbox 20
Drivers

Learning 30
Implementation 20
Testing 40
Integration 10

Server application
Learning 35
Implementation 30
Testing 30
Integration 5

Client application
Learning 35
Implementation 30
Testing 30
Integration 5

Testing and polishing 40
Project management course 75
Project reoprt 40
Project presentation 10

Total 525

Table 6.1: Task durations

6.4 Gantt chart

Figure 6.2 shows the expected time-line of the project, taking into consideration
task dependencies.

Edit, Compile, Execute and Debug C++ on the Web 21

Chapter 6. Time Plan Part II. Planning

2016

Q1 Q2 Q3 Q4

Analysis and design

Environment setup

Sandbox

Drivers

Server application

Client application

Testing and polishing

Management course

Project report

Project presentation

Table 6.2: Gantt chart

Edit, Compile, Execute and Debug C++ on the Web 22

Chapter 7

Budget

This chapter presents a detailed estimate of all the costs required to complete
project tasks. It specifies costs for staff labor, materials procurement, ongoing
operating costs and other direct costs such as Internet connection.

7.1 Hardware

Only hardware required for development has been taken into account. The
application is expected to run on the Jutge.org servers, but these have not been
considered as ide.jutge will go live after development is finished.

This project will require a laptop computer. No other hardware is
needed.

Hardware Cost(e) Useful life (years) Amortized cost(e)
ASUS VivoBook S301L 800.00 4 66.66

Total 66.66

Table 7.1: Hardware budget

7.2 Software

The software chosen to develop this project is available for use at no monetary
cost. After the Analysis and design phase, several utilities are selected, and
Table 7.2 shows them along with their corresponding licence.

23

Chapter 7. Budget Part II. Planning

Software License

Ubuntu Free software licenses (mainly GPL)
https://www.ubuntu.com/about/about-ubuntu/licensing

LATEX LaTeX Project Public License (LPPL)
https://www.latex-project.org/lppl

git GNU GPL v2 and GNU LGPL v2.1
https://git-scm.com/about/free-and-open-source

gedit GNU GPL v2 or later
https://www.gnu.org/licenses/gpl-2.0.txt

Google Chrome Freeware under Google Chrome Terms of Service
https://www.google.com/intl/en/chrome/browser/privacy/eula_text.html

LXC GNU LGPL v.2.1 (some components under GNU GPL v2 and BSD)
https://linuxcontainers.org/lxc/introduction

GCC GNU GPL 3+ with GCC Runtime Library Exception
https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html

GDB GNU GPL
https://www.gnu.org/licenses/gpl-3.0.txt

Node.js MIT
https://github.com/nodejs/node/blob/master/LICENSE

Express.js MIT
https://github.com/expressjs/express/blob/master/LICENSE

socket.io MIT
https://github.com/socketio/socket.io/blob/master/LICENSE

AngularJS MIT
https://github.com/angular/angular.js/blob/master/LICENSE

Bootstrap MIT
https://github.com/twbs/bootstrap/blob/master/LICENSE

Table 7.2: Software budget

7.3 Staff

The primary cost in this budget is project staff. Only one person is required to
complete the project, but they have to be in the role of a project manager, a
software engineer, and a developer. Table 7.3 shows their corresponding salaries.

The total cost has been calculated by adding the cost of individual
tasks, and the task durations used have been detailed in the previous chapter
Time plan. Table 7.4 shows the expected cost of human resources according to
project roles and their respective tasks.

Edit, Compile, Execute and Debug C++ on the Web 24

https://www.ubuntu.com/about/about-ubuntu/licensing
https://www.latex-project.org/lppl
https://git-scm.com/about/free-and-open-source
https://www.gnu.org/licenses/gpl-2.0.txt
https://www.google.com/intl/en/chrome/browser/privacy/eula_text.html
https://linuxcontainers.org/lxc/introduction
https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html
https://www.gnu.org/licenses/gpl-3.0.txt
https://github.com/nodejs/node/blob/master/LICENSE
https://github.com/expressjs/express/blob/master/LICENSE
https://github.com/socketio/socket.io/blob/master/LICENSE
https://github.com/angular/angular.js/blob/master/LICENSE
https://github.com/twbs/bootstrap/blob/master/LICENSE

Chapter 7. Budget Part II. Planning

Role Salary(e/h)
Project manager 50.00
Software engineer 40.00
Software developer 30.00

Table 7.3: Salary per role

Role Task Time (h) Cost(e)
Project manager Project management course 75 3750.00

Project report 40 2000.00
Project presentation 10 500.00

Software engineer Analysis and design 20 800.00
Environment setup 20 800.00
Sandbox 20 800.00

Software developer Drivers 100 3000.00
Server application 100 3000.00
Client application 100 3000.00
Testing and polishing 40 1200.00

Total 525 18850.00

Table 7.4: Staff budget

7.4 Other costs

Electric power is required for the laptop computer to work. Assuming 0.11
e/kWh in Spain [42], a consumption of 100 W, and a usage time of about 525
hours, its estimated cost adds up to 5.77e.

A working Internet connection is needed too. The price of this is
42.2e/month in Spain [7] ' 0.06e/hour. It is expected to use the Internet
connection during 30% of the project’s total duration. Thus, the estimated
budget for the Internet connection is 525h · 0.06 e/h · 0.3 = 9.45 e.

7.5 Total

Table 7.5 depicts the total budget needed to develop the project. 10% of the
total cost is added to face any unforeseen contingencies.

Edit, Compile, Execute and Debug C++ on the Web 25

Chapter 7. Budget Part II. Planning

Resource Total cost(e)
Hardware 66.66
Software 0.00
Staff 18850.00
Electricity 5.77
Internet 9.45

Subtotal 18931.88
Contingency (10%) 1893.19
Total 20825.07

Table 7.5: Total budget

Edit, Compile, Execute and Debug C++ on the Web 26

Chapter 8

Sustainability Analysis

This chapter aims to document the various aspects of sustainability regarding
this project.

8.1 Economic sustainability

Costs for all kinds of resources have been accounted for (hardware, staff, etc.).
There will be no need for software or hardware updates, and in any case, a 10%
additional amount has been added to the total cost in case contingencies arise.

The largest part of the total cost of this project comes from human
resources, since all the software is free, and minimal hardware is required. The
time estimation cannot realistically be much improved, since building the soft-
ware in this project is a very delicate process. Wherever possible, existing tech-
nologies and frameworks have been used, such as LXC, Node.js and AngularJS.
Hence, this would be a viable, competitive project in the real world.

Collaboration with Jutge.org is planned -this project will be made
available to students as a learning tool in the introductory programming courses.
No hardware or hosting costs will be incurred after project development, as
ide.jutge will be hosted in the UPC’s Jutge.org servers.

27

Chapter 8. Sustainability Analysis Part II. Planning

8.2 Social sustainability

Currently, students have to use GUIs such as Eclipse, or NetBeans, to debug
their C++ programs. Since setting up the C++ debugging tools is rather compli-
cated, many students end up using workarounds to debug, such as filling their
programs with print command (ie. cout).

This project will provide a tool for everyone to debug their programs
in a more visual way, which is also the preferred way to carry out this task in
most work places. There will be no-one harmed by the existence of this project.

8.3 Environmental sustainability

This project will have a minimal impact on the environment. The laptop will
be used for many other things, and will be sent to a recycling facility after its
life ends. Also, the amount of power consumed will be negligible.

After project development, ide.jutge will remain environmentally friend-
ly; it will be running in the Jutge.org servers, which comply with European sus-
tainability standards regarding power consumption, and equipment disposal.

8.3.1 Sustainability matrix

Figure 8.1 represents the project’s sustainability matrix.

Figure 8.1: Sustainability matrix

Edit, Compile, Execute and Debug C++ on the Web 28

Part III

Implementation

29

Chapter 9

Methodology

Developing various pieces of software that communicate with each other is dif-
ficult, more so if those pieces are being developed at the same time. Changes
made to one component’s public interface may break other components. So, it is
essential to detect when something is not working in order to remain productive.

9.1 Rapid Application Development

The project is developed using the RAD methodology [53]. This approach
has been chosen over more classic methodologies, such as the Structured Sys-
tems Analysis and Design Method [2] and other Waterfall models, in which
a rigorously defined specification needs to be established prior to entering the
development phase.

Figure 9.1: RAD methodology

30

Chapter 9. Methodology Part III. Implementation

RAD focuses on gathering requirements, and early testing of the pro-
totypes using iterative design and continuous integration. A figure 9.1 diagrams
the RAD model —analysis, design, build, and test phases are distributed into
a series of short, iterative development cycles.

This methodology has many advantages. It allows swift detection of
bugs and provides working prototypes even in the early stages of development.
Stakeholders can try the software while it is being developed and give feedback.
In this case, the prototype was available to the project advisor to assess and
follow any progress closely, and an almost complete prototype was presented to
the UPC staff for the final polishing.

The RAD model can be applied successfully to this project. ide.jutge
is a solution in which some requirements will change during the course of the
project. The impact of changing needs will be minimized by early testing of
components in quick cycles. Also, ide.jutge can be modularized to be delivered
in an incremental manner -prototype iterations will involve creating components
and integrating them into the system.

9.2 Version control

Git is the used version control system. GitHub.com hosts the solution’s code,
tests and related documents, in a repository at https://github.com/llop.

Edit, Compile, Execute and Debug C++ on the Web 31

https://github.com/llop

Chapter 10

Debugger Prototype

The first step of the implementation process was to build a simple prototype
of the solution as proof of concept. This initial prototype must implement the
most basic feature of the solution: it must allow interaction with the debugger.

A choice of technologies must be made in order to create this prototype.
At this point, the only concern is to find:

1. The tools to compile and debug C++.

2. The software that will interact with these C++ tools.

10.1 C++ utilities

The GNU Project [19] provides useful tools to compile and debug C++ code.
These tools are the optimal choice because they work well in most UNIX variants
(this project will be developed on an Ubuntu OS), and present all the benefits
of Free Software [22].

This choice is also motivated by a will to maintain consistency with
the rest of the Jutge.org platform, which uses the GNU Project’s gcc and g++

utilities to compile C and C++ code.

32

Chapter 10. Debugger Prototype Part III. Implementation

10.1.1 GCC

The GNU Compiler Collection includes a front end for C++ that supports the
C++11 and C++14 standards. It is also the same compiler Jutge.org uses to
compile C++ in problem corrections.

10.1.2 GDB

GDB is the GNU Project’s debugger. The main benefit of GDB is its line-based
machine-oriented text interface, GDB/MI. GDB/MI is specifically intended to
support the development of systems which use the debugger as just one small
component of a larger system [20], by specifying a standard syntax for input
and output (very similar to JSON [47]).

10.2 The solution stack

The stack is the set of components needed to create the complete solution such
that no additional software is required. To determine the most appropriate
technologies, the following key factors are considered:

Componentization: There are going to be several components, and each one
will handle a related set of functions.

Ease of development: The technologies must be user-friendly for the devel-
oper; learning and coding them has to be quick.

Community: A large community of contributors and users guarantees that
any problem can be solved promptly, and help is readily available.

10.2.1 Full-stack JavaScript

JavaScript is the optimal programming language to be used across the stack,
since the solution requires building components on both the Client and the
Server tiers (see chapter 4, Design).

Client tier

ide.jutge will have to provide a dynamic and interactive interface within the
web browser. Platforms like Adobe Flash or Microsoft Silverlight could deliver

Edit, Compile, Execute and Debug C++ on the Web 33

Chapter 10. Debugger Prototype Part III. Implementation

such interactivity. However, JavaScript is a more suitable choice because all web
browsers include a JavaScript interpreter, and these other technologies have very
limited support (especially in mobile devices).

Server tier

The components in this tier are required to serve the HTML and JavaScript
files for the client application, and interact with the C++ utilities on behalf of
the students.

There are many languages that could work well -ie. Ruby, Python,
Go, Elixir. Nevertheless, the appearance of the Node.js JavaScript runtime [23],
the npm JavaScript package manager [40], and compliance with the previously
stated key factors make JavaScript the most suitable candidate:

• Having the same language on both client and server simplifies communi-
cation between the tiers.

• Node.js currently has a large community, and over 150 thousand tagged
questions in stackoverflow.com [64].

• Components can be reused across tiers. They can be defined on the server
using Express.js middleware [26].

• npm hosts many useful packages which can provide part of the core func-
tionality —for instance, the socket.io package enables real-time bidirec-
tional event-based communication [12].

10.3 Design

A figure 10.1 diagrams the design of the first prototype. Two modules (in
Node.js, components are called modules) must be created:

10.3.1 gdb-mi-parser

Parses GDB/MI output into JavaScript objects.

Edit, Compile, Execute and Debug C++ on the Web 34

Chapter 10. Debugger Prototype Part III. Implementation

Figure 10.1: First prototype design

10.3.2 gdb-mi

This module is capable of sending commands to the debugger, and relies on the
gdb-mi-parser module to process the response. Available commands are:

• load: starts debugging a given program with GDB.

• run: resumes the program’s execution.

• pause: pauses the program’s execution.

