
LRU-PEA: A Smart Replacement Policy for Non-Uniform Cache

Architectures on Chip Multiprocessors

Javier Lira1, Carlos Molina1,2 and Antonio González3

1 Universitat Politècnica de Catalunya
2 Universitat Rovira i Virgili

3 Intel Barcelona Research Center, Intel Labs - UPC

javier.lira@ac.upc.edu, carlos.molina@urv.net and antonio.gonzalez@intel.com

Abstract—The increasing speed-gap between processor and memory
and the limited memory bandwidth make last-level cache performance

crucial for CMP architectures. Non Uniform Cache Architectures

(NUCA) have been introduced to deal with this problem. This memory
organization divides the whole memory space into smaller pieces or

banks allowing nearer banks to have better access latencies than further

banks. Moreover, an adaptive replacement policy that efficiently reduces
misses in the last-level cache could boost performance, particularly if set

associativity is adopted. Unfortunately, traditional replacement policies

do not behave properly as they were designed for single-processors.

This paper focuses on Bank Replacement. This policy involves three
key decisions when there is a miss: where to place a data block within

the cache set, which data to evict from the cache set and finally, where

to place the evicted data. We propose a novel replacement technique
that enables more intelligent replacement decisions to be taken. This

technique is based on the observation that some types of data are less

commonly accessed depending on which bank they reside in. We call

this technique LRU-PEA (Least Recently Used with a Priority Eviction
Approach). We show that the proposed technique significantly reduces

the requests to the off-chip memory by increasing the hit ratio in the

NUCA cache. This translates into an average IPC improvement of 8%

and into an Energy per Instruction (EPI) reduction of 5%.

I. INTRODUCTION

The memory system is a pivotal component which

can boost or decrease performance dramatically. Chip

Multiprocessors (CMPs) typically incorporate large and

shared last-level caches (LLCs) with a homogeneous access

time. However, the increasing influence of wire delay in

cache design means that access latencies to the last-level

cache banks are no longer constant [1]. Non-Uniform Cache

Architectures (NUCAs) have been proposed [2] to address

this problem. A NUCA divides the whole cache memory into

smaller banks and allows nearer cache banks to have lower

access latencies than more distant banks, thus mitigating the

effects of the cache’s internal wires. Therefore, each bank

behaves as a regular cache and all of them are connected by

means of an interconnection network.

When incoming data arrives at a NUCA cache, it is first

determined in which bank the new data should be placed by

means of a placement policy. Then, the replacement policy

must make three decisions considering a set-associative bank:

(1) where to insert the new data in the bank, (2) which

data to evict from the bank and (3) where to place the

evicted data. Notice that a direct-mapped bank only needs to

determine what to do with the evicted data. As the number

of cores on chip increases, so does the contention caused

by applications sharing the LLC. Thus, performance of such

systems is heavily influenced by how efficiently the shared

cache is managed and an efficient and adaptive replacement

policy could boost performance.

One of the key challenges in a replacement policy is

choosing the most appropriate data to evict. For this reason,

an oracle that knew the future of the program would be the

best data eviction policy. Unfortunately, this is not affordable.

Thus, most policies already proposed in the literature choose

the data to be evicted from the cache on the basis of its

history; for example, whether the data has been accessed

since its allocation.

In this paper, we propose a novel technique called the

LRU-PEA (Least Recently Used with a Priority Evicted

Approach) that selects evicted data on the basis of an

explicit NUCA data characterization. This approach relies

on the traditional LRU scheme whislt also prioritising data

within a single bank of the NUCA cache. Furthermore, this

mechanism globalizes the replacement decisions that have

been taken in a single bank to multiple banks within the

NUCA cache.

The remainder of this paper is structured as follows.

Section II describes the baseline architecture used in our

studies. Section III analyses the characteristics of cache

accesses. Section IV presents the experimental methodology.

Section V introduces the proposed mechanism, and Section

VI analyses its performance and energy consumption.

