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ABSTRACT 19 

Carbon footprint (CF) is nowadays one of the most widely used environmental indicators. The scope 20 

of the CF assessment could be corporate (when all production processes of a company are evaluated, 21 

together with upstream and downstream processes following a life cycle approach) or product (when 22 

one of the products is evaluated throughout its life cycle). Our hypothesis was that usually product CF 23 

studies (PCF) collect corporate data, because it is easier for companies to obtain them than product 24 

data. Six main methodological issues to take into account when collecting corporate data to be used 25 

for PCF studies were postulated and discussed in the present paper: fugitive emissions, credits from 26 

waste recycling, use of “equivalent factors”, reference flow definition, accumulation and allocation of 27 

corporate values to minor products. 28 

A big project with 18 wineries, being wine one of the most important agri-food products assessed 29 

through CF methodologies, was used to study and to exemplify these 6 methodological issues. 30 

One of the main conclusions was that indeed, it is possible to collect corporate inventory data in a per 31 

year basis to perform a PCF, but having in mind the 6 methodological issues described here. In the 32 

literature, most of the papers are presenting their results as a PCF, while they collected company data 33 

and obtained, in fact, a “key performance indicator” (ie., CO2eq emissions per unit of product 34 

produced), which is then used as a product environmental impact figure. 35 

The methodology discussed in this paper for the wine case study is widely applicable to any other 36 

product or industrial activity.  37 

 38 
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1. Introduction 44 

 45 
1.1. LCA based carbon footprint methodologies 46 

 47 
There is a huge ongoing effort to improve and promote the use of life cycle assessment (LCA) in 48 

Europe, through the PEF
1
 and OEF

2
 methodologies, within the Single Market of Green Products 49 

Initiative
3
. Application of this methodology in a great variety of industries, such as agri-food 50 

(Iribarren, et al., 2011; Fantin, et al., 2014; Rinaldi, et al., 2014), waste management (Biganzoli, et al., 51 

2015; Ioannou-Ttofa, et al., 2016; Styles, et al., 2016) and energy supply (López-Sabirón, et al., 2014; 52 

Gallejones, et al., 2015)  among others, can be found in the literature. However, there is an even higher 53 

worldwide trend of simplification (Baitz et al., 2013; Bala et al., 2010) focussing on a single indicator, 54 

carbon footprint, relevant to global warming, which is internationally considered as a critical 55 

environmental concern (Pattara et al., 2012; Weidema et al., 2008). Being a one-indicator 56 

methodology doesn’t mean that there are no methodological pending issues in carbon footprint 57 

calculation; such as the accounting of organic carbon (Arzoumanidis et al., 2014). Carbon footprint 58 

may be assessed at product level, following the LCA methodology for only this one impact category 59 

and following standards such as: PAS 2050 (2011), ISO 14067 (2013) or GHG Protocol for products 60 

(2011). It can also be assessed at corporate level, following standards such as: ISO 14064 (2006) or 61 

GHG Protocol for organisations (2004 and 2011).  62 

 63 

Corporate carbon footprint (CCF) can be calculated with three scopes (GHG corporate protocols, 2004 64 

and 2011): 1) direct emissions, 2) indirect emissions from electricity production and other services, 65 

and 3) indirect emissions upstream and/or downstream on the production chain. There are a number of 66 

industrial sectors which have high greenhouse gas (GHG) emissions at their facilities (mainly due to 67 

combustion) or because of their intensity in electricity use. Those which are affected by EU Directives 68 

(DIRECTIVE 2003/87/EC) and the dominant scopes are 1 and 2. The rest of the economic sectors 69 

have diffuse emissions and they are mainly found within scope 3. In order to calculate any 70 

contribution (the so-called emission factors in carbon footprint terminology) from a process within 71 

scope 3, such as the emissions due to the production of fuel or a certain raw material, or the 72 

management of a certain waste, there is a need to use the LCA methodology (GHG corporate protocol, 73 

2011). Therefore, whether a product carbon footprint (PCF) or a scope 3 CCF is at stage, there is 74 

somehow a need for LCA methodology. LCA is generally performed in a process-oriented approach, a 75 

“bottom-up” approach which needs to build the supply chain of the process and get data from each 76 

process unit.  77 

 78 
The process-oriented approach is not the only one used to evaluate the environmental impacts of a 79 

product, due to the difficulties to get data from companies in the value chain, the time needed to 80 

perform such LCA studies and possible truncation errors (Lenzen, 2000), other approaches are 81 

described in the literature derived from the Environmental Input-Output (EIO) methodology based on 82 

financial accounts (Huang et al., 2009; Penela et al., 2009; Cagiao et al., 2011; Alvarez et al., 2014; 83 

Kjaer et al., 2015; Alvarez and Rubio, 2015; Alvarez et al, 2015). The hybrid approach (using both 84 

process-LCA and EIO methodologies) is a “top down” approach in which inventories are quantified 85 

using monetary data at a high aggregation level, and hybridized with “bottom-up” process-based data 86 

collection, when more detail is needed (Berners-Lee, et al., 2011). The advantage of such an approach 87 

is the use of readily available financial data as starting point for screening. For CCF, yearly financial 88 

                                                           
1
 Product Environmental Footprint 

2
 Organisation Environmental Footprint 

3
 http://ec.europa.eu/environment/eussd/smgp/ 
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accounts together with supplier invoices provide the data input. For PCF, life cycle costing (LCC) 89 

inventories are needed.  90 

Nevertheless, some uncertainties are still described within this “top-down” approach (Kjaer et al., 91 

2015), and they are related to the EIO model used or the data inputs. On the one hand, model related 92 

uncertainties are mainly: data age (monetary data is unstable and vary over time), geographic coverage 93 

(data availability is higher from some geographic areas than others in the world) and sector 94 

aggregation (match between the category where money is spent and the EIO sector found in the 95 

databases; ie., a very specific spend, a “coffee machine” for example, doesn’t match well with a wide 96 

EIO sector, as “machinery and equipment”). On the other hand, data uncertainty arises when changes 97 

are implemented, because it is important for companies to be able to monitor the effect of these 98 

changes. So this approach is useful for screening studies, but needs further development for more 99 

accurate and specific results. 100 

Although both approaches, process-LCA and hybrid EIO-LCA, have the ability to assess both 101 

corporate and PCF by first calculating a detailed CCF and then distribute the GHG emissions among 102 

the products and services dispatched to the market, only the hybridized approach claims to do it 103 

(Alvarez and Rubio, 2015).  104 

There is a lot of literature on carbon footprint calculations of products and companies, most of them 105 

using the process-LCA approach. When a PCF is performed, inventory data of all processes related to 106 

the production of this specific product should be collected. Nevertheless, due to the fact that, for most 107 

companies, it is easier to report global annual consumptions and emissions instead of the product’s 108 

specific inputs and outputs, our hypothesis is that some PCF calculations are performed distributing 109 

the company’s inventory data among the different produced products. Most of the literature on PCF 110 

doesn’t explain in detail the type of inventory data collected.  111 

The aim of this paper is, first of all, to show some methodological issues which have to be taken into 112 

account when following the previous described procedure when calculating a PCF (company’s annual 113 

consumption distributed among the different produced products) and, secondly, to perform a mapping 114 

of the wine CF literature, as an example, to see how these methodological issues are treated. 115 

 116 
1.2. Carbon footprint in the wine sector 117 

Wine production constitutes one of the most ancient economic sectors, being still nowadays a very 118 
important agri-food activity in Europe. Grape growing, similarly to other agricultural activities, has a 119 
significant impact on the environment due to the use of fertilizers, pesticides, water and energy and 120 
due to soil erosion and land use. 