• stop: kills the program.

• step over: advances the program’s execution to the next line of code,
ignoring function calls.

• step into: advances the program’s execution to the next line if it is not a
function call. If it is, it stops at the first instruction of the called function.

• step out: resumes the execution of the program until the current function
is exited.

• insert breakpoint: inserts a breakpoint at a given line.

• delete breakpoint: removes a breakpoint from a given line.

• list variables: displays the names of local variables and function argu-
ments.

• call stack: lists the frames currently on the stack.

• evaluate expression: evaluates a given expression, and returns the re-
sult.

Edit, Compile, Execute and Debug C++ on the Web 35

Chapter 10. Debugger Prototype Part III. Implementation

10.4 Configuring the C++ tools

This section describes the configuration of the C++ utilities.

10.4.1 g++

To prepare the C++ code for execution, the g++ compilation tool must be exe-
cuted using the following command:

g++ -g -std=c++14 <code-file>

Note that there are no optimization option flags (ie. -O2, -O3); that is
because, oftentimes, optimized programs’ execution does not match the source
code. The -g option enables use of extra debugging information that GDB can
use.

10.4.2 gdb

Once the code has been appropriately compiled, GDB is ready to debug the
resulting executable file:

gdb -i mi <executable-file>

The -i option causes GDB to use the GDB/MI interface.

10.5 Testing

To test the prototype, a simple C++ program was compiled for execution (see
Figure 10.2). All the gdb-mi module’s commands were evaluated, and the re-
sponses checked for correctness.

Right away, it was discovered that GDB would require additional con-
figuration to run smoothly. GDB operates by default in asynchronous mode
and it will not accept a new command until the previous command is done.
As a consequence, execution cannot be explicitly paused nor killed once it has
started, and it is impossible to set breakpoints while the program is running.
This is a problem because it would make the IDE unresponsive for indefinite
amounts of time —something unacceptable for ide.jutge.

Fortunately, it is possible to have GDB operate in asynchronous mode

Edit, Compile, Execute and Debug C++ on the Web 36

Chapter 10. Debugger Prototype Part III. Implementation

1 #include <iostream >

2 #include <vector >

3 using namespace std;

4
5 void func(int x) {

6 string s = "Hello";

7 cout << s << ’ ’ << x << endl;

8 }

9
10 int main() {

11 vector <int > v(1);

12 cin >> v[0];

13 func(v[0]);

14 return 0;

15 }

Figure 10.2: main.cc

by calling the appropriate gdb commands in the .gdbinit file (.gdbinit is a file
to specify commands that will get executed when GDB starts).

Another problem had to do with how STL data structures are printed
(the vector, in this case). The default output format is not legible, but it is
possible to get GDB to pretty-print by, again, modifying .gdbinit.

Figure 10.3 shows the .gdbinit file with all necessary configuration
options.

python

import sys

sys.path.append(’/usr/share/gcc -6/ python ’)

from libstdcxx.v6.printers import register_libstdcxx_printers

register_libstdcxx_printers (None)

end

set pagination off

set non -stop on

set target -async on

Figure 10.3: main.cc

Edit, Compile, Execute and Debug C++ on the Web 37

Chapter 10. Debugger Prototype Part III. Implementation

10.6 Integration with npm

To gain more knowledge on how the JavaScript packages work, the gdb-mi and
gdb-mi-parser modules were published in npm. Registration is required, and
publishing a package can be done with a single command.

10.6.1 gdb-mi

• npmjs.com: https://www.npmjs.com/package/gdb-mi

• github.com: https://github.com/llop/gdb-mi

10.6.2 gdb-mi-parser

• npmjs.com: https://www.npmjs.com/package/gdb-mi-parser

• github.com: https://github.com/llop/gdb-mi-parser

Both packages are available under the MIT licence.

Usage statistics of the packages can be found at http://www.npm-stats.
com/ (see Figures 10.4 and 10.5).

Figure 10.4: gdb-mi usage statistics

Edit, Compile, Execute and Debug C++ on the Web 38

https://www.npmjs.com/package/gdb-mi
https://github.com/llop/gdb-mi
https://www.npmjs.com/package/gdb-mi-parser
https://github.com/llop/gdb-mi-parser
http://www.npm-stats.com/
http://www.npm-stats.com/

Chapter 10. Debugger Prototype Part III. Implementation

Figure 10.5: gdb-mi usage statistics

10.7 Summary

A description of how the first prototype was built has been given. This prototype
successfully implemented the most basic feature of the IDE: interaction with the
debugger. During the analysis phase, the required utilities and software were
defined. The testing phase allowed us to identify problems early on, and ensured
that the design is valid and the prototype is working correctly.

Edit, Compile, Execute and Debug C++ on the Web 39

Chapter 11

Express Prototype

Students will interact with the debugger using a web browser, so it is essential
to have a server application to handle communication.

The Express Prototype provided the web framework (a set of software
components that is designed to support the development of web server applica-
tions) for the Jutge.org . This prototype had to feature:

1. A secure HTTP endpoint to serve the client the application (HTML and
JavaScript files).

2. Instant bidirectional client-server communication to allow real-time inter-
action with the debugger.

3. A way to define components in the server so that the solution is robust
and scalable.

11.1 Web framework

As previously stated, the server-side JavaScript runtime is Node.js. Node.js
allows the creation of Web servers using JavaScript and a collection of modules
that handle the core functionality [13].

There are a lot web frameworks available for Node.js. To name a few:
Express.js [24], Socket.io [12], Hapi.js [11], Mojito [56], Meteor [39], Derby [10].

The decision to use an existing web framework was made to help de-
velop the solution better and faster. It ensured that the application is well-

40

Chapter 11. Express Prototype Part III. Implementation

structured, maintainable and upgradable. Moreover, by re-using generic mod-
ules, the developer was able to focus on more relevant areas of the project.

11.2 Node.js, Express.js and Socket.io

Express.js is the solution’s main web framework. This particular choice was
motivated by how componentization is addressed with Express.

Express.js allows definition and use of components through middle-
ware —functions that have access to the request and response objects, and the
next middleware function in the application’s request-response cycle. The basic
idea is that each component is part of a pipeline that processes a request and
generates a response, but individual components are not responsible for the en-
tire response. Instead, a component modifies only what it needs to, and then
delegates to the next piece in the pipeline. When the last piece of the pipeline
finishes processing, the response is sent back to the client.

Express also supports the HTTPS protocol, which is one of the solu-
tion’s security-enforcement requirements.

However, Express does not support bidirectional client-server interac-
tion. To implement this feature, the Socket.io framework was integrated into
the solution. Socket.io is a web framework that uses WebSockets, and enables
real-time communication between the client and the server applications.

11.3 Design

Figure 11.1: Express Prototype design

As figure 11.1 shows, Express.js will handle HTTPS requests, and

Edit, Compile, Execute and Debug C++ on the Web 41

Chapter 11. Express Prototype Part III. Implementation

Socket.io will handle WebSocket connections.

In this prototype, Express.js has only one endpoint that serves a plain
HTML file and some JavaScript files.

Socket.io allows the web browser to operate the debugger by sending
events:

• gdb-run: starts debugging the given program.

• gdb-stop: kills the debugged program.

• gdb-pause: pauses execution of the program.

• gdb-continue: resumes execution of the program.

• gdb-step-over: advances the program’s execution to the next line of
code, ignoring function calls.

• gdb-step-into: advances the program’s execution to the next line if it is
not a function call. If it is, it stops at the first instruction of the called
function.

• gdb-step-out: resumes the execution of the program until the current
function is exited.

• gdb-vars-stack-exprs: requests the debugger to print the frames stack
and the variables in the current context, and evaluate expressions.

• gdb-insert-break: adds a breakpoint at a given line.

• gdb-delete-break: removes a breakpoint from a line.

• gdb-app-in: writes text to the program’s standard input channel.

11.4 Testing

To verify the Express.js HTTPS endpoint was working, a self-signed develop-
ment SSL certificate had to be created using OpenSSL [27]. This test presented
no complications —Express could successfully serve HTML and JavaScript files
over a secure connection.

Socket.io also worked as expected —it provided real-time client-server
communication, and each event triggered the appropriate action in the GDB
components. However, this test unveiled a flaw in the design of the GDB com-
ponent.

Edit, Compile, Execute and Debug C++ on the Web 42

Chapter 11. Express Prototype Part III. Implementation

The problem stems from the fact that the debugged program uses
the same input/output channels as GDB. As a consequence, it is not possible
to separate the GDB output from the program’s output. Likewise, there is
no guarantee that GDB commands will work, because they may get sent to
the program if it happens to be expecting some input. Therefore, the GDB
component must be redesigned.

11.5 GDBServer

To separate GDB’s IO channels from the debugged program’s, the use of GDB-
Server was required. GDBServer is a control tool which allows to connect the
program with a remote GDB. GDBServer also handles the program’s input and
output, thus solving the aforementioned problem.

Figure 11.2: GDB component design

Figure 11.2 diagrams the new design for the GDB component, illus-
trating how gdb-mi creates an additional process for GDBServer that will handle
the program’s IO. The GDB process only has to take GDB commands, and re-
turn the corresponding responses. After this correction, the Express Prototype
is complete.

11.6 Summary

This chapter has described the creation of the ide.jutge server application. At
this stage, the application was far from complete —more functionality would be

Edit, Compile, Execute and Debug C++ on the Web 43

Chapter 11. Express Prototype Part III. Implementation

added in later prototypes— but it was a solid and scalable starting point. All
the targeted features had been implemented; Express.js provided the HTTPS
endpoint and a scalable architecture, and Socket.io provided the real-time com-
munication. Thanks to the testing phase, a short-coming in the gdb-mi compo-
nent was repaired.

Edit, Compile, Execute and Debug C++ on the Web 44

Chapter 12

Sandbox Prototype

This prototype aims to address the security concerns expressed in section 4.1.

The Sandbox Prototype provided a secure environment for ide.jutge
to execute the C++ programs. Primary features of the Sandbox Prototype are:

1. Provide an isolate environment to execute programs.

2. Apply all necessary measures to secure the environment.

Once the secure environment is created, the server application must be
accommodated to to support the prototype’s design. The following secondary
features have to be implemented:

1. Communication between the server app and the sandboxes must be fast
and secure.

2. The server app must be able to save, compile, and debug the C++ programs
in the sandboxes.

12.1 The sandbox

Execution of the C++ programs must be performed inside sandboxed environ-
ments, that is, virtual machines. Examples of available technologies include
Docker [35], OpenVZ [9] and Linux-VServer [15].

45

Chapter 12. Sandbox Prototype Part III. Implementation

12.2 Linux Containers

LXC [52] was chosen to provide the sandboxes. This is consistent with the
Jutge.org platform, which uses the same technology to encapsulate problem
corrections. Additionally, the project advisor has experience with LXC, and is
able to provide valuable information on the diverse configuration options.

Each IDE instance will be assigned an LXC sandbox to compile and
debug the student’s C++ programs. The fastest and most practical way to supply
sandboxes is to make clones of a parent sandbox —needless to say, each clone
will have the same software and configuration as the parent.

To automate the parent sandbox’s creation and cloning, two bash

scripts are created. A third script is created to automatically destroy all clones.

vm-setup.sh: Creates the parent LXC container, and installs g++, gdb and
gdbserver.

clone-box.sh: Creates a clone of the parent container.

destroy-children.sh: Forces destruction of all clone sandboxes.

12.3 Design

Figure 12.1: Sandbox Prototype design

Edit, Compile, Execute and Debug C++ on the Web 46

Chapter 12. Sandbox Prototype Part III. Implementation

12.3.1 Master and Slave servers

To further isolate execution of the programs, Slave Servers are used to host and
serve the sandboxes. The Master Server will only contain the server application,
considerably relieving its workload.

12.3.2 JavaScript components

Several server application modules support the Sandbox Prototype design.

SSH driver: This component provides SSH communication with the Slave
Servers.

Save component: Connects to the Slave Servers, and writes C++ source code
to a file in a sandbox.

Compile component: Connects to the Slave Servers, and orders the compi-
lation of a C++ source file in a sandbox.

Debug component: Connects to the Slave Server, and starts debugging a
C++ program in a sandbox. This module is just a refactoring of gdb-mi.
Naturally, the connection stays open until the debug process is complete.

12.4 Security measures

12.4.1 SSH

Master and Slave servers must communicate through SSH. So, the pertinent
SSH keys are generated using the ssh-keygen tool. A JavaScript driver is
created to allow the server app to SSH the Slave Servers.

12.4.2 Low-privilege user

The server application will use a low-privilege user to operate each sandbox.
That way, read/write permissions are restricted. The creation of this low-
privilege user is added to the clone-box.sh script.

Edit, Compile, Execute and Debug C++ on the Web 47

Chapter 12. Sandbox Prototype Part III. Implementation

12.4.3 Memory-usage and network restriction

Memory usage is limited to 1GB per clone sandbox. Also, clones have no net-
work access. These restrictions are set in the clone-box.sh script.

