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Abstract
i-vectors have been successfully applied over the last years in
speaker recognition tasks. This work aims at assessing the suit-
ability of i-vector modeling within the frame of speaker diariza-
tion task. In such context, a weighted cosine-distance between
two different sets of i-vectors is proposed for speaker cluster-
ing. Speech clusters generated by Viterbi segmentation are first
modeled by two different i-vectors. Whilst the first i-vector rep-
resents the distribution of the commonly used short-term Mel
Frequency Cepstral Coefficients, the second one depicts a se-
lection of voice quality and prosodic features. In order to com-
bine both the short- and long-term speech features, the cosine-
distance scores of those two i-vectors are linearly weighted to
obtain a unique similarity score. The final fused score is then
used as speaker clustering distance. Our experimental results on
two different evaluation sets of the Augmented Multi-party In-
teraction corpus show the suitability of combining both sources
of information within the i-vector space. Our experimental re-
sults show that the use of i-vector based clustering technique
provides a significant improvement, in terms of diarization er-
ror rate, than those based on Gaussian Mixture Modeling tech-
nique. Furthermore, this work also reports a significant speaker
error reduction by augmenting i-vectors extracted from short-
term spectral features with a second i-vector extracted from
voice quality and prosody related speech features.

1. Introduction
Speaker diarization approaches segment and cluster a speech
recording into homogeneous segments. While speaker segmen-
tation partitions the audio data into acoustically homogeneous
segments, speaker clustering groups speech segments of a par-
ticular speaker together [1].

The appropriate selection of speech features is one of the
factors that affect the performance of speaker diarization sys-
tem. Although short-term spectral features such as Mel Fre-
quency Cepstral Coefficients (MFCCs) are the most widely
used ones in speaker diarization [2], the works in [3, 4] show
that long-term speech information can be employed to reveal in-
dividual differences which can not be captured by the short-term
spectral features. Hence, these studies reveal that the fusion of
short-term spectral features with long-term prosodic ones im-
proves the performance of speaker diarization systems.

Jitter and shimmer voice quality features measure variations
of the fundamental frequency and the amplitude of speakers
voice, respectively. They have been applied in several speaker
related tasks reporting successful results. It is reported in [5]
that adding jitter and shimmer voice quality features to the base-

line spectral ones improves the performance of a speaker recog-
nition system. It is also shown in our work of [6] that the fusion
of jitter and shimmer voice-quality features with with the spec-
tral and prosodic ones improves the performance of a speaker
diarization system. The fusion of voice-quality features with
the spectral ones also provides better DER result than using only
spectral features as reported in our work of [6].

Other factors that affect the performance of speaker di-
arization systems are the techniques employed to perform both
speaker segmentation and speaker clustering. Speaker diariza-
tion systems mostly use Gaussian Mixture Modeling (GMM)
based Bayesian Information Criterion (BIC) clustering tech-
nique to merge clusters within an Agglomerative Hierarchical
Clustering (AHC) approach.

Factor analysis techniques which are the state of the art in
speaker recognition have recently been successfully applied in
speaker diarization experiments [7, 8, 9, 10, 11, 12, 13]. The
speech clusters are first represented by i-vectors and the suc-
cessive clustering stages are performed based on i-vector mod-
eling. Representing the speech clusters by i-vectors enables to
reduce the large-dimensional feature vector into a small dimen-
sional one by retaining most of the relevant information. For in-
stance, it is reported in [14] that modeling speech segments by i-
vector and using cosine-distance clustering technique improves
the performance of a diarization system more than GMM based
BIC clustering technique. It is also shown in [7, 8, 9] that i-
vector based cosine-distance clustering technique has been suc-
cessfully applied in speaker clustering task.

Note that the above mentioned works extract i-vectors ex-
clusively from short-term spectral features for speaker cluster-
ing task. Based on these studies, we propose the extraction of
i-vectors from short-term spectral, and long-term voice-quality
and prosodic features. The cosine distance scores of these i-
vectors are then fused for speaker clustering task. The experi-
ments have been conducted on a subset of AMI corpus [15], a
multi-party and spontaneous speech set of recordings, and as-
sessed in terms of speaker diarization error (DER). In order to
validate the generalization of results, different parameters have
first been tuned on a subset of AMI corpus. Then, we show
how results of previous methodology generalize on held-out
data both in single- and multiple-site scenarios of another subset
of the AMI corpus.