 121 
 122 
In this context, many publications assessing the different environmental burdens associated with wine 123 
production for improvement can be found in the literature (Rugani et al., 2013; Bonamente, et al., 124 
2016). Wine LCA studies vary on the type of wine, white (Fusi et al., 2014) or red (Gazulla et al., 125 
2010; Pattara et al., 2012; Amienyo et al., 2014); the country where wine is produced, such as Spain 126 
(Gazulla et al., 2010; Vázquez-Rowe et al., 2012a; 2012b; Meneses, et al., 2016), France (Bellon-127 
Maurel, V., et al., 2015), Italy (Benedetto, 2013; 2014; Iannone et al., 2016; Marras, S., et al., 2015), 128 
Portugal (Neto et al., 2013), Australia (Thomas, 2011), Canada (Point et al., 2012; Steenwerth, K.L., et 129 
al., 2015); and the life cycle stages included in the study, cradle to grave (Gazulla et al., 2010; 130 
Meneses, et al., 2016) or cradle to gate (Pattara et al., 2012).  131 
 132 
Many other published studies tackle only the CF of wine production systems, either PCF (Cholette et 133 
al., 2009; Pattara et al., 2012; Vazquez-Rowe et al., 2013) or CCF: one vineyard in Italy (Marras, S., et 134 
al., 2015) and a winery in Spain with no inventory data (Penela et al., 2009).  135 
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 136 
Wine LCA-related publications presenting inventory data (see Table 7) will be reviewed according to 137 
the above mentioned aim of the present paper. In addition, the authors have worked with 18 wineries 138 
within two research projects on CCF of the wine sector (CO2vino, 2014  and Vineco, 2014) and this 139 
experience will be used to show examples of the methodological issues described. 140 
 141 
Three research questions were formulated with the aim of finding answers from our experience in CF 142 
projects of wine sector and after reviewing the above mentioned published literature: 143 

1) Which are the problems we would face when collecting CCF inventory data to perform a PCF 144 
study? 145 

2) Which is the usual procedure/approach of the published literature for the case study of wine? 146 
3) Is it sensible/accurate to collect CCF inventory data to perform a PCF calculation? 147 

 148 

Our hypothesis is that the gathered data is usually corporate data, because it is more easily obtained 149 

and can be more easily checked or audited. We want to discuss the possible deviations when 150 

performing this approach. 151 

 152 

2. Materials and methods 153 

In this paper the three research questions will be answered by combining 3 sources of information: 154 

 The standards describing the methodologies to perform a corporate and a product CF. 155 

 The authors’ experience in the wine sector coming from two research projects studying 18 156 

wine companies. 157 

 The LCA literature for the wine sector published in scientific-international-peer-reviewed 158 

journals. 159 

 160 

 161 

2.1. Standard methodology description for CCF and for PCF  162 

Figure 1 illustrates the difference among LCA, PCF and CCF and more precisely between a CCF with 163 

only scope 1 (direct emissions) included, a corporate with all scopes included (1, 2 and 3, with direct 164 

and indirect emissions up and downstream) and a PCF. LCA is an environmental evaluation of a 165 

product along its life cycle, which includes many impact categories. On the other hand, carbon 166 

footprint calculations include only one impact category: global warming potential (see Figure 1). 167 

Between corporate and product CF the main difference is that one company can produce many 168 

products and when performing a CCF all the products of the company are included in the assessment, 169 

while in PCF only one product is evaluated (as shown in Figure 1). Additionally, a CCF may include 170 

scopes 1, 2 and 3, so that the whole life cycle is studied (upstream and downstream of the company), 171 

while scope 1 includes only direct emissions (the ones that take place within the company) (also 172 

shown in Figure 1).  173 

 174 

 175 
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Figure 1. Differences between Life Cycle Assessment vs Corporate and Product Carbon Footprint (after 177 
Fullana-i-Palmer and Raugei, 2013). 178 

 179 

CCF studies can include both, direct and indirect GHG emissions to help companies understand their 180 

whole value chain emissions impact in order to focus company efforts on the greatest GHG reduction 181 

opportunities, leading to more sustainable decisions about companies’ activities and the products they 182 

buy, sell, and produce. Table 1 shows the detailed aspects included in each of the 3 scopes that a 183 

company can study in its CCF. Thus, for example, in scope 1 the emissions coming from combustion 184 

facilities (boilers, furnaces, etc.) have to be included, together with mobile combustions (from owned 185 

vehicles), fugitive emissions (from air conditioning and refrigerating facilities) and other 186 

physicochemical processes (such as waste water treatment plants owned by the company). Scope 2 187 

includes the emissions due to the production of the electricity consumed by the company. As these 188 

emissions take place outside the company (in other companies producing electricity, like power-plants 189 

or nuclear-plants among others), they are considered indirect emissions. Other indirect emissions are 190 

included in scope 3, like the emissions due to the production of raw materials (category 1) consumed 191 

by the reporting company, or the treatment of its wastes (category 5 of upstream indirect emissions, 192 

Table 1). 193 

Scope 1 and 2 are mandatory to include in any CCF reporting, while the inclusion of scope 3 is 194 

optional. 195 

 196 

Table 1. CCF: emissions included in each scope. (Elaborated from GHG protocols corporate, 2004 and 2011) 197 

Scopes Items/Categories Comments 

1 
Direct 

emissions 

Stationary combustion Emissions from combustion in owned or controlled 
boilers, furnaces, etc. 

Mobile combustion Emissions from combustion in owned trucks, cars, 
etc. 

Fugitive emissions Emissions from intentional or unintentional 
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releases, e.g., equipment leaks from joints, methane 
emissions from coal mines and venting, 
hydrofluorocarbon (HFC) emissions during the use 
of refrigeration and air conditioning equipment and 
methane leakages from gas transport. 