Related work is discussed in Section VII and concluding

remarks are given in Section VIII.

II. BASELINE ARCHITECTURE

As illustrated in Figure 1, the baseline architecture consists

of an eight-processor CMP based on that of Beckmann

and Wood [3]. The processors are located on the edges of

the NUCA cache, which occupies the central part of the

chip. Each processor provides the first-level cache memory,

composed of two separated caches: one for instructions and

one for data. The NUCA cache is the second-level cache

memory and is shared by the eight processors. The NUCA

cache is divided into 256 banks structured in a 16x16 mesh

that are connected via a 2D mesh interconnection network.

The banks in the NUCA cache are also logically separated

into 16 banksets that are either local banks (shaded light

in Figure 1) or central banks (shaded dark in Figure 1)

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 275

Fig. 1. Baseline architecture layout.

according to their physical distance from the processors. A

NUCA model can be characterized by describing how it

behaves with the following four policies: Bank Placement

Policy, Bank Migration Policy, Bank Access Policy and Bank

Replacement Policy. Thus, we can describe the behaviour

of the baseline NUCA model for each of the four NUCA

policies:

a) Bank Placement Policy: This policy determines in

which bank of the NUCA cache memory a data element

should be placed when it comes from the off-chip memory

or from other caches. We assume that an address can only

be mapped to a single bank within the bank-set. Therefore,

a data block has 16 possible placements in the NUCA cache

(eight local banks and eight central banks). The incoming

data from the main memory is placed statically within a bank,

whereas the incoming data from the first-level cache is placed

in the closest local bank of the requestor core.

b) Bank Migration Policy: This policy is triggered

when a hit has been produced in the cache. It determines if

a data element is allowed to change its placement from one

bank to another bank, which data should be migrated, when

this data should be migrated and to which bank it should

be moved. We assume gradual promotion. Thus, when there

is a hit in a NUCA bank, the accessed data is promoted to

a bank that is one-step closer to the processor that has just

accessed it.

c) Bank Access Policy: This policy determines the

bank-searching algorithm in the NUCA cache memory space.

We assume a two-step data search algorithm in the NUCA

cache. The first phase of this algorithm broadcasts a request

to the local bank that is closest to the processor that launched

the search, and to the appropriate eight central banks. If all

nine initial requests miss, the request is broadcasted to the

remaining seven banks where the address can be placed in

the NUCA cache. Only after a request misses all 16 banks

will a request be sent off-chip.

d) Bank Replacement Policy: This policy is triggered

when a miss has been produced in the cache or when a data

block comes from a lower memory level. Once the Bank

Placement Policy has determined the bank in which the data

should be placed, the Bank Replacement Policy determines

how the data is inserted within the bank and which data

is evicted from that bank. Therefore, several decisions must

be taken, particularly if set-associativity is adopted. For the

sake of simplicity, this policy can be split into three more

separated sub-policies:

• Data Insertion Policy: This determines the position

within the replacement stack of the cache set where

the incoming data must be placed. We assume the

Most-Recently Used (MRU) mechanism, which is the

most commonly used approach in cache organizations.

• Data Eviction Policy: This determines the data that

must leave the cache when an incoming data arrives.

We assume the Least-Recently Used (LRU) mechanism,

which is also the most commonly used approach in all

types of cache organizations.

• Data Target Policy: This determines the destination of

the data that has been replaced. We assume that the

evicted data is sent directly back to the off-chip memory.

III. MOTIVATION

Being able to apply a bank migration policy that moves

data within the cache is one of the most interesting features

of NUCA caches. This enables recently accessed data to

be stored close to the requesting core in order to optimize

access response times for future accesses. These movements,

however, often concentrate the most recently accessed data

in the NUCA banks that are next to the cores. As a result,

NUCA banks behave differently according to their physical

location within the cache. Whereas the banks that are close

to the cores (local banks) usually store the most recently

accessed data, the banks which are physically located in

the centre of the NUCA cache (central banks) store lines

that are moving into or leaving local banks, because the

bank migration policy implemented uses gradual promotions.