The rest of this paper is organized as follows. The next sec-
tions give an overview of voice-quality and prosodic features
followed by our speaker diarization system architecture. The
fusion techniques are outlined in Section 4. Section 5 and 6 dis-
cuss about experimental results and conclusions, respectively.
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2. Voice-quality and Prosodic Features
Although the most widely used features for speaker diarization
are MFCC, it is shown in [3, 4, 6] that prosodic features can
also be satisfactorily employed in speaker diarization systems.
It is also reported in [16, 17] that prosodic features provides
useful information for automatic speaker recognition. The work
in [18] has also shown that prosodic features have also been
successfully used in i-vector-based language identification task.

Jitter and shimmer, also known as voice quality features,
measure variations of fundamental frequency and amplitude of
speakers voice, respectively. Jitter and shimmer voice-quality
features have been successfully used in speaker diarization ex-
periments as reported in our work of [6]. They can be used to
detect voice pathologies [19], speaking styles and can also be
used to identify age and gender [20].

Although different estimations of jitter and shimmer mea-
surements can be found in the literature, we have computed
absolute jitter, absolute shimmer and shimmer apq3 measure-
ments encouraged by the good results presented in [5]. The
voice-quality features are estimated as described in [21].

• Jitter (absolute): It is a cycle-to-cycle perturbation in
the fundamental frequency of the voice, i.e., the average
absolute difference between consecutive periods.

• Shimmer (absolute): It is the average absolute logarithm
of the ratio between amplitudes of consecutive periods.

• Shimmer (apq3): It is the three-point Amplitude Pertur-
bation Quotient, the average absolute difference between
the amplitude of a period and the average of the ampli-
tudes of its neighbours, divided by the average ampli-
tude.

Prosody is characterized by rhythm, intonation, stress and
juncture of speech. Since these attributes cannot be measured
directly, only their acoustic or perceptual correlates can be ex-
tracted from speech signal. We have extracted the following
prosody-based features:

• Fundamental Frequency: It is influenced by age and
gender. A typical adult male’s fundamental frequency
ranges from 100 to 150 Hz, and that of a typical adult
female from 170 to 220 Hz. Therefore, fundamental fre-
quency can be used to discriminate speakers.

• Acoustic Intensity: It can be used to mark stress and ex-
press emotions. Therefore, changes in loudness can be
used as a potential speaker discriminant measure.

• Formant Frequencies: They occur only in voiced speech
segments around frequencies that correspond to the
speaker-specific resonances of the vocal tract. Therefore,
they are suitable measures to help discriminate speakers.

Features related to the evolution in time of pitch, acoustic
intensity and the first four formant frequencies have been ex-
tracted. Then, they are stacked with the three voice-quality fea-
tures at the feature level, generating a nine dimensional feature
vector. From now, for the sake of clarity, we shall refer to them
as long-term features.

3. Speaker Diarization Architecture
Our speaker diarization system consists of three basic modules.
The first module (Figure 1, Block A) performs mainly the fea-
ture extraction process. The second module (Figure 1, Block B)

Figure 1: Baseline speaker diarization architecture which
draws a classical bottom-up agglomerative approach based on
HMM/GMM modeling. The clustering technique is driven by
Bayesian Information Criterion.

detects speaker change points and performs the Viterbi segmen-
tation task. The third module (Figure 1, Block C) performs the
bottom-up clustering and outputs the system hypothesis.

3.1. Initialization (Figure 1, Block A)

The short-term and long-term speech features are masked by the
use of speech/non-speech references. Our motivation resides in
avoiding Speech Activity Detection (SAD) errors, thus focusing
exclusively on speaker errors due to the diarization approach.
The voice-quality and prosodic features are then stacked in the
same feature vector. The speech signal is then equally parti-
tioned to generate an initial number of clusters. The initial num-
ber automatically depends on meeting duration but it is con-
strained within the range [10, 65]. This method aims at tackling
the common issues of AHC such as over-clustering and its high
computational cost due to combinatorial explosion in pair-wise
distance computation.