12.4.4 Limited number of processes

Malicious code could create a process that continually replicates itself, crashing
the system due to resource starvation. Such attack are known as a fork bombs
(figure 12.2 shows a C++ fork bomb). Therefore, the number of concurrent
processes is limited to 200. This is accomplished running the ulimit command
every time a SSH connection is established.

1 #include <unistd.h>

2 int main() {

3 while (1) fork();

4 return 0;

5 }

Figure 12.2: Fork bomb written in C++

12.5 Testing

Development is carried out using a single laptop computer, so this machine
operates as Master and Slave Servers.

Individual components are tested to verify they work as expected.
However, a client front-end is required to thoroughly validate the prototype.

12.6 Summary

This prototype features all the mechanisms to deal with potentially malicious
programs. The Slave Servers that manage the sandboxes provide an isolate
environment to execute the programs, and the clone-box.sh script applies the
appropriate security measures.

Such measures are also enforced in the server application by creating
an SSH driver which supplies fast, secure communication with the Slave Servers.

Edit, Compile, Execute and Debug C++ on the Web 48

Chapter 12. Sandbox Prototype Part III. Implementation

Also, a series of components enable the server app to trigger the three most basic
actions in a sandbox: save, compile, and debug C++ programs.

Edit, Compile, Execute and Debug C++ on the Web 49

Chapter 13

Angular Prototype

The Angular Prototype provided the client front-end for ide.jutge —a JavaScript
application. This front-end is the very tool that students will use to write C++

and debug. For the Angular Prototype, only basic features were included:

1. A text editor to write C++ code.

2. A component to display compilation errors.

3. A terminal to interact with the debugged program.

4. A set of buttons to control program execution (start, stop, pause...).

5. A set of components to display the frames stack and the variables of the
program when it is paused.

13.1 SPA

With the goal of providing a user experience similar to that of a desktop ap-
plication, the ide.jutge front-end must be a SPA (Single Page Application). A
SPA is a web application that fits on a single web page. ide.jutge will load a
single HTML page and dynamically update that page as the student interacts
with the IDE. WebSockets and HTML5, in combination with JavaScript, will be
used to create a fluid and responsive application, without constantly reloading
the page.

50

Chapter 13. Angular Prototype Part III. Implementation

13.2 Web browser JavaScript framework

It is necessary to use an existing JavaScript framework in the IDE front-end.
This is a practical decision; the motivation is the same as using Express.js in
the server application, to help the developer work better and faster. Some of
the available frameworks are ExtJS [41], React [36] and Knockout [49].

13.3 AngularJS

The chosen JavaScript framework is AngularJS [33]. To build an Angular ap-
plication, components must be created to control the application logic and UI
(User Interface) elements.

It is beneficial to use Angular because it manages all the components,
acting as a pipeline that connects them. Since Angular acts as the mediator, the
developer will not feel tempted to write shortcuts between components. Instead,
the developer will be forced to write code in a very organized manner. Angular
also has a large community, and help is easy to obtain.

To structure and write the Angular application so that it is easy to
maintain, debug and scale, John Papa’s Angular Style Guide is used [59]. This
guide is endorsed by the very AngularJS team, and is often checked during
development to produce a high-quality application.

13.4 CSS styling and UI elements

It is convenient to use CSS styling in ide.jutge to make the UI look good.
Also, libraries to create custom elements such as the terminal and the editable
datagrid are required. The list of additional packages for this prototype:

jQuery [30]: Simplifies HTML document manipulation.

jQuery UI [29]: Provides some basic UI components —for instance, tabs.

Ace Editor [1]: An embeddable code editor that supports C++ syntax high-
lighting.

Bootstrap [60]: It was chosen as this prototype’s main styling framework to
keep consistency with Jutge.org , which also uses Bootstrap.

Xterm.js [63]: A terminal emulator written in JavaScript.

Edit, Compile, Execute and Debug C++ on the Web 51

Chapter 13. Angular Prototype Part III. Implementation

EditableGrid [70]: Turns tables into advanced editable components.

UI Layout [17]: A complete page layout manager.

PNotify [61]: A notification system. Events such as a successful compilation
get displayed on-screen.

Figure 13.1 shows a screenshot of the Angular Prototype’s front-end
application.

Figure 13.1: Angular Prototype IDE

13.5 Bower

In order to handle and control all the web frameworks and libraries for ide.jutge,
the Bower [65] package manager is used. This tool works similar to npm —
packages can be installed with a single command.

Edit, Compile, Execute and Debug C++ on the Web 52

Chapter 13. Angular Prototype Part III. Implementation

13.6 Design

The AngularJS Prototype has the same general design as the previous Sandbox
Prototype; the only addition is a client front-end application.

13.6.1 AngularJS architecture

In the AngularJS parlance, a module is a container for the different components
of an application —ie. controllers, services, views. Thanks to the Dependency
Injection design principle [31], these components can have access to other com-
ponents. AngularJS also features a powerful event notification system.

The client application consists of one module named workbench. Figure
13.2 shows all workbench components.

Figure 13.2: AngularJS workbench module

13.6.2 Controllers

The workbench controller is responsible for the interaction with the debugger.
Using the WebSocket, it is able to trigger compilation of the C++ code, and

Edit, Compile, Execute and Debug C++ on the Web 53

Chapter 13. Angular Prototype Part III. Implementation

invoke all debug-related commands (start, stop, pause, insert breakpoint, step
over, etc.). It also handles whatever messages it receives from the server, for
instance, termination of the program, or pause at a breakpoint.

Furthermore, the workbench controller keeps state information about
the compilation and debug functions. It also holds a list of the breakpoints,
program variables and stack frames.

13.6.3 Directives

Directives are used to extend HTML with custom attributes and elements.

ace-editor: This directive provides an Ace editor to write C++ code. Addi-
tionally, it allows breakpoints to be added or removed, by clicking on the
editor’s gutter (the leftmost part of the line).

When a breakpoint is hit, the line at which execution stopped is high-
lighted. Also, if a program has compilation errors, an error icon and
message appears in the gutter of each faulty line.

terminal: This directive uses xterm.js to provide a terminal. The terminal
displays output from the C++ program. It can also write to said program’s
input channel.

problems: Provides a table which will display compilation errors, if any are
found. Clicking on an error row will highlight the corresponding line in
the Ace editor.

cpp-buttons: Provides a set of buttons that trigger most of the debug com-
mands. They are:

• play: Compile the C++ code, and start debug if no error were
found. If debug has already started, resume program execution.

• pause: Pause execution of a running program.

• stop: Kill the program.

• step-over: Advance to the next line of code.

• step-into: Advance program’s execution to the next line if it is
not a function call. Otherwise, stop at the first instruction of the
called function.

• step-out: Resume execution of the program until the current
function is exited.

cpp-frames: Provides a table to show the program’s call stack —that is, the
chain of function calls that have been invoked. This table is filled when the
program pauses (usually because of a breakpoint being hit), and cleared
when it resumes.

Edit, Compile, Execute and Debug C++ on the Web 54

Chapter 13. Angular Prototype Part III. Implementation

cpp-variables: Provides a datagrid to show the program’s variables in the cur-
rent execution context. This datagrid is filled when the program pauses,
and cleared when it resumes. During a pause, program variables of basic
types (int, long, float...) may be altered by editing the corresponding
cell in the datagrid.

13.6.4 Service providers

These components are meant to provide reusable business logic independent of
views.

workbench: This service is used to pass data from the controller to the
directives.

notifications: This service is used to display notifications.

socket: This service allows interaction with the WebSocket.

13.7 Testing

To verify that the system works as expected, extensive testing of every feature
is performed. Examples of the conducted tests include the following assertions:

• Compilation of faulty code fails, and errors are displayed in the corre-
sponding table.

• The terminal effectively reads and writes to the debugged program’s in-
put/output channel.

• Execution pauses at the inserted breakpoints, and removed breakpoints
do not pause execution.

• The control buttons send the corresponding commands to the debugger.

• Variables and frames are displayed when the program pauses.

• Basic-type variable values are assignable.

13.8 Summary

The AngularJS framework, in combination with the JavaScript packages listed
in section 13.4, made it possible for the Angular Prototype to implement the

Edit, Compile, Execute and Debug C++ on the Web 55

Chapter 13. Angular Prototype Part III. Implementation

client application, and supply all the features described at the beginning of the
chapter.

Edit, Compile, Execute and Debug C++ on the Web 56

Chapter 14

Plugins Prototype

The architecture of the system must be accommodated to allow the addition
of new functionality through a plugins system. The Plugins Prototype must
feature an infrastructure to support the activation and operation of a set of
plugins working together.

This chapter describes how the Plugin Prototype integrated such chan-
ges in design without breaking the existing functionality. It also provides de-
tailed instructions on how to add new plugins with an example: adding the C++

plugin.

In general terms, a plugin in ide.jutge is a component that provides a
certain type of service within the context of the ide.jutge workbench.

14.1 The workbench

The term workbench refers to the ide.jutge development environment, that is,
the IDE. The workbench aims to achieve seamless tool integration by providing
a common paradigm for the creation and management of resources (see section
14.5).

14.2 Web application design

Most of the changes in design affect the client front-end application. Figure 14.1
diagrams the Plugins Prototype web app’s design.

57

Chapter 14. Plugins Prototype Part III. Implementation

Figure 14.1: Web application design

14.2.1 The workbench module

This module manages the plugins, and also the elemental components of the
IDE (socket, Ace editor, terminal, etc.). It provides access to said components,
and executes the basic initialization procedures to set up the environment.

As in the previous prototype, the workbench module has three types
of components: controllers, service providers, and directives.

14.2.2 The workbench controller

The workbench controller ’s purpose:

• Send the server application a request for a sandbox on application startup.

• Broadcast an event when the sandbox is ready, to notify other components.

Edit, Compile, Execute and Debug C++ on the Web 58

Chapter 14. Plugins Prototype Part III. Implementation

14.2.3 The workbench provider

The workbench service provider is used to manage the plugins, share data
amongst components, and expose some basic functionality. This component
allows:

Registration of plugins: New plugins must register themselves in the work-
bench. This mechanism allows the workbench infrastructure to automati-
cally initialize and integrate plugins in the IDE.

Activation of plugins: In the workbench, only one plugin is active at a time.
In general, the UI components of a plugin shall be visible when it is active,
and hidden otherwise.

Saving the contents of the editor in a file inside the sandbox: This
function becomes available when the sandbox is actually ready.

Accessing the basic components of the workbench: The socket, Ace
editor, terminal, etc., are available as properties of the workbench service.
This allows plugins to interact with said components (for instance, the
C++ plugin sends compilation errors to the problems component).

14.2.4 The workbench directives

A smaller set of directives is required this time. Each directive will add the
corresponding component into the workbench service.

Ace editor: Directive for the code editor.

Terminal: Directive for the terminal emulator.

Problems: Directive for the problems table.

Plugin loader: Directive to initialize plugins. This is the last workbench
directive AngularJS processes; therefore, all workbench UI components
are ready when plugins get initialized.

14.2.5 Plugins

Since the web app is built on AngularJS, the plugins system can take advantage
of the AngularJS infrastructure. Plugins act as dynamically-loaded Angular
application.

Edit, Compile, Execute and Debug C++ on the Web 59

Chapter 14. Plugins Prototype Part III. Implementation

Before going any further, it is important to understand what scope is
in Angular. The scope is the JavaScript object that glues the HTML view to the
controller. Scopes are arranged hierarchically —every application has a single
root scope, and all other scopes are descendants of that root scope.

Essentially, plugins must have a scope if they want to use AngularJS
directives. Hence, on plugin initialization, a child scope of the workbench scope
is created and assigned to each plugin.

The building blocks of a plugin are a module with a controller, and
possibly some HTML templates and other components.

Module

A module must be declared to group all the plugin’s working pieces: controller,
directives, etc. It is necessary for plugin modules to list the workbench module
as a dependency; this allows plugins to use the workbench service provider to
interact with the IDE.

This module is also responsible for registering the plugin in the work-
bench. This is easily accomplished by performing registration in a run block
—in AngularJS, the module’s main method.

Controller

In AngularJS, a controller is simply an object that augments the scope. A
plugin controller, however, must also implement a series of functions, which will
be invoked by the workbench infrastructure at certain points in the plugin’s
life-cycle:

onLoad: Invoked after the controller has been instanced, but before any plugin
HTML templates are loaded.

postLink: Invoked after all plugin HTML templates have been processed.

activate: Invoked when a plugin becomes the active plugin in the workbench.

deactivate: Invoked when a plugin ceases to be the active plugin in the
workbench.

At plugin initialization time, the plugin controller is instanced. A child
scope of the workbench scope is created and made available to the controller’s
constructor function.

Edit, Compile, Execute and Debug C++ on the Web 60

Chapter 14. Plugins Prototype Part III. Implementation

HTML templates

Plugins typically include UI components to exhibit their particular functionality
and allow interaction (for instance, the C++ plugin needs to add a set of but-
tons to control the program’s execution). Within the web application’s plugin
system, a plugin can define several HTML templates along with their location
in the DOM. The workbench infrastructure will automatically download and
insert each template in the IDE.