In addition to this, bank placement policy also introduces

a difference between local banks and central banks. Thus,

when data is evicted by a first-level cache, it is relocated to

the closest local bank in the NUCA cache. Furthermore, an

incoming line from the off-chip memory is statically placed

within a NUCA bank.

On the basis of these two features, we classify data in the

NUCA cache into four categories: (1) data that has just been

promoted (promoted), (2) data that has just been demoted

(demoted), (3) data that has just arrived from the off-chip

memory (offchip) and (4) data that has just arrived from a

first-level cache (L1 replacement).

We analysed the behaviour of the NUCA cache with regard

to these four categories, and found that nearly all accesses

that were satisfied by local banks were L1 replacement data.

However, the vast majority of accesses satisfied by central

banks were promoted data.

On the basis of this observation, we propose a novel

replacement policy that benefits from the type of data

(promoted, demoted, off-chip or L1 replacement) that is most

276

commonly accessed from local and central banks. We refer

to this mechanism as the LRU-PEA (Least Recently Used

with a Priority Eviction Approach).

IV. EXPERIMENTAL METHODOLOGY

A. Simulation Environment

We use the full-system execution-driven simulator, Simics

[4], extended with the GEMS toolset [5]. GEMS provides

a detailed memory-system timing model that enables us

to model the NUCA cache architecture. Furthermore, it

perfectly models the network contention introduced by

all simulated mechanisms. The simulated architecture is

structured as a single CMP made up of eight UltraSPARC IIIi

homogeneous cores. Regarding the memory hierarchy, each

core provides a split first-level cache (data and instructions).

The second level of the memory hierarchy is the NUCA

cache. We used the MOESI token-based coherence protocol

to maintain correctness and robustness in the memory

system. Table I summarizes the configuration parameters

used in our studies. The access latencies of the memory

components are based on the models done with the CACTI

6.0 [6] modelling tool, that is the first version of CACTI that

provides support for modelling NUCA caches.

Processors 8 - UltraSPARC IIIi

Frequency 1.5 GHz

Block size 64 bytes

L1 Cache (Instr./Data) 32 KBytes, 2-way

L2 Cache (NUCA) 8 MBytes, 256 Banks

NUCA Bank 32 KBytes, 8-way

L1 Latency 3 cycles

NUCA Bank Latency 4 cycles

Router Latency 1 cycle

Avg NUCA Miss Latency 250 cycles

TABLE I

CONFIGURATION PARAMETERS.

We simulated the whole set of applications from the

PARSEC benchmark suite [7] with the simlarge input data

sets. This suite contains 13 programs from many different

areas such as image processing, financial analytics, video

encoding, computer vision and animation physics, among

others. Regarding the methodology used for the simulations,

first we skipped both the initialization and thread creation

phases, then we fast-forwarded while warming all caches

for 500 million cycles. Finally, we performed a detailed

simulation for 200 million cycles.

As performance metric, we used the aggregate number of

user instructions committed per cycle, which is proportional

to overall system throughput [8].

B. Energy Model

We deal with a similar energy model to that adopted by

Bardine et al [9]. Therefore, we also consider the static

and dynamic energy dissipated by the NUCA cache and the

additional energy required to access the off-chip memory.

The total energy dissipated by the NUCA cache is the sum

of all three components:

Etotal = Estatic + Edynamic + Eo f f−chip

To obtain the static energy (Estatic), the NUCA cache is

modelled by means of the CACTI 6.0 tool [6]. The dynamic

energy (Edynamic) is modelled by the GEMS toolset [5] which

uses the Orion simulator to determine the energy per bank

access, the energy required to transmit a flit on the network

link and the energy required to switch a flit through a network

switch. The extra network traffic introduced by our proposal

is also considered and perfectly modeled by the simulator.