Physicochemical processes Emissions from manufacture or processing of 
chemicals and materials 

2 
Indirect 

emissions 
Generation of purchased 
electricity 

Emissions from the generation 
of purchased electricity consumed by the company 

3 

Upstream 
Indirect 

emissions 

1. Purchased goods and 
services  

Extraction, production, and transportation of goods 
and services purchased by the company 

2. Capital goods  Extraction, production, and transportation of capital 
goods acquired by the company 

3. Fuel- and energy-related 
activities (not included in 
scope 1 or scope 2)  

Extraction, production, and transportation of fuels 
and energy purchased 

4. Upstream transportation 
and distribution  

Transportation of products purchased by the 
company 

5. Waste generated in 
operations  

Disposal and treatment of waste 
generated 

6. Business travel  Transportation of employees for 
business-related activities 

7. Employee commuting  Transportation of employees 
between their homes and their 
worksites 

8. Upstream leased assets  Operation of assets leased by the company 

Downstream 
Indirect 

emissions 

9. Downstream 
transportation and 
distribution  

Transportation and distribution 
of products sold by the company 

10. Processing of sold 
products  

Processing of intermediate 
products sold 

11. Use of sold products  End use of goods and services sold by the reporting 
company 

12. End-of-life treatment of 
sold products  

Waste disposal and treatment of 
products sold by the company 

13. Downstream leased assets  Operation of assets owned by 
the reporting company 

14. Franchises  Operation of franchises 

15. Investments Operation of investments 

 198 

The final report of a CCF contains the amount of CO2eq emitted by the reporting company during the 199 

reported year. This account is very useful to identify where the largest energy, material and resource 200 

use takes place within the supply chain, in order to help decisions to reduce GHG emissions and to 201 

lead the company into a more sustainable business model. When the company begins to implement 202 

improvement measures, it is necessary to quantify the improvement achieved. This is why the “key 203 

performance indicators” are very useful to show the improvement evolution of the company 204 

throughout the years. These “key performance indicators” are calculated by referring the GHG 205 

emissions calculated per year in relation to the production (or the incomes, etc.) achieved in the same 206 

year. Thus, for example, when calculating the GHG emissions from a winery during one year, the 207 

result will be expressed in number of tones of CO2eq emitted in 2014, while a “key performance 208 

indicator” could be defined as number of kg of CO2eq emitted per bottle of wine produced, permitting 209 

then to compare 2014 emissions, with 2015 ones and so on. Is this key performance indicator equal to 210 

the PCF of a bottle of wine produced by that company? Not exactly. 211 
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PCF studies are meant to obtain the GHG emissions due to the life cycle of the product. An 212 

organization may wish to publicly communicate a PCF for many reasons which may include: 213 

providing information to consumers and others for decision-making purposes; enhancing climate 214 

change awareness; supporting an organization’s commitment to tackling climate change; supporting 215 

implementation of policies on climate change management, etc. PCF quantification requirements are 216 

linked to communication aims (including intended target groups) and to verification.  217 

The results of a PCF calculation will most probably be given in kg of CO2eq emissions per unit of 218 

product. Although CF quantification result can be expressed in a very similar way between corporate 219 

(with “key performance indicators”) and product approach, the inventory data needed in each case can 220 

vary significantly. Nevertheless, this aspect is not always reported in the literature. 221 

Within the “wine family” many different products can be found, varying from red to white wine, with 222 

different production processes, types of packaging, grape varieties, etc. If the aim of the study is to 223 

obtain average statistical data on GHG emissions for the wine sector in a country in order to improve 224 

the environmental performance of this production sector, the expected result should be also expressed 225 

as kg of CO2eq emissions per unit of average product (to allow benchmarking) and data will need to 226 

be gathered from the most representative wineries in the country. In this case, which approach and 227 

which data should be gathered: product or corporate data?  228 

Six main methodological issues (differences between CCF and PCF), identified from the knowledge of 229 

both standards and from the experience elaborating product and corporate studies, are postulated and 230 

will be discussed and illustrated in the present paper: 231 

a) Fugitive emissions: CCF includes fugitive emissions (ie. refrigerant gases) in scope 1, while 232 

PCF doesn’t specifically mention them and might not be included if they are not part of the 233 

production process. 234 

b) Waste: CCF doesn’t include credits from the recycling of waste, in contrast to PCF. 235 

c) Use of equivalent factors: they can be more precisely obtained in PCF than in CCF.  236 

d) Reference flow definition: is the reference unit to which inventory data will be related. It 237 

means that consumptions per reference flow will be gathered (ie. in a wastewater treatment 238 

process all consumptions/emissions will be related to kg or m
3
 of wastewater treated). Usually 239 

a correct reference flow definition is more important in PCF than in CCF, but not always. 240 

e) Accumulation: can be a misleading factor in CCF but, usually, it wouldn’t affect PCF. 241 

f) Allocation to minority products: can be a problem in PCF, but not in CCF. 242 

 243 

2.2. Case study of wine 244 

To discuss the methodological issues postulated before (research questions to be answered) two main 245 

sources of information will be used: the experience of the authors coming from previous projects 246 

studying 18 wineries and a literature review of wine-LCA&CF related papers. 247 

a) Literature review, source: published papers about LCA or CF of wine will be studied, with 248 

special emphasis on data collection and other details related with the previously indicated 249 

differences between CCF and PCF (such as refrigerant gases emissions, waste, reference flow, 250 

accumulation, etc.). Only papers presenting inventory data will be analysed.  251 

 252 
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b) Authors experience in wine projects: A total of 18 wineries were studied and average results 253 

were published (Navarro, et al., 2017). The reference unit for all our studies was defined as the 254 

production of a 0.75 L bottle of wine (obtained from processing 1 kg of grape). This can be 255 

considered as the functional unit (FU) for PCF studies, because their usual aim is to determine 256 

the hotspots in the life cycle of the product. Nevertheless, in CCF studies there is no functional 257 

unit, only key performance indicators to relate the impact to the production of the company. 258 

Inventory corporate data was gathered through questionnaires and meetings with company-259 

responsible persons of the participating wineries. System boundaries of the study are shown in 260 

Figure 2. Vineyard subsystem includes all agricultural operations needed for grape growing 261 

and final harvesting to obtain the grapes, which are the input to the winery subsystem. The 262 

winery subsystem includes wine production, bottling and packaging processes. 263 

Methodological issues postulated before will be illustrated with examples coming from the 264 

authors’ experience with those wineries. 265 

 266 

Figure 2. System boundary and flow diagram of the wine production system. 267 

 268 

It is important to say that, although grape variety, climate and technologies of winemaking are 269 

important issues that deserve further analysis and of course affect the CF results of any wine, it is not 270 

the aim of this paper to explain and detail the different grape varieties and technologies used by the 271 

wineries studied. The most important phases of winemaking are (Zeppa, 2007): must production, 272 

alcoholic fermentation and bottling. Must production and fermentation technologies are different for 273 

white and red wines and there are also differences among wines in the same category.  For white 274 

wine, grape crushing must be done very carefully because the compounds present in the skin and 275 

stem must not pass into the must (thus, it is obtained with a simple grape pressing). On the contrary, 276 

in the must used for red wine production, skins and seeds are present and during the alcoholic 277 