The HTML templates can contain AngularJS directives. In order for
directives to work, the workbench infrastructure instructs the AngularJS frame-
work to:

1. Compile the HTML template —in the AngularJS jargon, compilation is a
process of walking the DOM tree and matching DOM elements to direc-
tives [32].

2. Link the template to the plugin’s scope -the plugin’s scope becomes the
directives’ working model.

Hence, all HTML templates for a plugin share a common scope —even
if they are placed in different parts of the DOM. This contrasts with typical
AngularJS applications, where scopes are arranged in a hierarchical structure
that mimics the DOM tree.

Other components

A plugin may contain many other components besides the controller and the
HTML templates. In practice, plugins will usually require custom directives
and service providers. Figure 14.2 diagrams the structure of a plugin.

Figure 14.2: Web application plugin structure

Edit, Compile, Execute and Debug C++ on the Web 61

Chapter 14. Plugins Prototype Part III. Implementation

14.3 Server application design

The plugins system is much less complicated in the server application. As in
the client application, there is a base workbench infrastructure that manages
the plugins.

A plugin in the server application is a component that links an IDE
to a sandbox, and exposes its functionality to the IDE through registration of
event handlers on the socket. Figure 14.3 diagrams the design of the plugin
system within the server application.

Figure 14.3: Server application plugins system

14.3.1 The Workbench Controller

This is the Node.js module that manages the plugins. The Workbench Controller
detects establishment of socket connections with ide.jutge IDEs, and performs
the following steps:

1. Allow the IDE to request only one sandbox.

2. Upon sandbox availability, expose a function to allow the IDE to save a
file in the sandbox.

Edit, Compile, Execute and Debug C++ on the Web 62

Chapter 14. Plugins Prototype Part III. Implementation

3. Load the plugins —this will make all the plugin’s features available to the
IDE.

14.3.2 Plugins

A plugin needs to communicate in realtime with the IDE, and it will do so
via WebSocket. Realtime communication with the sandbox is also required,
and it is provided by the use of SSH. The Workbench Controller passes these
communication mechanisms as constructor parameters to every plugin:

function plugin(socket, execAdapter)

socket

The Socket.io socket instance is passed as the first plugin constructor parameter.

execAdapter

The second plugin constructor parameter is an object that enables SSH com-
munication with the sandbox using the following methods:

spawn: Spawns a new process in the sandbox using a given command.

exec: Executes a given command in the sandbox.

14.4 Sandboxes

It is likely that the features of new plugins demand that additional software be
installed in the sandboxes -ie. a Java plugin will require certain Java tools to
be available.

The addition of new software in the sandboxes is simple, because only
the parent sandbox must be updated —subsequent clones will automatically
have the new software at their disposal. It is also convenient to update the
vm-setup.sh script described in section 12.2, in case the whole parent sandbox
needs to be regenerated.

Edit, Compile, Execute and Debug C++ on the Web 63

Chapter 14. Plugins Prototype Part III. Implementation

14.5 Creation of the C++ plugin

This section describes the pattern to follow for creating a new ide.jutge plugin.
An account of how the C++ plugin was created is given to illustrate the process.

14.5.1 Web application plugin

1. Module

Create a module for the plugin (figure 14.4), and add it to the ide.jutge appli-
cation module (figure 14.5).

1 (function () {

2 ’use strict ’;

3 angular.module(’ide.jutge.plugins.cpp’, [

4 ’ide.jutge.workbench ’

5]);

6 })();

Figure 14.4: cpp.module.js

1 (function () {

2 ’use strict ’;

3 angular.module(’ide.jutge’, [

4 ’ide.jutge.workbench ’,

5 ’ide.jutge.plugins.cpp’

6]);

7 })();

Figure 14.5: app.module.js

2. Run block

The plugin needs register itself in the workbench (figure 14.6).

3. Controller

A plugin controller is needed to provide the plugin life-cycle hooks, and aug-
ment the scope according to the features of the plugin. Figure 14.7 shows a

Edit, Compile, Execute and Debug C++ on the Web 64

Chapter 14. Plugins Prototype Part III. Implementation

1 (function () {

2 ’use strict ’;

3 angular

4 .module(’ide.jutge.plugins.cpp’)

5 .run(run);

6 run.$inject = [’workbench ’];

7 function run(workbench) {

8 workbench.registerPlugin ({

9 id: ’cpp’,

10 name: ’C++’,

11 controller: ’CppController as cpp’,

12 components: {

13 ’jtg -menu -panel’: ’/plugins/cpp/components/

menu -bar.html’,

14 ’jtg -plugin -panel’: ’/plugins/cpp/components/

panel.html’

15 }

16 });

17 }

18 })();

Figure 14.6: cpp.config.js

basic template of a plugin controller. This template was completed with the
C++-related code from the previous prototype’s workbench controller, and only
minimal adjustments had to be made for the component to work.

4. HTML templates

This step involves the creation of the HTML templates specified when registering
the plugin (the components property in 14.6). The HTML code was taken from
the previous model’s index page.

5. Other components

The particulars of creating the rest of the plugin components are plugin-specific,
as each one will provide a different set of features. In the case of the C++ plugin,
only directives had to be created —their code was adapted from the previous
prototype’s directives.

Edit, Compile, Execute and Debug C++ on the Web 65

Chapter 14. Plugins Prototype Part III. Implementation

1 (function () {

2 ’use strict ’;

3 angular

4 .module(’ide.jutge.plugins.cpp’)

5 .controller(’CppController ’, cppController);

6 cppController.$inject = [’$scope ’, ’workbench ’];

7
8 function cppController($scope , workbench) {

9 var me = this;

10
11 // life -cycle hooks

12 me.onLoad = onLoad;

13 me.postLink = postLink;

14 me.activate = activate;

15 me.deactivate = deactivate;

16
17 function onLoad () {/*...*/}

18 function postLink () {/*...*/}

19 function activate () {/*...*/}

20 function deactivate () {/*...*/}

21 }

22 })();

Figure 14.7: cpp.controller.js

6. Index page

The final step is to include all the new JavaScript files in the index HTML page.

14.5.2 Server application plugin

1. Plugin component

A plugin Node.js module must be created. Figure 14.8 show the basic template
used to create the C++ server plugin; this template was completed using the
compile and debug JavaScript components from the previous prototype.

This plugin module must be registered in a file called plugins.js in
order for the workbench infrastructure to pick it up (see figure 14.9).

Edit, Compile, Execute and Debug C++ on the Web 66

Chapter 14. Plugins Prototype Part III. Implementation

1 function cppPlugin(socket , execAdapter) {

2 /*...*/

3 }

4 module.exports = cppPlugin;

Figure 14.8: cpp-plugin.js

1 function plugins () {

2 return [

3 require(’./cpp/cpp -plugin.js’)

4];

5 }

6 module.exports = plugins;

Figure 14.9: plugins.js

2. HTTPS endpoints

Plugins may want to use ajax (HTTPS) instead of the socket to interact with
the server application. This is convenient for features that do not require a
backing sandbox (for example, user authentication). The best way to accomplish
this is to add new HTTPS endpoints using the traditional Express.js routing
mechanism [25].

The C++ plugin did not require additional HTTPS endpoints to be
created.

14.5.3 Sandboxes

No changes need to be made in the sandboxes, as the C++ tools have already been
installed in previous prorotypes. Otherwise, the general procedure to follow is
described in section 14.4.

14.6 Testing

To validate the prototype, an additional test plugin was created. This test
plugin contained one HTML template, and added no extra functionality. Both
plugins were automatically integrated into the IDE, and presented no operation
conflicts.

Edit, Compile, Execute and Debug C++ on the Web 67

Chapter 14. Plugins Prototype Part III. Implementation

The same set of tests from the Angular Prototype were also conducted
to ensure the C++ plugin maintained functionality.

14.7 Summary

A detailed description of the plugin infrastructure for each of the ide.jutge tiers
has been provided. Also, an example of how a fully functional plugin (the
C++ plugin) is created has been given. The testing phase has verified that the
plugin infrastructure supports the activation and operation of a series of plugins
working together.

Edit, Compile, Execute and Debug C++ on the Web 68

Chapter 15

EasyUI Prototype

Around this time, the advisor of this project offered the possibility to use a web
framework for UI components —jQuery EasyUI [72].

The EasyUI Prototype would furnish ide.jutge with an appealing desk-
top-application appearance, and a collection of practical UI components. Even
though it would involve rewriting a large part of the IDE user interface, using
EasyUI would yield major benefits:

• One powerful web UI framework instead of several disparate UI compo-
nents —jQueryUI, Bootstrap, EditableGrid, UI Layout, PNotify.

• Whereas the previous prototypes required abundant CSS to homogenize
the different UI components’ look’n’feel, minimal CSS styling is required
with EasyUI as it provides several themes, all of them with very elegant
finishes.

15.1 EasyUI

EasyUI is a compendium of highly-sophisticated UI JavaScript components for
HTML5. The EasyUI website provides comprehensive documentation and ex-
amples on how to operate the framework. However, external online resources
are scarce, and the complexity of the framework makes advanced use of EasyUI
a complicated task, which requires extensive analysis of the EasyUI API.

69

Chapter 15. EasyUI Prototype Part III. Implementation

15.1.1 Additional features

The availability of a wide array of customizable UI components motivated the
addition of the following features to the EasyUI Prototype:

1. Open a local text file in the editor.

2. Save the text in the editor to a local file —ie. download the code.

3. Change the editor’s font size.

4. Change the IDE and the editor’s theme.

5. Provide operating instructions within the IDE.

15.1.2 Changes in the client application

To incorporate EasyUI in the client app, all custom AngularJS directives had
to be rewritten.

The index HTML page, and the C++ plugin’s HTML templates also
had to be modified. In particular, the index HTML page would now contain
a menu bar to accommodate the additional features, and a status bar which
would replace the former notifications system.

15.2 Menu bar

The menu bar, at the top of the page, provides access all additional features by
means of the following menus:

15.2.1 File menu

The File menu accomplishes additional features 1 and 2 by displaying functions:

New: Clears the code editor.

Open: Opens a local file in the editor.

Save: Downloads the contents of the text editor into a local file (in the default
Downloads folder).

Edit, Compile, Execute and Debug C++ on the Web 70

Chapter 15. EasyUI Prototype Part III. Implementation

15.2.2 Edit menu

A few of the traditional file-edition commands:

Undo: Undoes the last change in the editor.

Redo: Redoes the last undone change in the editor.

Select all: Selects the entire text in the editor.

The classic Cut, Copy, and Paste edit commands have not been sup-
ported yet. Accessing the system clipboard via JavaScript is considered an
unsafe operation: scripts could erase and replace the contents of the clipboard
(data loss issue), and also read the contents of the clipboard (security and
privacy issue). Implementing the Cut, Copy, and Paste commands requires
browser-specific hacks, so their addition is left for a future update of ide.jutge.
Nevertheless, said commands are still available via the traditional keyboard
shortcuts.

15.2.3 View menu

The View menu accomplishes additional features 3 and 4:

Font size: Presents a sub-menu offering 5 different font sizes for the code
editor.

GUI themes: The general IDE’s theme, or look’n’feel, can be chosen from a
sub-menu. 15 different themes are available, thanks to EasyUI.

Editor themes: The code editor’s theme can be picked from a sub-menu
—Ace editor provides 34 different themes.

15.2.4 Help menu

The Help menu provides the last additional feature:

Help: Displays a link to the documentation for the IDE.

About: Displays the typical about information: application icon, application
name, version, and copyright notice.

Edit, Compile, Execute and Debug C++ on the Web 71

Chapter 15. EasyUI Prototype Part III. Implementation

15.3 Documentation HTTPS endpoint

Since the Help menu provides a link to the documentation for the IDE, an
HTTPS endpoint must be exposed in the server application:

GET /doc: Returns a document containing instructions on using the
IDE —the ide.jutge end-user guide.

This endpoint will be created using the regular Express.js routing sys-
tem, as it will just serve a static HTML file.

15.4 Status bar

As already stated, this component, located at the bottom of the page, replaces
the alert-like notification service the previous prototype was using. The status
bar improves usability by removing the potentially obtrusive notification boxes
the former prototype displayed (see figure 13.1).

15.5 Adapting the IDE

Some additions and modifications need to be made to fully integrate the updates
into the client application.

15.5.1 Custom AngularJS directives

Several custom AngularJS directives are created for the menu bar, the menus
and the status bar. Incidentally, this again shows why a framework like Angular
is beneficial:

• Smaller, more readable HTML files: The component’s HTML and
JavaScript code are moved into the directive file.

• Each directive handles a common set of functions: This honors
the separation of concerns (SoC) design principle, simplifying development
and maintenance.

Edit, Compile, Execute and Debug C++ on the Web 72

Chapter 15. EasyUI Prototype Part III. Implementation

15.5.2 The workbench

One of the key functions of the ide.jutge workbench is to provide access to the
IDE’s core components. So, the menu bar, the status bar, and each one of the
menus are made available, along with the rest of the UI components, via the
workbench service.

Also, since the status bar has replaced the former notifications system,
the workbench service must remove notification functions from its API.