The energy dissipated by the off-chip memory is

determined using the Micron System Power Calculator [10]

with a modern DDR3 system (4GB, 8DQs, Vdd:1.5v, 333

MHz). Our evaluation of the off-chip memory focuses on the

energy dissipated during active cycles; this energy is isolated

it from the background energy. From our results, we conclude

that the average energy of each access is 550 pJ.

We analysed the consumption results using Energy

per instruction (EPI) [11] as our metric. This metric is

independent of the amount of time required to process an

instruction and is ideal for throughput performance.

V. LRU WITH PRIORITY EVICTION APPROACH

(LRU-PEA)

As described in Section II, a Bank Replacement Policy

can be divided into the following three sub-policies: data

insertion policy, data eviction policy and data target policy.

In this section we introduce the Least Recently Used with

Priority Eviction Approach (LRU-PEA) replacement policy.

This policy focuses on optimizing the performance of

applications on a CMP-NUCA architecture by analyzing data

behaviour within the NUCA cache and trying to keep the

most accessed data in cache as long as possible. In order to

describe how this policy works, we describe separately the

two sub-policies that the LRU-PEA modifies: data eviction

policy and data target policy. With regard to data insertion

policy, we assume the MRU mechanism (same as baseline).

A. Data Eviction Policy

The LRU-PEA statically prioritises the previously defined

categories (promoted, demoted, offchip and L1 replacement).

However, the two groups of banks are too different, so the

LRU-PEA defines the prioritisation for both local and central

banks. Having a static prioritisation, however, could cause

the highest-category data to monopolize the NUCA cache, or

even cause a simple data block to stay in the cache forever.

In order to avoid these situations, we restrict the category

comparison to the two last positions in the LRU-stack. In

this way, even data with the lowest category will stay in the

cache until it arrives at the LRU-1 position in the LRU-stack.

Figure 2 gives an example of how the LRU-PEA scheme

works. First, we define the prioritisation of the data

categories. For instance, the prioritisation of the example

is as follows (see Figure 2(a)): 1) L1 Replacement, 2)

Promoted, 3) Offchip and 4) Demoted. When the LRU-PEA

eviction policy is applied, the last two positions of the

LRU-stack compete to find out which one is going to

be evicted (see Figure 2(b)). Thus, we can compare their

categories. If they are different, the data with the lower

277

(a) (b) (c)

Fig. 2. LRU-PEA scheme. (a) Initial state of the LRU-stack. (b) The last two positions of the LRU-stack compete to avoid being evicted. (c) The lowest
category data has been evicted.

category is evicted. But, if both have the same category,

the line that currently occupies the LRU position is evicted.

Finally, the data that has not been evicted updates its position

within the LRU-stack (see Figure 2(c)).

By analysing NUCA cache behaviour, we found that

local banks access L1 Replacement data more frequently,

whereas central banks mainly access promoted data. Thus,

we evaluate the LRU-PEA using the prioritisation described

in Table II.

BANK

Local Central

+ L1 Replacement Promoted

Priority
Promoted Offchip

Offchip Demoted

- Demoted L1 Replacement

TABLE II

PRIORITISATION FOR LRU-PEA.

We have also experimentally observed that modifying the

priority order of the lower categories does not introduce

significant differences in terms of performance.

B. Data Target Policy

There are two key issues when a Dynamic-NUCA

(D-NUCA) architecture [2] is considered: 1) a single data

can be mapped in multiple banks within the NUCA cache,

and 2) the migration process moves the most accessed data to

the banks that are closer to the requesting cores. Therefore,

bank usage in a NUCA cache is heavily imbalanced, and

a capacity miss in a heavy-used NUCA bank could cause

constantly accessed data to be evicted from the NUCA cache,

while other NUCA banks are storing less frequently accessed

data. The LRU-PEA addresses this problem by defining a

data target policy that allows the replacement decision that

has been taken in a single bank to be spread to all banks in

the NUCA cache where evicted data can be mapped.