3.2. Speaker Segmentation (Figure 1, Block B)

The set of acoustic features are modeled using Hidden Markov
Model(HMM)/GMM which is iteratively refined. Each state
of the HMM is composed of a mixture of Gaussians, fit-
ting the probability distribution of the features by the classi-
cal expectation-maximization (EM) algorithm. Note that for
speaker segmentation, independent HMM models are estimated
both for the short-term and long-term speech features and, at
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Figure 2: Proposed i-vector based speaker clustering architec-
ture based on a weighted cosine-distance among i-vectors.

the end, their best paths obtained by Viterbi segmentation are
fused. The number of mixtures is chosen as a function of avail-
able seconds of speech per cluster in the case of MFCC features.
But, they are kept fixed for the long-term speech features. Fi-
nally, a time constraint, as in [22], is also imposed on the HMM
topology. It constrains the minimum duration of the speaker
turn to be greater than 3 seconds which is commonly used as
mean value of a speaker intervention or speaker turn [22].

3.3. Speaker Clustering (Figure 2)

Our speaker diarization clustering system is based on agglom-
erative hierarchical clustering (AHC) technique. The baseline
system of our speaker diarzation system uses GMM based BIC
clustering technique.

Once the speech segments are generated by speaker seg-
mentation, the speech segment clusters are first represented by
a fixed dimensional i-vector. The successive clustering stages
will group two acoustically similar segments per iteration based
on their cosine distances among corresponding i-vectors. Factor
analysis techniques, which provide an elegant way of obtaining
a low dimensional fixed length representation, have been em-
ployed as proposed by [23].

Given speech segment clusters, the speaker and channel de-
pendent GMM supervector (M) is represented as follows:

M = m+ Tw (1)

where m is a speaker and channel independent supervector from
a Universal Background Model (UBM), T is a rectangular ma-
trix of low rank that captures all kinds of variabilities, including
speaker and session variabilities and w is a random vector hav-
ing a standard normal distribution N(0,1). The components of
the vector w are known as total factors. These new vectors, w,
are called i-vectors.

As it is shown in Figure 2, two i-vectors have been ex-
tracted. While the first one represents the short-time spectral
features, the second one represents the long-term ones. At
each iteration, the Viterbi segmentation outputs a new clustering
from which i-vectors are extracted. Then, the cosine-distance
scores are computed among every pair of i-vectors representing
each cluster and are linearly weighted.

At first, the similarity measure between all pairs of i-vectors
is computed. Then, the two closest clusters are merged at each

iteration, i.e., i-vector pairs with the highest cosine-distance
scores. At the next iteration and after Viterbi segmentation, a
new i-vector set is extracted from the new clustering and the
similarity matrix between cluster pairs is updated. Note that i-
vectors are only employed for speaker clustering task. The sub-
sequent Viterbi segmentation and realignments stages employ
short- and long-term speech feature as in our previous work [6].

The stopping criterion in the AHC is driven manually us-
ing a threshold λ on the matrix of distances. Once the cosine-
distance scoring among all pair of clusters is less than λ, the
merging process stops. Finally, the algorithm outputs the final
speaker segmentation hypothesis, see Figure 3 for more details.

4. Fusion Techniques
The three voice-quality and the six prosodic features are first
stacked in the same vector generating a nine dimensional feature
vector. Note that this might be considered as simple fusion at
the feature level. Two different score fusion techniques have
been applied on speaker segmentation and clustering steps.

Independent HMM models are first estimated both for the
short-term spectral and the long-term ones. The fusion of short-
term spectral features with the long-term ones is carried out at
the score level in speaker segmentation. It is done by fusing the
log-likelihood scores corresponding to these feature sets.

Given a set of input features vectors, {x} and {y}, the log-
likelihood score is computed as a joint log-likelihood between
features distributions as follows:

logP (x,y) =

α logP (x|θix) + (1− α) logP (y|θiy),
(2)

where logP (x,y) is the fused GMM score for cluster i, θix is
the model of cluster i from spectral feature vectors, and θiy is
the model for the same cluster i using long-term features. The
weight of the spectral feature vector is α and (1 − α) is the
weight of long-term speech features. The values of the α are
tuned on development data set.