15.6 Client C++ plugin

Taking advantage of the EasyUI framework, two additional features were added
to the C++ plugin:

1. C++ code templates that portray basic C++ features and programming
techniques.

2. Evaluation of C++ expressions while debugging.

15.6.1 Selected templates

The following C++ code templates were produced for the first feature:

Hello world! - The all-too-familiar “hello world” program.

Fill in a vector - About C++ STL (Standard Template Library) vector, and
standard input/output.

Iterative GCD - Calculate the greatest common denominator of two numbers,
iteratively.

Correct parenthesization? - Answer the question using an STL stack.

Fibonacci in a vector - Calculate Fibonacci numbers using an iterative
technique.

Recursive factorial - Calculate a factorial using a recursive technique.

Edit, Compile, Execute and Debug C++ on the Web 73

Chapter 15. EasyUI Prototype Part III. Implementation

15.6.2 Templates menu

The most appropriate way to integrate the C++ templates feature in the IDE is
through a sub-menu containing all the templates (see figure 15.1). Selecting a
template will simply set the corresponding C++ code in the editor. As usual, a
custom AngularJS directive needs to be created.

Figure 15.1: C++ templates sub-menu

The purpose of the workbench service exposing the UI components is
to give plugins the ability to customize parts of the IDE. This fact is utilized by
the C++ templates directive, which inserts the new option in the File menu (the
menus are EasyUI components, and provide methods to manage menu options).

15.6.3 C++ expressions

ide.jutge has had the ability to evaluate expressions since the Debug Prototype
(see section 10.3.2), and this function has been available to the client since the
Express Prototype (see section 11.3).

The EasyUI Prototype will incorporate this function into the IDE by
providing a datagrid where C++ expressions can be written. Much like the
variables datagrid, expressions in the datagrid are evaluated and their results
shown when the program pauses. When the program resumes, the results in the
grid are cleared. Figure 15.2 shows a snapshot of the expressions tab at work.

Edit, Compile, Execute and Debug C++ on the Web 74

Chapter 15. EasyUI Prototype Part III. Implementation

Figure 15.2: C++ Expressions tab

15.7 Testing

Validation of the prototype was performed in the usual fashion in the RAD
methodology; components were continually tested during their implementation.
In particular, it was ensured that:

• Refurnished UI components provided at least the same set of features as
their equivalent UI components in the previous prototype.

• New UI components worked as expected and did not break any existing
functionality.

• The documentation HTTPS endpoint served the end-user guide HTML
page.

15.8 Summary

In the EasyUI Prototype, the ide.jutge IDE has gained a beautifully-designed
user interface. The addition of EasyUI has also motivated the implementation
of several supplementary features:

1. Menu bar; File, Edit, View, and Help menus.

2. IDE user-guide.

Edit, Compile, Execute and Debug C++ on the Web 75

Chapter 15. EasyUI Prototype Part III. Implementation

3. Status bar.

4. C++ templates, and a grid to evaluate expressions for the client C++ plugin.

Edit, Compile, Execute and Debug C++ on the Web 76

Chapter 16

ide.jutge Prototype

Before proceeding with the final prototype, a quick review of the current state
of the solution was made. With the previous EasyUI Prototype, ide.jutge:

1. Provided a web IDE that allows edition, compilation, execution, and debug
of C++ programs.

2. Supplied all the security measures to deal with potentially malicious user
programs.

3. Featured an extensible plugins system. By making plugins, further func-
tionality could be incorporated into the IDE without having to modify the
core components of the solution.

These features achieved the project’s main objectives and the first two
secondary objectives (create an extensible plugin system for customizing the
environment and make the infrastructure scalable, stable and secure). So, the
ide.jutge Prototype would need to accomplish the three remaining secondary
objectives:

• Create a step-by-step debug mode.

• Detect memory errors in the student’s programs.

• Import and export code from GitHub.com.

77

Chapter 16. ide.jutge Prototype Part III. Implementation

16.1 C++ execution modes

The C++ plugin needs further enhancements to help complete the secondary
objectives —slow-motion debug, and memory error detection. In an effort to
integrate all this functionality into the IDE in as natural a way as possible, the
following execution modes are defined:

Run: Execute the program without debugging.

Debug: Debug the program (execution will pause at breakpoints).

Slow motion: Debug mode where execution advances one line at a time every
few seconds.

Valgrind: Run mode where a report of memory-related errors is provided
once execution completes.

The C++ plugin will provide a drop-down button so students can choose
in which mode their program will run.

Figure 16.1 diagrams the design of the different parts of the C++ plugin
within the ide.jutge architecture.

Figure 16.1: C++ plugin design

16.2 Slow motion

The Slow-motion debug mode is fairly simple to implement as it requires no
server-side changes. All the IDE does in Slow-motion is start debugging the
program, and issue a step into command at regular intervals.

Edit, Compile, Execute and Debug C++ on the Web 78

Chapter 16. ide.jutge Prototype Part III. Implementation

The interval between steps can be changed in the IDE via a slider
control that the C++ plugin provides. This slider is located to the right of the
execution buttons, and allows the interval to range between one and ten seconds.

Slow-motion execution can also be paused, resumed and stopped using
the appropriate execution buttons.

16.3 Run

The Run mode just executes the program; none of the debug or valgrind features
are available —that means breakpoints have no effect, and no check is made for
memory errors. This execution mode is added for the sake of completeness —all
IDEs provide a plain execution mode.

The Run mode requires changes be made on the client and server
applications:

16.3.1 Client application

When in Run mode, the C++ plugin needs to adjust the execution buttons’
behaviour according to the following guidelines:

• Execution cannot be paused or resumed, only stopped.

• Step commands are not available either.

16.3.2 Server application

A new component to execute the program must be tied into the the server-side
C++ plugin. Its competences:

1. Send the run (or kill) command to the sandbox when the IDE makes the
pertinent request.

2. Manage the IDE-program input/output exchange.

3. Notify the IDE when program finishes execution.

Edit, Compile, Execute and Debug C++ on the Web 79

Chapter 16. ide.jutge Prototype Part III. Implementation

16.4 Valgrind

This mode is named after the popular utility Valgrind [16]. In a nutshell, this
tool executes the program, and produces a report in XML format containing all
memory-related errors found (if any). This execution mode requires changes on
both client and server tiers.

16.4.1 Client application

The C++ plugin again needs to adjust the execution buttons’ behaviour following
same guidelines as in the Run mode. Additionally, the C++ plugin UI needs to
provide a table to display the errors reported by Valgrind. This table will be
cleared when the program runs again.

16.4.2 Server application

A new component is created and woven into the server-side C++ plugin. This
component works in many ways like the one for the Run mode; the valgrind
component is required to:

1. Send the run (or kill) command to the sandbox when the IDE makes the
pertinent request.

2. Manage the IDE-program input/output exchange.

3. After execution finishes, parse the resulting XML report and send it to
the IDE.

16.4.3 Sandbox

The Valgrind utility must be installed in the parent sandbox, and the vm-setup.sh
script needs to include the commands to install Valgrind.

16.5 Gists

The ability to read and write Gists accomplishes the last secondary objective,
and is the icing on the ide.jutge Prototype.

Edit, Compile, Execute and Debug C++ on the Web 80

Chapter 16. ide.jutge Prototype Part III. Implementation

Of course, students will need a GitHb.com account to use this service.
ide.jutge will request permission from students to access their gists. Once stu-
dents accept, ide.jutge will be able to read and write gists on behalf of the
students.

OAuth2 is the protocol that will allow ide.jutge to request access to
gists in a student’s GitHub account, without getting their password [38], and
using an access token instead. GitHub.com requires ide.jutge to be registered
as an OAuth application.

The server application will use the Gist API [38] to interact with
GitHub and perform the read and write actions.

Figure 16.2: GutHub OAuth authorization page

16.5.1 Client application

The following components come into play on the client front-end:

1. In the File menu, two additional options: Import gist and Export gist. If
students have not yet authorized ide.jutge, they will be asked to do so in
a pop-up window that will open the GitHub OAuth access page (similar
to figure 16.2).

2. A list of the student’s gists; it allows students to select the gist that they
want to import into the editor.

3. A form for students to save gists, which allows them to enter the gist file
name, the description, and whether the gist is created as public or not.

Edit, Compile, Execute and Debug C++ on the Web 81

Chapter 16. ide.jutge Prototype Part III. Implementation

4. A button for students to log out of GitHub within ide.jutge.

16.5.2 Server application

This feature does not require a sandbox, so only the server application needs to
be modified. The role of the server application is to handle communication with
GitHub, and pass results down to the IDE. The following HTTPS endpoints are
exposed:

GET /auth: Redirects to the GitHub authorization page.

GET /callback: The URL to which GitHub will redirect after authorization.

POST /gists: Lists the student’s gists.

POST /gist: Fetches a particular gist.

POST /update-gist: Updates a gist.

POST /create-gist: Creates a new gist.

16.6 Testing

Tests for the Run and Slow-motion modes basically verified correct interaction
with the IDE’s execution buttons and terminal with C++ from previous tests.
However, the Valgrind mode required creating C++ programs with deliberate
memory-related errors (see an example in figure 16.3), and adding them to the
tests.

1 #include <vector >

2 using namespace std;

3 int main() {

4 vector <int > v(3);

5 v[4] = 0; // invalid write

6 return 0;

7 }

Figure 16.3: C++ program featuring a memory error

Verification of the import/export gist features required registering the
ide.jutge Prototype application to use the GitHub API; this was done at the
GitHub.com website. The next tested feature was the GitHub OAuth2 flow,

Edit, Compile, Execute and Debug C++ on the Web 82

Chapter 16. ide.jutge Prototype Part III. Implementation

which would authorize ide.jutge to access students’ gists. Once that was done,
the remaining features were validated —logging in and out; and reading, writing
and listing user gists. All tests were conducted using the project author’s GitHub
account.

16.7 Summary

This chapter described the implementation and testing of the last features of the
ide.jutge. A figure 16.4 displays a snapshot of the IDE. The ide.jutge Prototype
provided the solution with:

1. Four execution modes —Run, Debug, Slow-motion, and Valgrind.

2. The ability to import/export code from GitHub.com gists.

The project’s primary and secondary objectives were accomplished —
therefore, ide.jutge was complete.

Figure 16.4: ide.jutge Web IDE

Edit, Compile, Execute and Debug C++ on the Web 83

Part IV

Evaluation

84

Chapter 17

Usability

An emphasis must be placed on usability in order to make ide.jutge a user-
friendly tool. Usage of the IDE aims to be so intuitive that no instruction
manual is required; simple features must be self-explanatory, and documentation
for more complex features must be promptly available within the IDE (in the
line of [50]).

As figure 18.2 shows, the IDE becomes responsive in less than three
seconds. According to [58] and [48], ten seconds is the maximum response time
for any web application to become responsive before users lose patience and
become angry. For longer delays, users will want to perform other tasks while
waiting for the computer to finish. Therefore, the ide.jutge client application
has an acceptable load-time.

The first effective step to make the IDE more usable was to take ad-
vantage of the jQuery EasyUI framework. Its sophisticated yet practical user
interface components procured for the IDE user an experience similar to that
of a desktop application.

However, during most of the development of this project, the IDE
was only available to the author and the project advisor. With such limited
feedback, it is probable that undetected usability problems could be lurking in
ide.jutge. Therefore, the ide.jutge Prototype was made available to eleven more
persons for a usability test.

85

Chapter 17. Usability Part IV. Evaluation

17.1 Usability test

The aim of the test is to get direct input on how real users experience the system.
Eleven persons, including UPC staff and students, and a usability expert (Pere-
Pau Vázquez), were presented with ide.jutge, and asked to try it out.

17.1.1 Feedback

Initial feedback unveiled some bugs in the IDE, which were promptly fixed. For
example, a UPC faculty member explained:

- Agafo un programa qualsevol (p.e. de les plantilles) i l’executo.
Tot va be.
- Modifico lleugerament el programa, per fer alguna cosa diferent, i
al fer-ho, introdueixo un error (p.e. falta un “;”)
- Quan faig “run”, obtinc un error de compilacio, com es d’esperar.
- Arreglo l’error
- Un cop arreglat l’error, no puc tornar a executar el programa,
perque el boto de “run” ha quedat desactivat.

The usability expert provided a comprehensive usability report which
pointed out several functional and aesthetic problems in ide.jutge. To quote a
few:

Hi ha un comportament incoherent del sistema pel que respecta a
com es desen els fitxers nous: No està clar quan es desa i quan no.
Si es fa clic a desar, es demana la creació d’un fitxer, però si no es
fa clic, quan s’intenta depurar, diu que està desant quelcom. Però
a més, si es fa Ctrl+S, que és el mètode clàssic de desar en molts
editors, s’accedeix a l’opció de desar del Firefox.

Els missatges desapareixen. Si s’introdueix un error i s’intenta depu-
rar, apareix un missatge a la barra inferior, però en una estona de-
sapareix, cosa que resulta inesperada i incòmoda, perquè potser la
persona ha deixat de mirar la finestra una estona.