We propose Algorithm 1 as a data target policy

for the LRU-PEA. The main idea of this algorithm is

to find a NUCA bank whose victim data belongs to

a lower priority category than that which is currently

Input: initial bank: Bank that started the replacement process

Input: ev data: Evicted data

Output: Final data to be evicted from the cache

begin
f inal = false;

if Category(initial bank, ev data) == LOWEST CATEG then
return ev data;

end

next bank = NextBank(initial bank);

ev bank = initial bank;

while ! f inal and next bank 6= initial bank do
may evict data = ApplyLRU-PEA(next bank, ev data);

if Category(ev bank, ev data) > Category(next bank,
may evict data) then

InsertIntoBank(next bank, ev data);

ev data = may evict data;

ev bank = next bank;

if IsCascadeModeEnabled() == false then
f inal = true;

else if Category(ev bank, ev data) > LOWEST CATEG then
next bank = NextBank(next bank);

else
f inal = true;

end

else
next bank = NextBank(next bank);

end

end

return ev data;
end

Algorithm 1: LRU-PEA scheme

being evicted. In this way, while the target NUCA

bank is not found, all NUCA banks where the evicted

data can be mapped are sequentially accessed in an

statically defined order. In our evaluation we use the

following order: Local Bank Corei → Central Bank Corei
→ Local Bank Corei+1 → Central Bank Corei+1 → ...

The algorithm finishes when one of the following occurs:

1) the evicted data belongs to the lowest priority category,

2) all NUCA banks where the evicted data can be mapped

have been already visited, and 3) the evicted data has been

relocated to another NUCA bank. Then, whether the evicted

data could not be relocated to other bank into the NUCA

cache, it is written back to the upper-level memory.

By using sequential access, however, the accuracy of the

LRU-PEA is restricted to the NUCA banks that have been

visited before finding a target bank. To address this problem,

we introduce the on cascade mode. When this mode is

enabled, the algorithm does not finish when the evicted data

278

Fig. 3. Example of how LRU-PEA behaves.

finds a target bank. Instead, it uses the data that has been

evicted from the target bank as evicted data. Thus, after

visiting all NUCA banks we can assure that the current

evicted data belongs to the current lowest priority category.

In Section VI, we consider both configurations, with the on

cascade mode enabled and disabled.

Figure 3 shows an example of how the LRU-PEA’s data

target policy works. In this example, the algorithm starts in

a central bank and the evicted data belongs to the Offchip

category, so the priority of the evicted data is 2 (see Table II).

First, the algorithm checks whether the evicted data can be

relocated in the local bank of the next core (step 1 in Figure

3). However, the priority of the victim data in the current

bank is higher than the evicted data, so the LRU-PEA tries

to relocate the evicted data into the next bank. In the second

step, it visits another central bank. In this case, the category

of the victim data in the current bank is the same as the

evicted data, and so next bank needs to be checked. Finally,

in the third step, the category of the evicted data has higher

priority than the one of the victim data of the current bank.

Thus, the evicted data is relocated to the current bank. If the

on cascade mode is enabled, the algorithm continues with

the 4th step (see Figure 3), but uses the data that has been

evicted from the current bank as evicted data. Otherwise, this

data is directly evicted from the NUCA cache and sent back

to the upper-level memory.

C. Additional Hardware

This mechanism requires the introduction of some

additional hardware to the NUCA cache. In order to

determine the data’s category, we add two bits per line

(there are four categories). Then, assuming that 8 MByte

NUCA cache described in Section IV is used, LRU-PEA

will need to add 32 KBytes, which is less than 0.4% of the

No Cascade
Cascade Enabled

Direct Provoked

1 message 64 54 20

2 messages 12 7 7

3 messages 4 2 4

4 messages 3 2 4

5 messages 3 2 3

6 messages 2 1 4

7 messages 2 1 3

8 messages 2 1 4

9 messages 1 1 3

10 messages 1 1 4

11 messages 1 1 3

12 messages 1 1 6

13 messages 1 1 6

14 messages 1 1 30

15 messages 3 21 -

Values in percentage (%)

TABLE III

NUMBER OF EXTRA MESSAGES INTRODUCED BY BOTH

CONFIGURATIONS OF LRU-PEA TO SATISFY REPLACEMENTS.

hardware overhead. Furthermore, the proposed mechanism

can be easily implemented without significant complexity.