At the clustering step, once the speaker clusters are gener-
ated using Viterbi segmentation, the fused cosine-distance score
is computed as follows:

score(i,j) = β.
xi · xj

‖xi‖‖xj‖
+ (1− β). yi · yj

‖yi‖‖yj‖
, (3)

where score(i,j) is the fused cosine distance score between clus-
ters i and j, xi and xj are the corresponding i-vectors extracted
from short-term spectral features for clusters i and j, respec-
tively. The vectors yi and yj stand for the i-vectors estimated
using long-term speech features for same clusters i and j, re-
spectively. Furthermore, two different weights are assigned to
both cosine-distances. While β weights the cosine-distance of i-
vectors extracted from short-term features, (1− β) weights the
cosine-distance of i-vectors extracted from the long-term fea-
tures.

5. Experiments and Results
5.1. Databases and Experimental Setup

Wiener filtering technique is first applied on audio record-
ings. Then, speech references are used to mask the non-speech
frames. This enables us to focus mainly on the speaker errors
that occur due to segmentation and clustering. The short-term
spectral-features are computed within a 30ms frame window
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at 10ms shift. The voice-quality and prosodic features are ex-
tracted over 30ms frame length and at 10ms shift using Praat
software [24]. Then, each voice-quality and prosodic feature is
estimated over a 500 ms window with 10ms shift. This is done
to smooth out the feature estimation of the unvoiced frames.
It is also done to synchronize the long-term features with the
short-term ones.

The UBM and the T matrix are trained using 100 AMI
shows which amount to 60 hours of audio. The AMI shows
were recorded in English using three different setup rooms ac-
counting for different acoustic properties. The recordings were
performed at Idiap, Edinburgh, and TNO sites. Two univer-
sal background models (UBMs) of 512 Gaussians components
have been trained. The first one is for the short-term spectral
features and the second one is for the long-term ones. The
UBM of short-term spectral features is trained on 20 cepstral
co-efficients without the deltas. The UBM of long-term fea-
tures is trained using the voice-quality and prosodic features. A
100 and 50 dimensional raw i-vector sizes are extracted from
the short- and long-term speech features, respectively. The size
of the total variability matrix is 100 for the short-term speech
features and 50 for the long-term ones. The i-vector framework
is carried out using the ALIZE open source software [25].

The experiments have been developed and tested on AMI
corpus, a multi-party and spontaneous speech set of recordings
[15].

• Development database: 10 shows from AMI corpus
have been selected as a development set. These shows
are used to tune the optimum parameters, i.e., stopping
criterion threshold value, size of i-vectors and optimum
set of weight values when score fusion is carried out. The
total duration of the development set is 260.48 minutes.
The development database is based on far-field micro-
phone array channels sampled at 16kHz.

• Test database: In order to evaluate the performance of
our proposed systems, two different experimental sce-
narios have been defined. The first one comprises 10
single-site audio recordings from Idiap site only. The
second one is a multiple-site scenario. It includes 10
recordings from the Idiap, Edinburgh and TNO sites.
The total duration of the single-site and multiple-site sce-
nario dataset are 307.36 and 294.01 minutes, respec-
tively. The test database is also based on far-field mi-
crophone array channels sampled at 16kHz.

Note that optimum parameters found through experimenta-
tion on the development database have been directly used on the
test sets.

5.2. Performance Metrics

The performance metric employed for assessing speaker di-
arization systems is the Diarization Error Rate (DER). DER
represents the sum of false alarm speech, missed speech and
speaker error along time. Since speech references have been
used, the rate of false alarms and missed speech have zero val-
ues in our experimental results. Hence, DER values reported in
the following sections corresponds purely to speaker time con-
fusion produced by the diarization system.

5.3. System Development

Experiments have been carried out first on the development set
in order to find out the optimum parameters, i.e., the optimum
α and β values, size of i-vectors and λ threshold value for stop-

ping criterion.
The threshold value λ is selected manually as it is shown

in Figure 3 in order to stop the iterative merging process. It is
based on a data driven approach. The DER and corresponding
cosine distance score values at each iteration are compared and
λ that minimizes the DER value is selected. Thus, the system
stops merging when the cosine distance score value among all
pair of clusters is below this λ value. The optimum weight val-
ues for α and β are 0.975 for the short-term spectral features.