Agricultural field operations

VINEYARD

Grape harvesting

Wine making

 Bottle of wine 

Bottling and packaging

Energy

Wine making 

chemicals

 Bottling and 

packaging materials

Energy

Agrochemicals

Wastewater

Solid waste

Fugitive emissions

WINERY

Grapes



 9 

fermentation the color and tannin must be extracted. Another difference is that, during alcoholic 278 

fermentation, selected yeasts, sulfur dioxide and nutrient substances are added. Type and quantities 279 

of yeasts and nutrients depend on the type of grape and wine to be produced. All these inputs affect 280 

the CF calculation. 281 

Therefore, the CF result for a winery is an indicator, which evaluates the performance of this specific 282 

winery and its evolution along the time. CF results should not be used to compare wineries or wines, 283 

because, as mentioned before, there are many issues affecting these results. 284 

 285 

 286 

3. Results and Discussion 287 

 288 

3.1. Average CCF results: from our case study on wine 289 

 290 

Carbon footprint calculations, from vineyard and winery inventory data (Figure 2), were performed by 291 

using CO2-eq emission factors. For data associated with the production of chemicals, these factors 292 

were taken from the GaBi6 professional database (Thinkstep, 2015); and for data related to other 293 

processes, such as direct and indirect N2O soil emissions from synthetic and organic fertilisers, waste 294 

treatment, etc., emission factors were obtained from IPCC 2007 (IPCC 2007a; IPCC 2007b). They 295 

were calculated according to country and region specific characteristics. 296 

The overall average CCF of the 18 wineries studied delivered, as key performance indicator: 0.85 kg 297 

CO2-eq per one bottle of 0.75L of wine (see Table 2) (Navarro, et al., 2017).   298 

 299 
Table 2 Contribution of each wine production process to the carbon footprint of 0.75 L of wine. 300 

 301 

 302 

  303 

 304 

 305 

 306 

 307 

 308 

 309 

3.2. Discussion of methodological issues (differences between CCF and PCF) with examples 310 

 311 

3.2.1. Fugitive emissions 312 

CCF includes fugitive emissions (from intentional or unintentional releases, e.g., hydrofluorocarbon 313 

(HFC) emissions during the use of refrigeration and air conditioning equipment) in scope 1, while 314 

product carbon footprint doesn’t specify it and, probably, for many products, if these fugitive 315 

emissions are not directly related to the product production process, they will not be considered. This 316 

is the case of release of refrigerant gases in winery, not directly related with the production process of 317 

wine. In this case study, the difference of considering or not considering the refrigerant gases release is 318 

not significant (about 0.2%, see Figure 3) but, it might be more important for other types of products. 319 

 320 

 Average 

 [kg CO2-eq/bottle] 

  

Vineyard phase 0.23 

Winery phase 0.62 

  

Total bottle 0.75 L wine 0.85 
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 321 

Figure 3. Carbon footprint (kg CO2 eq/bottle) of the same winery by considering and not-considering the 322 
refrigerant gases fugitive emissions. 323 

 324 

3.2.2.  Environmental credits from waste recycling 325 

The calculation of CO2eq emissions due to the production and treatment of waste is different between 326 

CCF and PCF. Scope 3 of CCF includes a category named “waste generated in operations”. To 327 

calculate the CO2eq emissions within this category, two types of wastes are distinguished: the ones 328 

going to a recycling process, in which case only transport to the recycling facility is considered (not 329 

the recycling process itself), and the ones going to landfilling or other final treatments, where both 330 

transport and treatment burdens are allocated to the producer. According to the Corporate scope 3 331 

GHG protocol (GHG Protocol, 2011), to avoid double counting of emissions from recycling processes 332 

by the same company, companies should account for upstream emissions from recycling processes in 333 

category 1 and category 2 (see Table 1) when the company purchases goods or materials with recycled 334 

content. In category 5 and category 12, companies should account for emissions from transport and 335 

final treatments, but should not account for emissions from recycling processes themselves (these are 336 

instead included in category 1 and category 2 by purchasers of recycled materials). Companies should 337 

not report negative or avoided emissions associated with recycling in category 5or category 12 (see 338 

Table 1). Any claims of avoided emissions associated with recycling should not be included in, or 339 

deducted from, the scope 3 inventory, but may instead be reported separately from scope 1, scope 2, 340 

and scope 3 emissions. 341 

In PCF calculations wastes going to recycling and/or recovery are considered as part of the system 342 

studied and burdens from both, transport and recycling treatment, are considered in the calculation and 343 

also credits are obtained by the studied product/service from the recovered/recycled material produced, 344 

because it will substitute the corresponding amount of virgin material in the same or other product 345 

system. Thus, according to ISO 14067, there are two procedures to treat recycling in PCF studies: the 346 

closed-loop allocation procedure and the open-loop allocation. Closed-loop allocation can be applied 347 

to closed-loop systems (the recycled material is used in the same product system again) and to open-348 

loop systems when the recycled material has the same inherent properties as the primary material. In 349 

those cases, GHGs emissions of recycling process are allocated to the product that delivers the 350 
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recycled material and this recycled material (which leaves the product system) carries a “recycling 351 

credit” which corresponds to the GHGs emissions of the primary material acquisition. 352 

If an open-loop recycling takes place, in which the material is recycled into other product systems and 353 

undergoes a change to its inherent properties, allocation procedures are needed (ISO 14067, 2013). In 354 

this case, the “shared unit processes” are the extraction and processing of raw materials, the collection 355 

and recycling processes, and the end-of-life operations. The percentage of this shared unit processes 356 

that corresponds to the product studied and to the other product systems have to be justified. Further 357 

guidance should be found in sector guidance and published product category rules. For instance, a 358 

closed-loop recycling would be a company producing plastic components which re-uses its own 359 

plastic waste in the same production process, while if plastic waste goes to another company to be 360 

recycled, then it is an open-loop recycling. In open-loop recycling, if the recycled plastic has the same 361 

quality than before, then the recycled process together with the credits from the new plastic obtained 362 

are allocated to the first product. Nevertheless, if the recycled plastic has lower quality, allocation of 363 

impacts to the first and second products has to be justified (Bala et al, 2015). 364 