VI. RESULTS AND ANALYSIS

This section analyses the impact of assuming the

LRU-PEA as bank replacement policy. The LRU-PEA

takes advantage of on-chip network introduced by CMPs

to provide a sophisticated algorithm that allows the

globalization of the replacement decisions that have been

taken in a single bank. Although this approach may increase

contention in the on-chip network, it is perfectly modelled

in our simulator. Table III shows the average number of

extra messages introduced by the LRU-PEA to satisfy a

single replacement. When the on cascade mode is disabled,

the communication overhead introduced by LRU-PEA is

very low. On average, close to 80% of replacements

are satisfied by introducing up to 3 extra messages into

the on-chip network. By enabling the on cascade mode,

however, a significant percentage of replacements introduce

the maximum number of messages into the network (the

number of banks where the evicted data can be mapped

minus one). This difference between the two modes can be

explained by the high-accuracy provided by the LRU-PEA

when the on cascade mode is enabled. In general, data

in NUCA banks has higher priority, and it is much more

difficult to find a victim data with lower priority than the

evicted data. In the following sections we analyse how the

LRU-PEA behaves in terms of performance and energy

consumption.

A. Performance Analysis

Figure 4 shows the IPC improvement achieved when using

the LRU-PEA as bank replacement policy in the NUCA

cache. On average, we find that the LRU-PEA increases

IPC by 8% with respect to the baseline architecture if

the on cascade mode is enabled, and by 7% when it is

disabled. In general, we find that the LRU-PEA significantly

279

1,1

1,15

1,2

1,25

m
a
n
ce

sp
e
e
d
u
p

0,95

1

1,05

P
e
rf
o
rm

Baseline LRU PEA (No Cascade) LRU PEA (Cascade Enabled)

Fig. 4. IPC improvement with LRU-PEA.

5

4

4,5

5

s

1
2
.0
3
8
6

1
0
.3
3
1
8

1
0
.0
3
9
5

3

3,5

4

n
st
ru
ct
io
n

2

2,5

3

th
o
u
sa
n
d
i

1

1,5

2

M
is
se
s
p
e
r
t

0

0,5

1M

0

Baseline LRU PEA (No Cascade) LRU PEA (Cascade Enabled)

Fig. 5. Misses per thousand instructions with LRU-PEA.

improves IPC with most PARSEC applications, obtaining a

near 20% improvement in three of them (canneal, freqmine

and streamcluster). On the other hand, 4 of the 13 PARSEC

applications do not show perfomance benefits when using the

LRU-PEA (blackscholes, facesim, raytrace and swaptions).

We also observe that although the LRU-PEA does not

significantly improve performance in some of the PARSEC

applications, it is not harmful to performance either.

Figure 5 shows the NUCA misses per 1000 instructions

(MPKI) with the three evaluated configurations: baseline,

LRU-PEA and LRU-PEA with on cascade mode enabled.

On average, we observed a significant reduction in MPKI

when using the LRU-PEA, and even more when the on

cascade mode is enabled. In general, we found that PARSEC

applications that provide performance improvements, also

significantly reduce MPKI. Moreover, we saw that canneal,

freqmine and streamcluster (the applications that provide

the highest IPC improvement with LRU-PEA) also have

the highest MPKI. In contrast, applications with an MPKI

close to zero do not usually improve performance when the

LRU-PEA is used.

Regarding those applications where the LRU-PEA does

not improve performance, blackscholes and swaptions are

financial applications with small working sets, so their

cache requirements are restricted. On the other hand,

raytrace and facesim have very big working sets, but they

are computationally intensive and mainly exploit temporal

locality.