Table 1 depicts the results of the development dataset. The
table shows that the baseline system of the development set has
a DER of 30.09%. Note that the baseline system is based on
GMM based BIC clustering technique exclusively on MFCC
feature set. The table shows that replacing the BIC clustering
of the development dataset by i-vector based cosine-distance
speaker clustering technique on the same feature set decreases
the DER to 27.03%. It represents more than 10% relative DER
improvement more than the baseline system. The use of BIC
clustering with MFCC and long-term features on the develop-
ment dataset yields a DER of 25.98%. This corresponds to
13% relative DER improvement more than the baseline system.
Finally, the table reports that the use of i-vector based cosine
distance clustering technique with both short- and long-term
speech features provides a DER of 25.42%. This DER value
represents a 5.96% relative DER reduction more than the sys-
tem based on same clustering technique but using only MFCC
feature set.

Two main interpretations can be made from the develop-
ment dataset results. The first one is that the results indicate
the suitability of applying i-vector modeling technique within
the clustering stage. The second one demonstrates that long-
term speech features convey useful and complementary speaker
discrimination more than the spectral features.

5.4. System Assessment

The tuned parameters, i.e., λ, β and size of i-vector(see Sections
4 and 5.3) have been used without modification on the single-
and multiple-site scenario test sets.

As it is shown in Table 2, the baseline system system of
the single-site scenario test set has a DER of 15.87%. The use
of i-vector based cosine distance clustering using only MFCC
feature set decreases the DER to 15.01%. This represents a
5.42% relative DER improvement more than the baseline sys-
tem. Finally, the table reports that the use of i-vector based
cosine distance clustering technique using short- and long-term
speech features gives us the lowest DER, i.e., 13.37%. This
represents a 10.99% relative DER improvement more than the
system using same feature sets but applying GMM based BIC
clustering technique. It also represents a 10.92% relative DER
improvement more than the system using i-vector based clus-

Feature set Clustering DER(%)
Technique

MFCC GMM 30.09
MFCC + Long-term features GMM 25.98
MFCC i-vector 27.03
MFCC + Long-term features i-vector 25.42

Table 1: DER of Development dataset for GMM based BIC
and i-vector based cosine distance clustering techniques using
short- and long-term speech features.
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Figure 3: DER and cosine-distance score per iteration for selected shows from the development set.

Feature set Clustering DER(%)
Technique

MFCC GMM 15.87
MFCC + Long-term features GMM 15.02
MFCC i-vector 15.01
MFCC + Long-term features i-vector 13.37

Table 2: DER of Single-site scenario test set for GMM based
BIC and i-vector based cosine distance clustering techniques
using short- and long-term speech features.

Feature set Clustering DER(%)
Technique

MFCC GMM 24.66
MFCC + Long-term features GMM 22.96
MFCC i-vector 22.79
MFCC + Long-term features i-vector 20.06

Table 3: DER of Multiple-site scenario test set for GMM based
BIC and i-vector based cosine distance clustering techniques
using short- and long-term speech features.

tering technique and only MFCC feature set.
Finally, Table 3 reports results of the multiple-site sce-

nario test set. The table shows that the baseline system of the
multiple-site scenario test set provides a DER of 24.66%. The
use of i-vector based based cosine distance clustering technique
exclusively on MFCC feature set yields a DER of 22.79%. This
represents a 7.58% relative DER improvement more than the
baseline system. Finally, the table shows that the use of i-vector
based clustering with short- and long-term speech features pro-
vides the best DER, i.e., 20.06%. It corresponds to a 12.63%
relative DER improvement more than the system employing
GMM clustering technique and using same feature sets. It also
corresponds to a 11.98% relative DER improvement more than
the system based on i-vector based clustering technique and
only MFCC feature set.

The results reported on both single- and multiple-site con-
ditions indicate the feasibility of using i-vector modeling for
speaker clustering task. Moreover, the results show that the use
of short- and long-term features enhance the performance of
speaker diarization system by adding complementary speaker

Figure 4: Box plots of single- (grey) and multiple-site (white)
scenario test recordings. Four different combinations are re-
ported, resulting from the mixing of clustering approaches and
feature sets.

information, independently of the clustering approach.