El botó de slow motion sembla un botó d’informació. I quan està
corrent, la versió d’aturar és taronja, no vermella. Si l’objectiu és
distingir una pausa d’un stop, caldria dir-li pausa, però això s’hauria
de poder fer amb el botó de play.

Edit, Compile, Execute and Debug C++ on the Web 86

Chapter 17. Usability Part IV. Evaluation

En tota la gestió d’aquests menús, caldria adoptar una estratègia que
fes que tot fos molt més coherent: tant en etiquetatge com en fun-
cionament, per exemple el play que fos play sempre independentment
del mode, i es digués play/continuar/executar... el que sigui que in-
diqui que s’està tirant endavant. També caldria evitar duplicats, etc,
que el botó stop permetés parar sempre...

All the given suggestions were taken into account to enhance the IDE.
The last piece of feedback received was very positive indeed:

Realment, tot ho he trobat bé, útil, intüıtiu i funcionant.

17.1.2 Results

The most significant usability problem in ide.jutge was that it provided no
instructions on how to use the more complex features, especially debugging.
Initially, there was no way for new users to immediately know how to set break-
points in the code. Likewise, there was was no explanation for all the C++

execution modes (Run, Debug, Slow-motion and Valgrind), and C++ execution
control buttons did not present a homogeneous behavior in different modes.

In general, more in-application documentation was required. So, a
series of enhancements were designed.

17.2 Enhancements

In response to the feedback received, the following features were added to the
ide.jutge Prototype:

• Automatically focus the editor, the terminal, or other input components
depending on the previous action (Save file, Debug, etc.).

• The terminal scrolls with program output, just like a real terminal.

• Download the code in the editor using the Ctrl+S key shortcut.

• The status bar is placed underneath the code editor to improve its visi-
bility. Also, more descriptive messages are added, and text in the status
bar stays on-screen until another message comes in.

• Unified C++ execution buttons behaviour throughout the Run, Debug,
Slow-motion, and Valgrind modes.

Edit, Compile, Execute and Debug C++ on the Web 87

Chapter 17. Usability Part IV. Evaluation

• The Problems tab is renamed to Diagnostics.

• The Diagnostics table shows a message indicating no errors were found,
instead of just being empty. The Valgrind results tables does the same.

• Menu buttons relabeled to better describe their function.

17.3 Summary

The efforts directed at making ide.jutge a highly usable IDE were detailed in
this chapter. As expected, the usability test proved to be highly instructive.
Constructive feedback allowed bug detection and provided fresh ideas on how
to refurnish the IDE to favor usability. Suggestions were taken to polish ide.jutge
by adding and modifying features, and relocating UI components. Nevertheless,
usability can be further improved by taking feedback from a larger set of users:
the UPC students.

Edit, Compile, Execute and Debug C++ on the Web 88

Chapter 18

Performance

It is essential to know the boundaries of ide.jutge’s operating capabilities. In-
deed, if ide.jutge is to be accepted as an educational tool in classes, and its
use permitted in exams, safe-usage limits must be established to avoid system
failure.

This chapter provides a description of the memory, network and CPU-
usage analysis performed. It then details the stress tests conducted to determine
the stability and availability of ide.jutge solution. Analysis and testing took
place in jutge3, one of the Jutge.org servers.

18.1 Memory usage

This section analyzes RAM and storage (disk-space) consumption of ide.jutge.
It is anticipated that memory usage will set a high limit to the number of
concurrent users the system will support.

18.1.1 Storage

The server application requires only 74.4MB of free disk-space for installation.

The sandboxes are given a limited amount of disk-space (1GB), there-
fore the maximum amount of sandboxes is determined by the available storage
in the Slave Servers. jutge3 has over 2TB of free disk space, so it could host
at least 2000 sandboxes.

89

Chapter 18. Performance Part IV. Evaluation

18.1.2 RAM

The following results were sourced from the htop command. Execution of the
server application consumed 56.7MB RAM. And after opening 100 connections,
only an additional 13MB were used.

The sandboxes, on the other hand, were more demanding. Starting
100 sandboxes took up 1.46GB of RAM —an average of 14.6MB per sandbox.
Such results are impressive considering that, to the users, the sandbox feels like
an isolated computer.

The sandboxes are so memory-efficient because they are LXC con-
tainers, which use operating-system-level virtualization. This method allows all
sandboxes to share the same operative-system kernel, and provides file-level
copy-on-write (CoW) mechanisms. In effect, only new and modified resources
require memory allocation.

18.2 Network

This section discusses ide.jutge’s network usage. Measurements were taken with
Google Chrome DevTools [34] on the development computer, using a 300MB
fiber-optics Internet connection.

It is unlikely that network usage will be a problem, since all modern
browsers provide cache mechanisms to avoid repeatedly downloading unmod-
ified assets (HTML and JavaScript files, images, etc.). Still, the whole client
application must be served the first time a browser loads ide.jutge.

Figure 18.1: Network usage loading ide.jutge

Figure 18.1 shows network statistics of accessing https://ide.jutge.

org on a clean cache. 85 requests are made, 30 of which are images, 30 are
custom JavaScript files (the client application code), and the rest are CSS files

Edit, Compile, Execute and Debug C++ on the Web 90

https://ide.jutge.org
https://ide.jutge.org

Chapter 18. Performance Part IV. Evaluation

and JavaScript components. Most of the 2.5 MB transferred are third-party
JavaScript files, the largest three being the AngularJS framework (1.2MB),
jQuery EasyUI (410KB), and the Ace editor (346KB).

ide.jutge uses the minified (compressed) version of all its third-party
libraries, so the there is only so much room for improvement in size. The number
of requests, however, can be drastically reduced by concatenating JavaScript and
CSS files. In an effort to lower network usage, the ide.jutge client application
code is minified and concatenated into a single JavaScript file, using Grunt [66].

Figure 18.2: Network usage loading ide.jutge with minified client application

As figure 18.2 depicts, even though the number of requests is signif-
icantly diminished, overall load time does not perceivably improve. This is
because the client application is too small in relation to the rest of the as-
sets served (54.2KB compressed; twice as much otherwise), and the fiber-optics
connection allows requests to be processed very quickly once the connection is
open.

Speed tests indicate that jutge3 has a 500Mbit/s upload bandwidth;
that is enough to serve the ide.jutge client application 25 times per second.
Nonetheless, server network usage could be lowered by serving CSS and JavaScript
assets from a CDN (Content Delivery Network), an external server. This option
could be implemented in a future iteration of ide.jutge, but it is discouraged be-
cause the IDE will be available to students during exams, and these take place
in a secure environment with no Internet access.

18.3 CPU

This section analyzes CPU usage of ide.jutge. CPU usage is expected to be the
main performance bottleneck in the ide.jutge solution. To verify this, tests are
conducted to identify CPU usage peaks during regular ide.jutge operation.

Edit, Compile, Execute and Debug C++ on the Web 91

Chapter 18. Performance Part IV. Evaluation

18.3.1 Client tier

To ensure CPU-usage is reasonable in the web application, ide.jutge is accessed
from the development computer, and different actions are performed while
recording CPU-usage levels with the Ubuntu System Monitor. These actions
involve running a C++ program, and performing common tasks such as writing
code in the editor and switching the IDE themes. Figure 18.3 depicts CPU
consumption during the test. The initial large peak is caused by application
load, and the three smaller peaks are triggered when opening the top menus for
the first time.

Figure 18.3: Web application CPU usage test

18.3.2 Server tier

The first step in the test is to start the server application. The second step
is to access the IDE, run a “Hello world”, and close the IDE by browsing to
another website. This last step is repeated three times during the course of
three minutes. Finally, the server application is killed.

The IDE was accessed and operated from the development machine.
CPU-usage data was collected using a custom bash script, and the plot was
generated with gnuplot [68]. Figure 18.4 diagrams the test.

Peaks during C++ program executions are not relevant. In the sand-
boxes, CPU-usage is limited and will never go above a certain threshold. It
is then clear that the most CPU-consuming task is starting the sandboxes —
it triggers the eight-second CPU peaks in the figure above. Starting a large
amount of sandboxes in a short period of time can cause the system to become
unresponsive; therefore, a series of stress tests are necessary to pinpoint the
maximum number of sandboxes ide.jutge can start at a time.

Edit, Compile, Execute and Debug C++ on the Web 92

Chapter 18. Performance Part IV. Evaluation

Figure 18.4: CPU usage test
SA: Start server application
KA: Kill server application

SS: Start sandbox (access ide.jutge)
RM: Run “Hello world” program

DS: Destroy sandbox (leave ide.jutge)

18.4 CPU stress tests

The objective of the stress tests is to determine the maximum rate at which
jutge3 can start new sandboxes while ide.jutge remains responsive to the users.
To reach this objective, five tests were conducted; in each test, an increasing
number of LXC containers (sandboxes) are started within the course of 1 minute.
Test 1 starts 10 containers, test 2 starts 20 containers, etc. Container startup
times and CPU-usage data will be analyzed to provide the results.

18.4.1 Tools

As in the previous test, CPU-usage data is collected using a bash script, and
plots are generated with gnuplot. However, instead of starting the sandboxes by
accessing the IDE, a Python script is created to automate this task. This script
generates a Poisson distribution, and the samples are used to determine when
to start new sandboxes. The Python script will start the sandboxes within the
course of one minute, via another custom bash script, which also measures their
startup times.

Edit, Compile, Execute and Debug C++ on the Web 93

Chapter 18. Performance Part IV. Evaluation

18.4.2 Results

Results indicate that instantiation of more than one LXC container every two
seconds will increasingly deteriorate container startup times. As figure 18.5
diagrams, instantiation of 40 containers or more raises sandbox startup times
beyond the 10-second usability threshold in under 1 minute.

Figure 18.5: Container startup times for tests 1-5

Figure 18.6 shows the results for test 2, in which sandboxes can be
started at a sustainable rate. Figure 18.7, in contrast, displays how test 4 puts
an extremely heavy load on the system and container startup times surpass the
10-second limit.

ide.jutge can deal with such situations because it is a horizontally
scalable solution. The way to maintain availability under excessive workloads
is to use more Slave Servers. Cloud-computing providers such as Amazon Web
Services [3] could provide a stable infrastructure for ide.jutge, if its use were to
grow beyond the operating capabilities of the Jutge.org servers.

18.5 Summary

This chapter details how the ide.jutge performs in terms of memory, network
and CPU-usage, within the Jutge.org server jutge3. Potential performance
problems were identified, and the ways to deal with them were described. It
was also confirmed that CPU-usage is ide.jutge’s major performance bottleneck.
The consequent stress tests provided an upper bound for the rate at which new
sandboxes can be served.

Edit, Compile, Execute and Debug C++ on the Web 94

Chapter 18. Performance Part IV. Evaluation

Figure 18.6: Stress test 2, a sustainable workload

Figure 18.7: Stress test 4 overloads the CPU

Edit, Compile, Execute and Debug C++ on the Web 95

Chapter 19

Validation

This chapter provides a validation summary of both main and secondary objec-
tives, and explains deviations from the initial planning during the implementa-
tion phase in terms of time and cost.

19.1 Validation summary

This section confirms, through objective evidence, that ide.jutge will perform
its intended functions.

19.1.1 Main objectives

As stated in section 3.1:

The main objective of this project is to build a Web IDE for students
to create and inspect their C++ programs

The ide.jutge client application allows editing, compiling, executing,
and debugging C++ code, thus providing the Web IDE. Its effective operation
is guaranteed by the backing server-side infrastructure. The sandboxes in the
Slave Servers provide the isolated environment where programs are compiled,
executed and debugged; the communication channel between the IDE and the
sandboxes is supplied by the Master Server application. Performance analysis
and usability tests ensure that the system operates as intended. Hence, ide.jutge
accomplishes the main objective.

96

Chapter 19. Validation Part IV. Evaluation

19.1.2 Secondary objectives

As stated in section 3.2, secondary objectives are:

Create an extensible plugin system for customizing the environment

Such system is created in the Plugins Prototype (ch. 14). Testing of
said proto-type ensures this secondary objective is achieved.

Make the infrastructure scalable, stable and secure

Chapter 4 describes the design of an architecture that possesses said
characteristics. Indeed, special attention has been paid throughout the devel-
opment of the project to implement such infrastructure.

Security mechanisms for ide.jutge are implemented in the Express Pro-
totype (ch. 11) and the Sandbox Prototype (ch. 12). Horizontal and vertical
scalability is added in the Sandbox Prototype and the Plugins Prototype, re-
spectively. Usability testing and performance analysis results prove that the
infrastructure is in effect stable.

Create a step-by-step debug mode, detect memory errors in the stu-
dent’s programs, import and export code from GitHub.com

The remaining three secondary objectives are achieved in the ide.jutge
Prototype (ch. 16).

19.2 Planning review

This section evaluates how closely the implementation phase of the project fol-
lowed the initial plan regarding time and costs.