1,05

iz
e
d
)

1

n
(n
o
rm

a
li

0,95

in
st
ru
ct
io

0,9

E
n
e
rg
y
p
e
r

0,85

E

A B C

A: Baseline, B: LRU PEA (No cascade) and C: LRU PEA (Cascade Enabled)

Static Dynamic Offchip

Fig. 6. Normalized average energy consumed per each executed instruction.

0,9

1

1,1

1,2

1,3

y
p
e
r
In
st
ru
ct
io
n
(n
o
rm

a
li
ze
d
)

0,6

0,7

0,8

D
y
n
a
m
ic
E
n
e
rg
y

A: Baseline, B: LRU PEA (No cascade) and C: LRU PEA (Cascade Enabled)

Dynamic Offchip

A B C

Fig. 7. Normalized average dynamic energy consumed per each instruction.

B. Energy Consumption Analysis

The energy consumption is analysed by using the Energy

per Instruction (EPI) metric. Figure 6 shows that, on average,

the LRU-PEA reduces the energy consumed per each

instruction compared to the baseline architecture by 5% for

both configurations (with and without the on cascade mode

enabled). In particular, the LRU-PEA significantly reduce

energy consumption in PARSEC applications with large

working sets, such as canneal, freqmine and streamcluster.

Moreover, we observed that, with the exception of

blackscholes and swaptions, EPI was always reduced by the

LRU-PEA.

As we can see in Figure 6, EPI is heavily influenced by

static energy. Figure 7 shows the normalized EPI without

taking into consideration the static energy consumed. We find

that when on cascade mode is enabled, the dynamic energy

consumed is 10% higher than in the baseline configuration.

However, the LRU-PEA with on cascade mode disabled still

reduces EPI by more than 15%. This difference between the

two LRU-PEA modes corresponds to the number of extra

messages introduced into the on-chip network by each of

them (see Table III).

Finally, we highlight that although LRU-PEA increases the

on-chip network contention, the average energy consumed

per instruction is still reduced due to the significant

performance improvement that this mechanism provides.

VII. RELATED WORK

Replacement policy brings together two decisions that can

be seen as two more policies: data insertion and data eviction.

280

The former decides where to place data and the latter decides

which data is replaced. Traditionally, caches use the Most

Recently Used (MRU) algorithm to insert data and the Least

Recently Used (LRU) algorithm to evict data [12], [13].

Modifications to the traditional LRU scheme have been

also proposed. Wong and Bauer [14] modified the standard

LRU to maintain data that exhibited higher temporal locality.

Alghazo et al. [15] proposed a mechanism called SF-LRU

(Second-Chance Frequency LRU). This scheme combines

both the recentness (LRU) and frequency (LFU) of blocks

to decide which blocks to replace. Dybdahl et al. [16] also

proposed another LRU approach based on frequency of

access in shared multiprocessor caches. Kharbutli and Solihin

[17] proposed a counter-based L2 cache replacement. This

approach includes an event counter with each line that is

incremented under certain circumstances. The line can then

be evicted when this counter achieves a certain threshold.

Recently, several papers have revisited data insertion

policy. Qureshi et al. [18] propose Line Distillation, a

mechanism that tries to keep frequently accessed data in

a cache line and to evict unused data. This technique is

based on the observation that, generally, data is unlikely to

be used in the lowest priority part of the LRU stack. They

also proposed LIP (LRU Insertion Policy), which places data

in the LRU position instead of the MRU position [19].

Kim et al. [2] introduced the concept of Non-Uniform

Cache Architecture (NUCA). They observed that the increase

in wire delays would mean that cache access times were

no longer constant. Instead, latency would become a

linear-function of the line’s physical location within the

cache. From this observation, several NUCA architectures

were designed by partitioning the cache into multiple banks

and using a switched network to connect these banks.

However, the introduction of CMP architectures posed

additional challenges to the NUCA architecture and this led

Beckmann and Wood [3] to analyse NUCA for CMP. Recent

studies have explored policies for bank placement [20], bank

migration [21], bank access [22] and bank replacement [2]

in NUCA caches. None of these studies properly addresses

bank replacement policy in a CMP environment.