For example, when the winery produces glass waste (due to some bottles that were accidentally 365 

broken) an open-loop recycling takes place. In this case, the CCF methodology would only consider 366 

the transport of the glass waste from the winery to the recycling plant as part of the studied system, 367 

while the PCF would consider also the recycling treatment and the credits for the recycled glass 368 

obtained (which will avoid a certain quantity of virgin glass to be produced). One of the studied 369 

wineries (producing 596500 L of wine in 2013) reported 200 kg of glass waste. In this specific case, 370 

although methodologically important (and probably quantitatively relevant for other sectors), the 371 

difference between both approaches (corporate vs product in the wine sector) due to glass recycling 372 

was very small, only about 0.018% (see Table 3). 373 

Table 3. Comparison between corporate and product approach in relation with the treatment of recycled waste. 374 

Life Cycle 

stage 

CCF 

(No credits from recycled 

waste) 

[kg CO2 eq/bottle] 

PCF 

(With credits from recycled 

waste) 

[kg CO2 eq/bottle] 

Credits from glass 

recycled 

[kg CO2 eq/bottle] 

Vineyard 1.195 1.195 0 

Winery 0.505 0.5046 -3.07*10
-4

 

Total 1.7 1.7 -3.07*10
-4 

 375 

 376 

3.2.3. The influence of using “equivalent factors” 377 

Equivalent factors are used when a mixture of products is studied. For example, in the wine sector, 378 

when a winery cooperative resulting from the association of many farmers is producing different types 379 

of wine, an average yield from grapes to wine has to be taken. In our study, the factor used was 1kg of 380 

grape = 0.75 L wine. This figure came from wineries involved in the project. If this factor is slightly 381 

different, the results of carbon footprint are strongly affected (see Figure 4). This equivalent factor 382 

usually varies between 1 and 1.2 kg grape/L of wine; although a minimum value of 0.9 and a 383 

maximum of 1.7 has been found in the literature (see Table 7). This uncertainty, in our results, gives a 384 

20% increase in the contribution of the vineyard phase and a 5.4% increase in the CF of one bottle of 385 

wine. 386 

 387 
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 388 

Figure 4. Carbon footprint results per bottle of wine: contribution of vineyard phase depending on the 389 

“equivalent factor” considered. 390 

 391 

 392 

3.2.4. Importance of the reference flow definition 393 

 394 

When calculating the CCF or PCF within a company which has processes in different locations and 395 

the connection of the processes could be made with different reference flows, it is important to choose 396 

the most convenient one, because this choice can deeply affect the results of the calculations. 397 

In the case of the wine sector, this issue is shown when connecting the vineyard stage (agriculture) 398 

with the winery (industry), because the process data from the vineyard stage can be obtained per ha 399 

cultivated or per kg of grape collected, and then the ha or the kg of grape have to be related to the 400 

amount of wine produced. In this case, as a whole, results show a wider variation, in inventory data 401 

average, if ha is used as the reference flow, while kg of grapes is a more stable choice (see coefficient 402 

of variation, CV, in Table 4). This aspect was more deeply discussed in a previous paper (Navarro, et 403 

al., 2017).  404 

When the inventory data is used to calculate impact results, thus the CCF impact result of the 405 

vineyard, the “key indicator” kg CO2eq emitted per kg of grape produced, is different if kg of grapes 406 

is used as the reference flow compared with using the cultivated area in ha (see Figure 5). In this last 407 

case, an additional “equivalent factor” to convert ha into kg of grapes was used (coming from 408 

vineyards participating in the project): it was assumed that, in average, 0.0002 ha produce 1kg of 409 

grape. 410 

 411 

  412 
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Table 4. Inventory data of vineyard phase per kg of grape or per ha. 413 

Vineyard phase 

Inputs 
CASE 1: Per kg of grape CASE 2: Per ha of vineyard 

Min. Max. Mean SD.c CV.d Min. Max. Mean SD.c CV.d 

Organic fertilizer  

[kg N]a 
0.00003 0.0102 0.0048 ± 0.0037 77% 0.1 61.0 29.9 ± 26.7 89% 

Urea based synthetic 

fertilizer [kg N]a 
0.0020 0.0060 0.0037 ± 0.0019 53% 9.9 46.0 30.9 ± 17.4 56% 

Phosphorous based 

synthetic fertilizer  

[kg P2O5]b 
0.0036 0.0357 0.0114 ± 0.0137 121% 20.0 213.7 70.1 ± 51.7 

116
% 

Phytosanitary 

products 0.0026 0.0224 0.0081 ± 0.0074 91% 12.3 189.9 52.3 ± 81.6 99% 

Diesel [L] 0.0120 0.0611 0.0310 ± 0.0150 48% 44.6 474.8 221.2 ± 144 65% 

Electricity [kWh] 0.0009 0.0770 0.0450 ± 0.0280 62% 10.0 568.0 352.4 ± 207 59% 

a Values were expressed in kg of nitrogen (N) content 

of each fertilizer product. 

b Values were expressed in kg of phosphorus pentoxide 

(P2O5) content of each fertilizer product 
c SD: Sample Standard Deviation: d CV: Coefficient of  Variation: 

SD   

 414 

 415 

 416 

 417 

 418 
Figure 5. Impact results of vineyard CF per kg of grape depending on the reference flow 419 

 420 

 421 

3.2.5. Accumulation 422 

When collecting corporate data from a company, some inconsistencies may appear due to 423 

accumulation. To prevent this, when inventory data is gathered through a questionnaire, additional 424 

cross-check information should be asked. 425 
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For example, in our case study a winery reported for 2013 the amount of bottled wine produced 426 

(8119827 L), the total weight of glass bottles bought (874643.7 kg) and the average weight per bottle 427 

of 0.75L of wine (0.41-0.54 kg/bottle). With this information, if the average weight per bottle is 428 

calculated by dividing the total weight of glass bottles bought by the number of bottles (0.75L wine), 429 

an average of 0.081 kg/bottle is obtained (far below the range reported). When asking the winery for 430 

this inconsistency, it was found that stored bottles from previous years were used and part of the wine 431 

produced was to be bottled during years to come (“crianza” wines). The conclusion is that, when 432 

checking the mass balance, accumulation may be very important for this sector and others, while 433 

usually only in and out of mass and energy is accounted, expecting that one year is a long enough 434 

period to avoid accumulation. 435 

 436 

3.2.6. Allocation of company data to minor products 437 

A company may sell different products. The calculation errors are higher when the amount of the 438 

studied product is lower in relation to the total amount of products manufactured by the company. 439 

One of the studied wineries was a cooperative company with many vineyards providing grapes. The 440 

winery makes different types of wine (as shown in Table 5) and they wanted to calculate the PCF for 441 

their highest quality wine (Chardonnay white wine), which represented 0.037% of their total wine 442 

production. The winery has no specific data on production processes (vineyard and winery) for this 443 

specific wine, they only provided its specific packaging data and the area of vineyard and kg of grape 444 

from which this wine came from (see Table 6). All other inventory data was aggregated data from all 445 

wines produced and the corresponding part had to be allocated to this Chardonnay wine.  446 

Table 5. Types of wine produced in the winery and winery allocation factor. 447 

TYPE OF WINE Quantity [L] *Mass percentage [%] 

Rosé (total) 336569  

White 
White (total) 8692199  

Chardonnay wine 62602.5 0.37 % 

Red (total) 7694649  

TOTAL wine production 16723417 100 % 

*Quantity of specific wine related to the  total production in  %. 