19.2.1 Time management

The original time plan underwent severe changes during the implementation
phase. The fact that the project started almost a year prior to its final presen-
tation allowed the author to spend more time in the development and polishing
of ide.jutge. In hindsight, the availability of an additional 6 months proved

Edit, Compile, Execute and Debug C++ on the Web 97

Chapter 19. Validation Part IV. Evaluation

to be key in the completion of the project —ide.jutge is a highly-sophisticated
and complex software solution with a myriad of interacting components. It is
estimated that 300 extra hours were spent in the development of ide.jutge.

Also, task scheduling was changed to embrace the RAD methodology.
This methodology consists in short development cycles where prototypes are
built and integrated. Therefore, analysis and design of the prototypes is required
throughout development, and so is testing and polishing. Table 19.1 diagrams
the final amount of work done on each of the individual tasks.

2016 2017

Q1 Q2 Q3 Q4 Q1

Analysis and design

Environment setup

Sandbox

Drivers

Server application

Client application

Testing and polishing

Management course

Project report

Project presentation

Table 19.1: Final Gantt chart

19.2.2 Economic cost

The acquisition of jQuery EasyUI was not figured into in the initial budget. The
licence costs $449, works indefinitely, and allows use of EasyUI in any number
of projects [71]. Since this JavaScript framework will also be used in another
Degree Final Project by a fellow student, its amortized cost is $224.5. Said
extra cost would be paid using the 10% contingency deposit.

The extra time spent in the development of the project would have

Edit, Compile, Execute and Debug C++ on the Web 98

Chapter 19. Validation Part IV. Evaluation

incurred an estimated 10,000e additional fee for human resources (see table
19.2). In this case, the 10% contingency budget would have been insufficient.

Role Time (h) Cost(e)
Software engineer 100 4000.00
Software developer 200 6000.00

Total 300 10000.00

Table 19.2: Extra cost in project staff

Edit, Compile, Execute and Debug C++ on the Web 99

Chapter 20

Legal Aspects

No special laws apply to this project. The software is available under the MIT
licence:

Copyright (c) 2016-2017 Albert Lobo Cusidó

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation files

(the "Software"), to deal in the Software without restriction, in-

cluding without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall

be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-

RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-

ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

100

Chapter 21

Conclusions

The final chapter of the project presents a summary of this document, and the
possible next steps of the development of ide.jutge are reviewed. Finally, the
author closes the report with his personal thoughts.

21.1 Summary

This document detailed the building process of a Web IDE with C++ debugging
capabilities.

Part I: The project requirements were established, and it was found that there
were no existing solutions that satisfied those requirements. Therefore, a
new solution was devised: ide.jutge.

Part II: Development of the solution was planned. Initial estimations for
the time and economic costs were produced, along with a sustainability
analysis.

Part III: Implementation of the solution was detailed. Using the RAD method-
ology, prototypes were incrementally built —each one contributing a key
set of features to finally compose the ide.jutge solution.

Part IV: The implemented solution was evaluated with usability and perfor-
mance tests. The project’s objectives were validated, and time and cost
divergences from the original planning were outlined.

101

Chapter 21. Conclusions Part IV. Evaluation

21.2 Future work

The future of this ide.jutge is a bright one. Given that it will be used as an
educational tool for the UPC, many enhancements will be made. For one,
student feedback will help further refine the IDE’s usability.

The next steps towards scaling the solution will be:

A complete desktop: ide.jutge will allow students to use the computational
power of the Jutge.org servers. Granting persistent storage as well would
be a major improvement. After all, each students gets a certain disk-space
quota in the UPC servers, which could be made available through the IDE.
This would also facilitate managing not just one file but complete projects
with ide.jutge.

Plugins: With the creation of plugins, additional functionality can be made
available in the IDE. For example, a new plugin could automate the task
of executing the public test cases for Jutge.org problems. Another plugin
could provide a debugger for Java or Python code. Instructions on how
to create a new plugin can be found in section 14.5.

ide.jutge in the cloud: Cloud-computing providers offer very reliable infras-
tructures on which to run the ide.jutge solution. This way, the number
of sandbox containers would auto-scale dynamically with computing load,
which would eliminate the problem of running out of resources in the
Jutge.org servers.

21.3 Personal thoughts

Thinking about the experiences of this project, I ended up reflecting on my
personal journey through the world of computer programming. That journey
began with a younger me playing lot of video-games. The joy I felt playing
motivated the most basic of questions: “How do they do it!?!”. Ergo, I set off
on a learning path.

This project is the latest milestone in my journey; I have gained a
great deal of knowledge in the making of ide.jutge. The sheer breadth of the
solution attests to this. I used JavaScript as the runtime for a server applica-
tion with Node.js. I learned about real-time server-client communication using
WebSockets. I experienced the power of operative system virtualization with
LinuxContainers. I studied GDB and its machine-oriented input/output syntax.
I built a plugins system on top of the AngularJS framework. The list is just too
long to be included in this section!

Edit, Compile, Execute and Debug C++ on the Web 102

Bibliography

I greatly enjoyed making this project, and I regard it as an extremely
positive experience. Needles to say, it has been a huge challenge —then again,
perhaps that is the reason it was so fun. In the future, I hope to continue
working with the development of Web-based tools for programmers.

My best efforts were put into ide.jutge, and I am happy to think that
the work done for this project will help students who are on a journey similar
to the one I started years ago.

21.4 Acknowledgements

This work would have not been possible without the continuous support of the
project advisor, Jordi Petit. I would also like to thank all the collaborators in
the usability test, especially Pere-Pau Vázquez. A special thanks goes to my
girlfriend, Emily Shirk, for providing moral support and help in the polishing
of this document.

Edit, Compile, Execute and Debug C++ on the Web 103

Bibliography

[1] ajax.org cloud 9. Ace - The High Performance Code Editor for the Web.
Jan. 2, 2017. url: https://ace.c9.io/.

[2] Central Computer & Telecommunications Agency. SSADM Foundation
(Business Systems Development with SSADM). Business Systems Devel-
opment with SSADM. Stationery Office Books, 2000. isbn: 978-0113308705.

[3] Inc. Amazon Web Services. Amazon Web Services (AWS) - Cloud Com-
puting Services. Jan. 2, 2017. url: https://aws.amazon.com/?nc2=h lg.

[4] Pierre Carbonnelle. Top IDE Index. Dec. 29, 2016. url: http://pypl.
github.io/IDE.html.

[5] Pierre Carbonnelle. Top ODE Index. Dec. 29, 2016. url: http://pypl.
github.io/ODE.html.

[6] Inc Cloud9 IDE. Cloud9 - Your development environment, in the cloud.
Dec. 29, 2016. url: https://c9.io/.

[7] European comission. Analyse one indicator and compare countries. Jan. 2,
2017. url: http://digital-agenda-data.eu/charts/analyse-one-
indicator-and-compare-countries#chart=%7B%22indicator-group%

22:%22any%22,%22indicator%22:%22Price Internet Fixed Tel%22%

7D.

[8] Creative Commons. Creative Commons Attribution-NonCommercial-ShareAlike
4.0 Inter- national. Dec. 29, 2016. url: https://creativecommons.org/
licenses/by-nc-sa/4.0/legalcode.txt.

[9] Virtuozzo company. OpenVZ Virtuozzo containers wiki. Jan. 2, 2017. url:
https://openvz.org/Main Page.

[10] Derbyjs contributors. DerbyJS is a full-stack framework for writing mod-
ern web applications. Jan. 2, 2017. url: http://derbyjs.com/.

[11] Hapi contributors. Hapi.js - A rich framework for building applications
and services. Jan. 2, 2017. url: https://hapijs.com/.

[12] Socket.io contributors. Socket.io. Jan. 2, 2017. url: http://socket.io/.

[13] Ryan Dahl. Ryan Dahl: Original Node.js presentation. Jan. 2, 2017. url:
https://www.youtube.com/watch?v=ztspvPYybIY.

104

https://ace.c9.io/
https://aws.amazon.com/?nc2=h_lg
http://pypl.github.io/IDE.html
http://pypl.github.io/IDE.html
http://pypl.github.io/ODE.html
http://pypl.github.io/ODE.html
https://c9.io/
http://digital-agenda-data.eu/charts/analyse-one-indicator-and-compare-countries#chart=%7B%22indicator-group%22:%22any%22,%22indicator%22:%22Price_Internet_Fixed_Tel%22%7D
http://digital-agenda-data.eu/charts/analyse-one-indicator-and-compare-countries#chart=%7B%22indicator-group%22:%22any%22,%22indicator%22:%22Price_Internet_Fixed_Tel%22%7D
http://digital-agenda-data.eu/charts/analyse-one-indicator-and-compare-countries#chart=%7B%22indicator-group%22:%22any%22,%22indicator%22:%22Price_Internet_Fixed_Tel%22%7D
http://digital-agenda-data.eu/charts/analyse-one-indicator-and-compare-countries#chart=%7B%22indicator-group%22:%22any%22,%22indicator%22:%22Price_Internet_Fixed_Tel%22%7D
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.txt
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.txt
https://openvz.org/Main_Page
http://derbyjs.com/
https://hapijs.com/
http://socket.io/
https://www.youtube.com/watch?v=ztspvPYybIY

Bibliography

[14] GDB developers. GDB: The GNU Project Debugger. Jan. 2, 2017. url:
https://www.gnu.org/software/gdb/.

[15] Linux-VServer developers. Linux-VServer provides virtualization for GNU/Linux
systems. Jan. 2, 2017. url: http://linux-vserver.org/Welcome to

Linux-VServer.org.

[16] Valgrind developers. Valgrind is an instrumentation framework for build-
ing dynamic analysis tools. Jan. 2, 2017. url: http://valgrind.org/.

[17] Fabrizio Balliano and Kevin Dalman. UI Layout - The Ultimate Page
Layout Manager. Jan. 2, 2017. url: http://layout.jquery-dev.com/.

[18] Michal Forǐsek. “Security of programming contest systems”. In: Infor-
mation technologies at school: Selected papers of the 2nd international
conference ”Informatics in Secondary Schools: Evolution and Perspec-
tives” (Valentina Dagiene, Roland Mittermeir, ed.), Institute of Mathe-
matics and Informatics, Vilnius (2006), pp. 553–563. doi: https://pdfs.
semanticscholar.org/891c/c6a05cf24e17bf9226a8eb523fa4756cd265.

pdf.

[19] Free Software Foundation. About the GNU project. Jan. 2, 2017. url:
https://www.gnu.org/gnu/thegnuproject.en.html.

[20] Free Software Foundation. GDB/MI - Debugging with GDB. Jan. 2, 2017.
url: https://sourceware.org/gdb/onlinedocs/gdb/GDB 002fMI.

html.

[21] Free Software Foundation. GNU Emacs: An extensible, customizable, free/li-
bre text editor — and more. Dec. 29, 2016. url: https://www.gnu.org/
software/emacs/.

[22] Free Software Foundation. What is free software? Jan. 2, 2017. url:
https://www.gnu.org/philosophy/free-sw.en.html.

[23] Node.js Foundation. A JavaScript runtime built on Chrome’s V8 JavaScript
engine. Jan. 2, 2017. url: https://nodejs.org/.

[24] Node.js Foundation. Express - Node.js web application framework. Jan. 2,
2017. url: http://expressjs.com/.

[25] Node.js Foundation. Express Routing. Jan. 2, 2017. url: https://expressjs.
com/en/guide/routing.html.

[26] Node.js Foundation. Using Express middleware. Jan. 2, 2017. url: http:
//expressjs.com/en/guide/using-middleware.html.

[27] OpenSSL Software Foundation. OpenSSL - Cryptography and SSL/TLS
Toolkit. Jan. 2, 2017. url: https://www.openssl.org/.

[28] The Eclipse Foundation. Eclipse - The Eclipse Foundation open source
community website. Dec. 29, 2016. url: https://eclipse.org/.

[29] The jQuery Foundation. jQuery user interface. Jan. 2, 2017. url: https:
//jqueryui.com/.

Edit, Compile, Execute and Debug C++ on the Web 105

https://www.gnu.org/software/gdb/
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://valgrind.org/
http://layout.jquery-dev.com/
http://dx.doi.org/https://pdfs.semanticscholar.org/891c/c6a05cf24e17bf9226a8eb523fa4756cd265.pdf
http://dx.doi.org/https://pdfs.semanticscholar.org/891c/c6a05cf24e17bf9226a8eb523fa4756cd265.pdf
http://dx.doi.org/https://pdfs.semanticscholar.org/891c/c6a05cf24e17bf9226a8eb523fa4756cd265.pdf
https://www.gnu.org/gnu/thegnuproject.en.html
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
https://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/philosophy/free-sw.en.html
https://nodejs.org/
http://expressjs.com/
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
http://expressjs.com/en/guide/using-middleware.html
http://expressjs.com/en/guide/using-middleware.html
https://www.openssl.org/
https://eclipse.org/
https://jqueryui.com/
https://jqueryui.com/

Bibliography

[30] The jQuery Foundation. jQuery - write less, do more. Jan. 2, 2017. url:
https://jquery.com/.

[31] Google. AngularJS: Developer Guide: Dependency Injection. Jan. 2, 2017.
url: https://docs.angularjs.org/guide/di.

[32] Google. AngularJS: Developer Guide: HTML compiler. Jan. 2, 2017. url:
https://docs.angularjs.org/guide/compiler.