5.5. Discussion

The box plots in Figure 4 depict the DER distribution of the dif-
ferent recordings for both single- and multiple-site scenario test
sets. The figure shows the minimum, lower quartile, median,
upper quartile, and maximum DER performed by the GMM
and i-vector clustering techniques. The figure shows that the
proposed i-vector based clustering technique using short- and
long-term features provides the minimum variance among all
clustering techniques in terms of DER. Note that the DER vari-
ance is lower for single-site scenario test set than multiple-site
one. As it is also shown in Figure 3, the DER values increase
with the number of iterations because of over-clustering.

The DER values of different recordings show substantial
differences as it is shown in Table 4. The duration of audio
signals has lower correlation value with the DER for i-vector
based clustering techniques than GMM based ones. This indi-
cates that the use of i-vector based clustering reduces the DER
range among the different recordings. As it shown in the ta-
ble, the signal to noise (SNR) does not have a clear relationship
with DER. Finally, the table shows that the final number of de-
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GMM GMM i-vector i-vector
Show MFCC MFCC+long-term MFCC MFCC+long-term Duration Real/Detected SNR(db)
Name DER(%) DER(%) DER(%) DER(%) (minutes) # of speakers

ES2015d 51.45 42.07 52.25 53.36 32.11 4/9 20.75
IS1006a 53.63 53.63 49.15 39.94 14.1 4/6 18.25
IS1004a 53.6 53.35 37.01 39.23 13.16 4/0 21.50
TS3009c 57.72 57.14 44.41 39.13 43 4/11 21.75
IS1006c 30.34 29.36 29.43 30.11 32.3 4/8 23
IS1009d 24 22.06 22.66 21.66 32.24 4/11 20
ES2008a 19.06 20.21 24.65 20.86 17.23 4/10 18.25
IS1008c 23.37 7.15 27.14 14.77 25.46 4/11 23.00
IS1002d 30.5 36.46 22.23 26.31 21.03 4/7 16.5
IS1000d 12.8 11.75 11.62 12.22 43.38 4/11 20.75
IS1002c 9.82 10.27 9.77 10.16 34.4 4/10 36.50
IS1004c 12.49 10.85 12.44 8.28 37.43 4/10 24.25
EN2003a 6.06 5.92 6.61 7.24 37.2 3/7 9
IS1008b 14 10.93 17.01 6.93 29.28 4/11 21.25
IS1000c 5.19 5.62 5.22 5.77 35.14 4/7 20.25

EN2009b 5.94 11.29 6.1 5.36 41.14 3/5 21.25
IS1009b 4.53 4.63 5.11 4.88 34.12 4/11 21.25
IS1004b 3.77 4.06 3.98 3.85 36.21 4/7 24

Table 4: DER for different shows of AMI recordings per each corresponding modeling technique and feature set combination. Record-
ings are sorted by DER of fourth column. Highlighted (grey) rows correspond to AMI multiple-site recordings. In addition, the
recording duration and Signal to Noise (SNR) along with real/detected number of speakers are also reported. The real/detected number
of speaker is for i-vector based clustering that uses MFCC and long-term features.

tected speakers is not optimum since a manual threshold value
is used as a stopping criterion. Therefore, an automatic stopping
criterion threshold value that varies per iteration and recording
should be found.

Although the extraction of i-vectors and the use of i-vector
based clustering techniques reduce the DER error for most of
the recordings, the DER increases for few of them compared to
the baseline system. The reasons for this issue are still unknown
to us and needs further exploration.

In overall, our experimental results validate the usefulness
of the proposed methodology. The use of the i-vector based
clustering technique based on short- and long-term speech fea-
tures increase the robustness and reliability of speaker diariza-
tion systems.

6. Conclusions
In this work, we have proposed the extraction of i-vectors from
short- and long-term speech features and the fusion of their
cosine-distance scores for speaker clustering task. Experimen-
tal results were carried out on two evaluation sets of subset of
AMI corpus, i.e., single-site and multiple-site scenarios.

First of all, experimental results show that i-vector cluster-
ing technique based on short- and long-term features provides
better DER than the same clustering technique using only short-
term features. Secondly, the results show that i-vector clustering
technique provides a substantial relative DER improvement for
most of the recordings more than GMM one.

The results of our work manifest the usefulness of i-
vector based clustering technique based on short- and long-term
speech features within in the framework of speaker diarization.
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