 448 

 449 
Table 6. Vineyard allocation factors for the Chardonnay wine under study. 450 

 451 

In the absence of the specific inventory data for the product (Chardonnay wine), the allocation of a 452 

fraction of the total consumption of pesticides, fuels, oenological products, etc., used by the winery 453 

and their farms during the campaign 2013 was needed. For the vineyard inputs, the allocation factor 454 

 
Vineyard area 

[ha] 
% of area 

Quantity of grape 

[kg] 
% of grape 

Chardonnay wine under 

study 
29.1382  1.2 101620 0.46 

TOTAL wine produced  2462.34   *22297889  

 *Value calculated  from the total wine produced (L), reported by the winery, after considering that 1kg grape = 0.75L wine 
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used was 0.46% (obtained from the relation in kg of grape). For the winery consumptions the 455 

allocation factor was 0.37% (calculated regarding L of wine). 456 

It was noted that this allocation had a very important role in the result. For example, if the allocation 457 

of vineyard phase was carried out based on the hectares occupied by Chardonnay wine (1.2%) related 458 

to the total vineyard area (one may think that the application of pesticides and fertilizers may depend 459 

more on hectares than on kg) instead of kg of grapes (0.46%), the result of carbon footprint would 460 

have been 4.1 kg CO2 -eq per bottle, very different from the 1.97 kg CO2-eq per bottle obtained and 461 

away enough from the values found in the literature (usually between 1 and 2 kg CO2-eq per bottle). 462 

According to our results (Navarro, et al., 2017) taking “kg of grape” as the reference flow for vineyard 463 

phase is more accurate than taking “cultivated area”. As discussed in section 3.2.4, this second choice 464 

has a higher standard deviation. 465 

Usually, the lower the representativeness of the wine product to assess respect to the total production 466 

of wine from the cellar, the greater the mathematical error generated by the allocation procedure. 467 

 468 

 469 

3.3. Methodological choices found in LCA/CF literature about wine 470 

In Table 7, wine literature showing inventory data and CF or LCA impact results is evaluated 471 

according to methodological issues described in the previous section. 472 

 473 

Table 7. Details on wine LCA and CF studies reported in the literature. 474 

Wine 

literature  

LCA & CF 

  

Wine FU
a 

Vineyard 

RF
b 

Inventory data
 

Nº of 

companies  

Credits from 

waste?
 c
 

Comments  

vineyard winery 

Amienyo et 

al., 2014 

Product 

LCA  

1 bottle of 

wine (0.75 

L) 

 

1 ha 

✔ 
 

✔ 
 

1 winery 

Australia 

NO; burdens of  

recycling goes 

to the user of 

recycled 

material 

together with 

credits from 

avoidance of 

virgin material 

 1 type of red wine 

 10 t of grape produced/ha 

 1.05 kg grape = 0.75 L 

wine 

 0.86 kg CO2 eq/ bottle 

(cradle to gate) 

 

Ardente, F, 

2006. 

Product 

LCA 

1 bottle of 

wine (0.75 

L) 

 

1 ha 

✔ 
 

✔ 
 

1 winery 

Italy 

NS  6 types of wine 

 1 kg grape = 0.75L wine  

 1.6 kg CO2 eq/bottle 

 3 indicators: energy 

consumption, CO2 

emissions, and water 

consumption. 

Bellon-

Maurel, V., 

et al., 2015 

Product 

LCA 

1 kg grape 

(Syrah) 

 

1 year 

(2006) 

✔ 
 

 1 vineyard 

France 

 

NO cred from 

waste 
 Aiming at simplifying 

collection of inventory 

data in agricultural works 

 Different plots (soil 

properties) 

 Vineyard: 0.16 – 1.39 kg 

CO2/kg grape 
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Benedetto, 

G., 2013. 

Product 

LCA  

1 bottle of 

wine (0.75 

L) 

 

1 ha 

✔ ✔ 1 winery 

Italy 

NS  1 type of wine from a 

winery producing various 

 1.39 m2 =1.67 kg 

grape=1L wine 

 1.64 kg CO2/bottle 

 

Bosco et 

al., 2011  
Product 

LCA 

(PEF) 

1 bottle of 

wine (0.75 

L) 

 

NS 

(follows 

EPD 2008) 

✔ ✔ 4 wineries 

Italy 

YES; allocation 

of impacts to 

by-products and 

wastes 

(fertilizers, etc.) 

 4 types of wine 

 0.6-1.3 kg CO2 eq/bottle 

(includes distribution & 

waste management) 

 Agriculture responsible for 

20% of CF 

 

Fusi et al., 

2014 

Product 

LCA 

 

1 bottle 

white wine 

(0.75 L) 

 

1 m2 

✔ 
 

✔ 
 

1 winery 

Italy 

NS; although 

they consider 

glass recycling 

rates higher and 

lower than the 

61% considered 

as input 

 Year 2012 

 1 type of wine 

 1 m2 vineyard = 1.071 kg 

grape = 0.75 L wine 

 Vineyard 0.17 kg CO2 

eq/bottle and winery 0.83 

kg CO2 eq/bottle 

Gazulla et 

al., 2010 

Product 

LCA  

1 bottle of 

wine (0.75 

L) 

 

0.0002 ha 

✔ 
 

✔ 
 

Some 

wineries 

Spain 

YES  Rioja “crianza” wine 

  1.273 kg grape = 0.75 L 

wine 

 Vineyard 0.5 kg CO2 

eq/bottle and winery 0.43 

kg CO2 eq/bottle 

 

Iannone et 

al., 2016 

Product 

LCA 

1 bottle of 

wine (0.75 

L) 

 

1 kg of 

grape 

 ✔ 
 

1 winery 

Italy 

NS; probably 

yes from 

recycling of 

glass 

 4 wines (red and white) 

 1.078; 1.208; 1.36; 1.465 

kg grape / bottle 

Marras, S., 

et al., 2015 

CCF 

1 kg grape 

 