[33] Google. AngularJS - Superheroic JavaScript MVW Framework. Jan. 2,
2017. url: https://angularjs.org/.

[34] Google.com. Chrome DevTools Overview. Jan. 2, 2017. url: https://
developer.chrome.com/devtools.

[35] Docker Inc. Build, ship and run any app, anywhere. Jan. 2, 2017. url:
https://www.docker.com/.

[36] Facebook Inc. A JavaScript library for building user interfaces - React.
Jan. 2, 2017. url: https://facebook.github.io/react/.

[37] GitHub Inc. About gists - User documentation. Dec. 29, 2016. url: https:
//help.github.com/articles/about-gists/.

[38] GitHub Inc. OAuth - GitHub Developer Guide. Jan. 2, 2017. url: https:
//developer.github.com/v3/oauth/.

[39] Meteor Development Group Inc. Meteor - The fastest way to build javascript
apps. Jan. 2, 2017. url: https://www.meteor.com/.

[40] npm Inc. npm. Jan. 2, 2017. url: https://www.npmjs.com/.

[41] Sencha Inc. Ext JS - JavaScript framework for cross-platform web apps.
Jan. 2, 2017. url: https://www.sencha.com/products/extjs/.

[42] Statista Inc. Electricity prices by country. Jan. 2, 2017. url: https://
www.statista.com/statistics/263492/electricity- prices- in-

selected-countries/.

[43] Iyad Zayour, Hassan Hajjdiab. “How Much Integrated Development En-
vironments (IDEs) Improve Productivity?” In: Journal of Software 8.10
(2013), pp. 2425–2431. doi: https://pdfs.semanticscholar.org/019e/
36673a0821b1864b9d62b527813e900d13ba.pdf.

[44] Jordi Petit, Omer Giménez, Salvador Roura. “Jutge.org: an educational
programming judge”. In: SIGCSE ’12 Proceedings of the 43rd ACM tech-
nical symposium on Computer Science Education (2012), pp. 445–450.
doi: http://dl.acm.org/citation.cfm?doid=2157136.2157267.

[45] Jordi Petit, Salvador Roura. Jutge.org - The Virtual Learning Environ-
ment for Computer Programming. Dec. 29, 2016. url: https://jutge.
org/.

[46] JSFiddle. jsfiddle - Create a new fiddle. Dec. 29, 2016. url: https://
jsfiddle.net/.

[47] json.org. Introducing JSON. Jan. 2, 2017. url: http://www.json.org/.

Edit, Compile, Execute and Debug C++ on the Web 106

https://jquery.com/
https://docs.angularjs.org/guide/di
https://docs.angularjs.org/guide/compiler
https://angularjs.org/
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://www.docker.com/
https://facebook.github.io/react/
https://help.github.com/articles/about-gists/
https://help.github.com/articles/about-gists/
https://developer.github.com/v3/oauth/
https://developer.github.com/v3/oauth/
https://www.meteor.com/
https://www.npmjs.com/
https://www.sencha.com/products/extjs/
https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/
https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/
https://www.statista.com/statistics/263492/electricity-prices-in-selected-countries/
http://dx.doi.org/https://pdfs.semanticscholar.org/019e/36673a0821b1864b9d62b527813e900d13ba.pdf
http://dx.doi.org/https://pdfs.semanticscholar.org/019e/36673a0821b1864b9d62b527813e900d13ba.pdf
http://dx.doi.org/http://dl.acm.org/citation.cfm?doid=2157136.2157267
https://jutge.org/
https://jutge.org/
https://jsfiddle.net/
https://jsfiddle.net/
http://www.json.org/

Bibliography

[48] Meggin Kearney. Measure Performance with the RAIL Model. Jan. 2,
2017. url: https://developers.google.com/web/fundamentals/

performance/rail?hl%3Den%23response respond in under 100ms.

[49] knockoutjs.com. Knockout - Simplify dynamic JavaScript UIs with the
Model-View-View Model (MVVM) pattern. Jan. 2, 2017. url: http://
knockoutjs.com/.

[50] Steve Krug. Don’t Make Me Think, Revisited: A Common Sense Approach
to Web Usability (3rd Edition). Voices That Matter. New Riders, 2014.
isbn: 978-0321965516.

[51] Sphere Research Labs. ideone.com - Online Compiler and IDE. Dec. 29,
2016. url: http://ideone.com/.

[52] Canonical Ltd. LinuxContainers.org - Infrastructure for container projects.
Jan. 2, 2017. url: https://linuxcontainers.org/.

[53] James Martin. Rapid Application Development. Macmillan Coll Div, 1991.
isbn: 978-0023767753.

[54] Microsoft. Visual Studio — Developer Tools and Services — Microsoft
IDE. Dec. 29, 2016. url: https://www.visualstudio.com/.

[55] Mik Kersten, Gail C. Murphy. “Using Task Context to Improve Pro-
grammer Productivity”. In: SIGSOFT ’06/FSE-14 Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software en-
gineering (2006), pp. 1–11. doi: https://www.tasktop.com/sites/

default/files/2006-11-task-context-fse.pdf.

[56] Yahoo! developer network. Mojito - A JavaScript MVC framework for
mobile applications. Jan. 2, 2017. url: https://developer.yahoo.com/
cocktails/mojito/.

[57] Nicolas Petton, Esteban Lorenzano, Damien Cassou. Pharo: The immer-
sive programming experience. Dec. 29, 2016. url: http://pharo.org/.

[58] Jakob Nielsen. Powers of 10: Time Scales in User Experience. Jan. 2,
2017. url: https://www.nngroup.com/articles/powers-of-10-time-
scales-in-ux/.

[59] John Papa. Angular 1 Style Guide. Jan. 2, 2017. url: https://github.
com/johnpapa/angular-styleguide/blob/master/a1/README.md.

[60] John Papa. Bootstrap - The world’s most popular mobile-first and respon-
sive front-end framework. Jan. 2, 2017. url: http://getbootstrap.com/.

[61] Hunter Perrin. PNotify - Beautiful JavaScript notifications. Jan. 2, 2017.
url: https://sciactive.github.io/pnotify/.

[62] Smalltalk.orgTM — versions — ANSIStandardSmalltalk.html. Dec. 29, 2016.
url: http://web.archive.org/web/20060216073334/http://www.
smalltalk.org/versions/ANSIStandardSmalltalk.html.

[63] SourceLair. Xterm.js is a terminal front-end component written in JavaScript
that works in the browser. Jan. 2, 2017. url: http://xtermjs.org/.

Edit, Compile, Execute and Debug C++ on the Web 107

https://developers.google.com/web/fundamentals/performance/rail?hl%3Den%23response_respond_in_under_100ms
https://developers.google.com/web/fundamentals/performance/rail?hl%3Den%23response_respond_in_under_100ms
http://knockoutjs.com/
http://knockoutjs.com/
http://ideone.com/
https://linuxcontainers.org/
https://www.visualstudio.com/
http://dx.doi.org/https://www.tasktop.com/sites/default/files/2006-11-task-context-fse.pdf
http://dx.doi.org/https://www.tasktop.com/sites/default/files/2006-11-task-context-fse.pdf
https://developer.yahoo.com/cocktails/mojito/
https://developer.yahoo.com/cocktails/mojito/
http://pharo.org/
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md
https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md
http://getbootstrap.com/
https://sciactive.github.io/pnotify/
http://web.archive.org/web/20060216073334/http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html
http://web.archive.org/web/20060216073334/http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html
http://xtermjs.org/

Bibliography

[64] stackoverflow.com. ’node.js’ tag wiki. Jan. 2, 2017. url: http://stackoverflow.
com/tags/node.js/info.

[65] Bower team. Bower - A package manager for the web. Jan. 2, 2017. url:
https://bower.io/.

[66] Grunt Development Team. Grunt: The JavaScript Task Runner. Jan. 2,
2017. url: http://gruntjs.com/.

[67] Massachusetts Institute of Technology. The MIT License. Dec. 29, 2016.
url: https://opensource.org/licenses/MIT/.

[68] Thomas Williams, Colin Kelley. Gnuplot is a portable command-line driven
graphing utility. Jan. 2, 2017. url: http://www.gnuplot.info/.

[69] TutorialsPoint. Free online IDE and terminal. Dec. 29, 2016. url: https:
//www.tutorialspoint.com/codingground.htm.

[70] Webismymind. EditableGrid, build powerful editable tables. Jan. 2, 2017.
url: http://www.editablegrid.net/en/.

[71] www.jeasyui.com. EasyUI - Purchase and Contact. Jan. 2, 2017. url:
http://www.jeasyui.com/contact.php.

[72] www.jeasyui.com. jQuery EasyUI - helps you build your web pages easily.
Jan. 2, 2017. url: http://www.jeasyui.com/.

[73] Bennet Yee et al. “Native Client: A Sandbox for Portable, Untrusted x86
Native Code”. In: In Proceedings of the 2007 IEEE Symposium on Security
and Privacy. 2009. doi: https://static.googleusercontent.com/

media/research.google.com/en//pubs/archive/34913.pdf.

Edit, Compile, Execute and Debug C++ on the Web 108

http://stackoverflow.com/tags/node.js/info
http://stackoverflow.com/tags/node.js/info
https://bower.io/
http://gruntjs.com/
https://opensource.org/licenses/MIT/
http://www.gnuplot.info/
https://www.tutorialspoint.com/codingground.htm
https://www.tutorialspoint.com/codingground.htm
http://www.editablegrid.net/en/
http://www.jeasyui.com/contact.php
http://www.jeasyui.com/
http://dx.doi.org/https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34913.pdf
http://dx.doi.org/https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34913.pdf

	Introduction
	Brief introduction to IDEs
	Personal motivation
	Report structure

	I Formulation
	Analysis
	Context
	The problem
	The requirement
	State of the art
	Stakeholders

	Objectives
	Main objectives
	Secondary objectives
	Create an extensible plugin system for customizing the environment
	Make the infrastructure scalable, stable and secure
	Create a step-by-step debug mode
	Detect memory errors in the student's programs
	Import and export code from GitHub.com

	Design
	Security concerns
	Debugger
	Architecture
	Client tier
	Server tier

	General application workflow

	Licenses
	Code
	Documents

	II Planning
	Time Plan
	Estimated project duration
	Tasks
	Analysis and design
	Environment setup
	Sandbox
	Drivers
	Server application
	Client application
	Testing and polishing
	Project management course
	Project report
	Project presentation

	Time table
	Gantt chart

	Budget
	Hardware
	Software
	Staff
	Other costs
	Total

	Sustainability Analysis
	Economic sustainability
	Social sustainability
	Environmental sustainability
	Sustainability matrix

	III Implementation
	Methodology
	Rapid Application Development
	Version control

	Debugger Prototype
	C++ utilities
	GCC
	GDB

	The solution stack
	Full-stack JavaScript

	Design
	gdb-mi-parser
	gdb-mi

	Configuring the C++ tools
	g++
	gdb

	Testing
	Integration with npm
	gdb-mi
	gdb-mi-parser

	Summary

	Express Prototype
	Web framework
	Node.js, Express.js and Socket.io
	Design
	Testing
	GDBServer
	Summary

	Sandbox Prototype
	The sandbox
	Linux Containers
	Design
	Master and Slave servers
	JavaScript components

	Security measures
	SSH
	Low-privilege user
	Memory-usage and network restriction
	Limited number of processes

	Testing
	Summary

	Angular Prototype
	SPA
	Web browser JavaScript framework
	AngularJS
	CSS styling and UI elements
	Bower
	Design
	AngularJS architecture
	Controllers
	Directives
	Service providers

	Testing
	Summary

	Plugins Prototype
	The workbench
	Web application design
	The workbench module
	The workbench controller
	The workbench provider
	The workbench directives
	Plugins

	Server application design
	The Workbench Controller
	Plugins

	Sandboxes
	Creation of the C++ plugin
	Web application plugin
	Server application plugin
	Sandboxes

	Testing
	Summary

	EasyUI Prototype
	EasyUI
	Additional features
	Changes in the client application

	Menu bar
	File menu
	Edit menu
	View menu
	Help menu

	Documentation HTTPS endpoint
	Status bar
	Adapting the IDE
	Custom AngularJS directives
	The workbench

	Client C++ plugin
	Selected templates
	Templates menu
	C++ expressions

	Testing
	Summary

	ide.jutge Prototype
	C++ execution modes
	Slow motion
	Run
	Client application
	Server application

	Valgrind
	Client application
	Server application
	Sandbox

	Gists
	Client application
	Server application

	Testing
	Summary

	IV Evaluation
	Usability
	Usability test
	Feedback
	Results

	Enhancements
	Summary

	Performance
	Memory usage
	Storage
	RAM

	Network
	CPU
	Client tier
	Server tier

	CPU stress tests
	Tools
	Results

	Summary

	Validation
	Validation summary
	Main objectives
	Secondary objectives

	Planning review
	Time management
	Economic cost

	Legal Aspects
	Conclusions
	Summary
	Future work
	Personal thoughts
	Acknowledgements

	Bibliography