1 ha 

✔ 
 

 1 vineyard 

Italy 

NO  CF result 0.39 kg CO2 eq/ 

kg grape 

 Only scope1  

 1.1 kg grape = 0.75L wine 

Neto et al., 

2013 

Product 

LCA 

 

1 bottle of 

wine (0.75 

L) 

 

NS 

✔ 
 

✔ 
 

1 winery 

Portugal 

NS; although 

waste is 

quantified 

  2008 

 1 type of wine 

 1 kg grape = 0.75 L wine 

Pattara et 

al., 2012 

Corporate 

vs PCF 

  

1 bottle of  

red wine 

(0.75 L) 

 

 

  1 winery 

Italy 

YES; identifies 

credits from 

waste as a 

difference 

between 

corporate and 

PCF 

 2010 & 2011 

 only impact results 

 comparison between CCF 

calculator and PCF 

 70 t grape = 50,000 L 

wine 

 1.29 kg CO2 eq/bottle 

Villanueva-

Rey et al., 

2014 

Product 

LCA 

1 bottle of 

wine (0.75 

L) 

 

1.1 kg 

grape 

✔ 
 

 3 wineries  

Spain 

 

NO  Different viticulture 

techniques 

 2010 & 2011 

 Use of land and labour 

impacts: methodology 

described 

Point et al., 

2012  
Product 

1 bottle of 

wine (0.75 

L) 

✔ 
 

✔ 
 

12 wineries 

Canada 

(Nova 

NS  2006 

 1.25 kg grape = 0.75 L 

wine 
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LCA  

1 ha 

Scotia)  representative for Nova 

Scotia 

 vineyard 0.80 kg CO2 

eq/bottle and winery 

0.81 kg CO2 eq/bottle 

Thomas, 

M., 2011.  
Product 

LCA 

1 bottle of 

wine (0.75 

L) 

 

1 ha 

✔ 
 

✔ 
 

2 wineries 

New 

Zealand 

NO; transport 

included but 

not benefits 

from 

recycling 

 1 type of wine (Sauvignon 

Blanc wine) 

 1.04 kg grape = 0.75 L 

wine 

 Distribution included 

 1.4 kg CO2 eq/bottle 

Vázquez-

Rowe et al., 

2012a  

Product 

LCA 

 

0.75 L  

white wine 

(Ribeiro) 

 

1.1 kg of 

grapes  

 

✔ 
 

 40 

vineyards 

Spain 

NA  2007-2010 

 1.1 kg grape = 0.75 L 

white wine  

 LCA and DEA (Data 

Envelopment Analysis) 

 Comparing efficiency of 

vineyards 

 Vineyard 0.46 ± 0.2 kg 

CO2 eq/bottle 

Vázquez-

Rowe et al., 

2012b 

Product 

LCA 

1 bottle of 

wine (0.75 

L) 

 

1.1 kg 

grape 

✔ 
 

✔ 
 
 

1 winery 

Spain 

NO  Ribeiro appellation white 

wine 

 2007-2010 

 2.64 – 3.21 kg CO2 

eq/bottle 

 

Vázquez-

Rowe et al., 

2013  

PCF 

1 bottle of 

wine (0.75 

L) 

 

0.9-1.25 kg 

grape/bottle 

✔ 
 

✔ 
 

4 Italy, 42 

Spain, 2 

Luxembou

rg wineries 

NS  9 different types of wine 

 data from different 

literature sources  

 Vineyard 1.6 kg CO2 

eq/bottle Ribeiro 

a
FU: functional unit of the study. 

b
RF: reference flow. It refers to the unit used as reference for 475 

vineyard inputs and outputs (kg grape or ha cultivated). 
c
NS: not specified; NA: not applicable. 476 

 477 

Literature review shows clearly that, in all previous references, inventory data is obtained from each 478 

company (winery or vineyard) as corporate inventory for a specific year. In case that the company is 479 

producing a single wine, this corporate inventory is equivalent to a product inventory at the production 480 

stage, but if the company is producing several wines an average is obtained (implicitly allocating by 481 

mass). This fact demonstrates our first hypothesis: it is easier for companies to obtain corporate data 482 

than product data. Thus, the usual way to proceed is to collect corporate data and obtain a “key 483 

performance indicator” that is usually used as a product environmental impact figure. Apparently, 484 

none of the revised papers took into account the fugitive emissions of refrigerant gases, as it would 485 

have to be done in corporate carbon footprint accounting according to GHG Protocol (2004) and ISO 486 

14064. 487 

Some of the published studies are using the surface of cultivated vineyard as the reference flow in the 488 

agricultural stage (which, as said before, has a higher standard deviation), while others are using the kg 489 

of grapes produced. 490 

There are also some of the studies that calculate the avoided impacts due to the recycling of wastes (ie. 491 

glass waste) and use them as environmental credits. Other papers don’t consider or don’t mention it. 492 
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Only one of the previous published studies states that the data of the winery is allocated to one of the 493 

various types of wine produced (Benedetto, G., 2013.), but it doesn’t mention the representativeness of 494 

this specific wine within their global wine production. 495 

Although the equivalent factor used from kg of grape to L of wine produced has a great influence on 496 

the results, none gives much importance to this factor and not all of them are mentioning the value 497 

used for this conversion (ie. Bosco et al., 2011). The amount of grape needed to produce 1 bottle (0.75 498 

L) of wine is very variable, depending on the type of wine 0.9-1.465 kg grape/bottle. White wine 499 

usually needs more kg of grape than red wine. The most often reported value is 1.1 kg of grape per 500 

bottle of wine. 501 

Finally, the CF-results-margin reported in this previous literature for a bottle of wine will be also 502 

summarized here, just for curiosity reasons. The total CF for a bottle of wine (vineyard+winery 503 

impact) varies from 0.6 to 3.2 kg CO2 eq/bottle. The CF of the vineyard stage varies from 0.2 to 1.6 kg 504 

CO2/bottle and, in the winery phase, from 0.43 to 0.83 kg CO2 per bottle of wine. The reported weight 505 

per empty bottle varies between 202 g/bottle (“Chianti Colli Senesi” wine) and 571g/bottle (Vázquez-506 

Rowe et al., 2013).  The average results obtained in our case study (0.23 kg CO2eq/kg grape and total 507 

CF value of 0.85 kg CO2eq/bottle of wine) are within the range reported in these previous 508 

publications. These different results are normal because the wine-making process has different options 509 

(ie., for white wine compared to red wine, sparkling or non-sparkling wines, young or reserve wines, 510 

etc.). The vineyard phase is also different depending on the cultivated rape variety, the type of land 511 

and the climate conditions among others (ie, in areas with very humid weather more amount of 512 

fungicides have to be applied but less irrigation is needed). Therefore the CF results should not be 513 

used to compare wines or wineries, but to improve the environmental performance of a specific wine 514 

or winery along the time. 515 

 516 

3.4. Application of the results to other industries 517 

The six methodological issues identified and discussed here with examples from the wine case study 518 

are applicable to other companies, dealing with food or non-food products. The six topics identified as 519 

differences between corporate and product CF approaches (fugitive emissions, credits from waste 520 

recycling, use of “equivalent factors”, reference flow definition, accumulation and allocation of 521 

corporate values to minor products) are general and could affect the CF results of any type of industry. 522 

An example of these six methodological issues in the case of olive oil production is discussed here as 523 

another very similar example: 524 

- Fugitive emissions: if there are air conditioning devices or cold storage rooms in the oil 525 

making company, their impact will be included in a CCF but probably not in a PCF. 526 

- Credits from waste recycling: credits from the recycling of the glass from the olive oil bottle 527 

will be included in a PCF, but probably not in a CCF. 528 

- Use of “equivalent factors”. An important equivalent factor in this case is the amount of olive 529 

oil obtained from 1 kg of olives. This equivalent factor can be different depending on the type 530 

of olives, their maturity and the year studied. It is important to take the specific “equivalent 531 

factor” for each olive oil and avoid using averages. 532 

- Reference flow definition: the production of olive oil has a first agricultural life cycle stage 533 

(similar to wine). In this case also, the use of ha or kg of olives as reference flow to quantify 534 

inputs and outputs from agriculture, will be probably an important issue. 535 
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- Accumulation: stocks of glass bottles or additives from last year would also affect the results 536 

of a product carbon footprint coming from corporate data. 537 

- Finally, allocation of corporate data to minor products (ie. a very especial extra virgin olive 538 

oil) should be avoided. 539 

It is important to notice that what is discussed here for corporate vs product CF approach, single 540 

indicator, can be extended to environmental footprint (EF) approach, multiple indicators. In the EU, 541 

there is an on-going effort now to develop category rules on how to perform product environmental 542 

footprints (PEF) and organization environmental footprints (OEF), following the same patterns as for 543 

CF. The category rules are meant to say what to consider and how to perform the LCA for a specific 544 

product category. The product category rules are a solution to harmonize product LCA studies, but 545 

they don’t avoid the fact that inventory data is usually gathered as corporate data, therefore the 546 

methodological issues discussed here (comparing corporate vs product approaches) are still very 547 

relevant. PEF system follows a product approach and the category rules are not addressing subjects 548 

like fugitive emissions (because this is very specific for only carbon footprint), neither accumulation 549 

nor allocation of corporate values to minor products, etc.  550 

The rules of  PEF for leather (another very different product), for example (Fontanella, et al., 2016), 551 

don’t address fugitive emissions (although most leather companies have cold storage rooms) , neither 552 

accumulation (although many chemicals are stored from year to year) nor allocation of corporate 553 

values to minor products. On the other hand, they are giving guidelines on how to address credits from 554 

waste recycling; the use of “equivalent factors” (ie. conversions from kg of hide to surface (m2) of 555 

final leather) and reference flow definition (ie. the number of animals needed to produce a specific 556 

amount of raw hide/skin).  557 

Therefore, methodological issues already discussed here, between corporate and product CF, are still 558 

significant.  559 

 560 

 561 

4. Conclusions 562 

The main conclusion of this study is that, yes, it is possible and accurate enough to evaluate a PCF 563 

collecting corporate data. Nevertheless, the six methodological issues identified and discussed here 564 

have to be taken into account in every case study, because they could strongly affect the results. These 565 

6 topics are: fugitive emissions, credits from waste recycling, use of “equivalent factors”, reference 566 

flow definition, accumulation and allocation of corporate values to minor products. 567 

From our case study on wine (two projects including 18 wineries), two of the previous topics (fugitive 568 

emissions and credits from waste recycling) showed very small influence in the results (0.2% and 569 

0.02% respectively). On the contrary, the other four topics were identified as being very significant in 570 

this case study:  a) “Equivalent factors”: obtaining an accurate value of “kg of grapes needed to 571 

produce 0.75 mL of wine” was identified as being very important to get precise results; b) Reference 572 

flow definition: using kg of grape as reference flow for the vineyard phase leads to more accurate 573 

results than using cultivated area (in ha); c) Accumulation: stored glass-bottles from previous years 574 

would have lead to highly inaccurate results if it had not been detected; d) Allocation to minor 575 

products: using specific product data for minor products instead of allocating them the corporate data, 576 

is recommended. 577 
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The wine literature review (17 wine-LCA papers reporting inventory data together with CF results) 578 

lead to the conclusion that most of the papers are presenting their results as a “PCF”, while they 579 

collected company data in a per year basis (CCF). This fact demonstrates our first hypothesis: it is 580 

easier for companies to obtain corporate data than product data. Thus, the usual way to proceed is to 581 

collect corporate data and obtain a “key performance indicator” that is usually used as a product 582 

environmental impact figure. Regarding the 6 topics previously described: the account of fugitive 583 

emissions from refrigerant gases was not reported in any of the published papers; most of the papers 584 

don’t consider or don’t mention credits from waste recycling; none of the published papers gives much 585 

importance to the “equivalent factor” kg of grape per wine-bottle and not all of them are mentioning 586 

the value used for this conversion (ie. Bosco et al., 2011); the reference flow used in the vineyard 587 

phase is not always the same: in some papers the vineyard cultivated-area was used while in others 588 

they use the kg of grape produced. Finally, only one of the published studies states that the data of the 589 

winery is allocated to one of the various types of wine produced (Benedetto, G., 2013.), but it doesn’t 590 

mention the representativeness of this specific wine within their global wine production.  591 

Being, nowadays, CF one of the most widely used environmental indicators, it is important that all 592 

stakeholders take into account the methodological aspects described here in order to obtain as much 593 

accurate results as possible. 594 

Although product category rules are being developed in the EU for different products to harmonize the 595 

LCA studies and results to obtain a product environmental footprint (PEF), these rules are not usually 596 

addressing, not solving, the type of core-data (corporate or product) to be used in the study. A PEF 597 

study follows a product approach and what is discussed in the present paper is the comparison between 598 

product and corporate approaches. Therefore, methodological issues discussed here between corporate 599 

and product CF are still significant when comparing corporate and product environmental footprints 600 

(OEF vs PEF). This is why the present paper is very relevant.  601 

Finally, some practical implications for companies arise from this study, the most important ones are 602 

that: 1) it is possible to collect corporate data to perform a product carbon footprint (or environmental 603 

footprint), but, when doing so, 2) a especial care of the 6 methodological issues described here is 604 

needed and details on how they have been addressed should be included in the report.  605 

 606 
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