VIII. CONCLUSIONS

The increasing gap between processor and memory

speed and the limited memory bandwidth make last-level

cache performance crucial for CMP architectures. Reducing

last-level cache misses, therefore, will provide significant

performance benefits. In this paper we propose a novel

alternative to the traditional LRU replacement policy. It

aims to make more intelligent replacement decisions by

protecting the cache lines that are likely to be reaccessed. On

average, LRU-PEA replacement policy improves IPC by 8%

compared to the baseline configuration, and reduces energy

consumption per instruction by 5%.

In conclusion, in this paper we demonstrate that minimal

modifications to the bank replacement policy to enable

more intelligent eviction and target decisions will result in

significant performance and consumption benefits.

IX. ACKNOWLEDGEMENTS

This work is supported by the Spanish Ministry of Science

and Innovation (MCI) and FEDER funds of the EU under the

contracts TIN 2007-61763 and TIN 2007-68050-C03-03, the

Generalitat de Catalunya under grant 2005SGR00950, and

Intel Corporation. Javier Lira is supported by the MCI under

FPI grant BES-2008-003177.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate vs.

ipc: The end of the road for conventional microprocessors,” in Proceedings of

the 27th International Symposium on Computer Architecture, 2000.

[2] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches,” in Proceedings of the 10th

International Conference on Architectural Support for Programming Languages

and Operating Systems, 2002.

[3] B. M. Beckmann and D. A. Wood, “Managing wire delay in large

chip-multiprocessor caches,” in Proceedings of the 37th International Symposium

on Microarchitecture, 2004.

[4] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Högberg, F. Larsson, A. Moestedt, and B. Werner, Simics: A Full System

Simulator Platform. Computer, 2002, vol. 35-2, pp. 50–58.

[5] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s

general execution-driven multiprocessor simulator (gems) toolset,” in Computer

Architecture News, Sept. 2005.

[6] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Optimizing nuca

organizations and wiring alternatives for large caches with cacti 6.0,” in

Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, 2007.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark

suite: Characterization and architectural implications,” in Proceedings of the

International Conference on Parallel Architectures and Compilation Techniques,

2008.

[8] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

Hoe, “Simflex: Statistical sampling of computer system simulation,” IEEE Micro,

vol. 26, no. 4, pp. 18–31, 2006.

[9] A. Bardine, P. Foglia, G. Gabrielli, and C. A. Prete, “Analysis of static and

dynamic energy consumption in nuca caches: Initial results,” in Proceedings of

the 2007 Workshop on Memory Performance: Dealing with Applications, Systems

and Architecture, 2007.

[10] Micron system power calculator. [Online]. Available: htt p :

//www.micron.com/support/partin f o/powercalc
[11] E. Grochowski, R. Ronen, J. Shen, and H. Wang, “Best of both latency and

throughput,” in Proceedings of the 22nd International Conference on Computer

Design, 2004.

[12] L. A. Belady, “A study of replacement algorithms for virtual-storage computer,”

IMB Systems Journal, vol. 5, no. 2, 1966.

[13] A. J. Smith, “Cache memories,” ACM Computing Surveys, vol. 14, no. 3, 1982.

[14] W. Wong and J. Baer, “Modified lru policies for improving second-level

cache behavior,” in Proceedings of the 6th International Symposium on

High-Performance Computer Architecture, 2000.

[15] J. Alghazo, A. Akaaboune, and N. Botros, “Sf-lru cache replacement algorithm,”

in Records of the International Workshop on Memory Technology, Design and

Testing, 2004.

[16] H. Dybdahl, P. Stenström, and L. Natvig, “An lru-based replacement algorithm

augmented with frequency of access in shared chip-multiprocessor caches,”

Computer Architecture News, vol. 35, 2007.

[17] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algorithms,” in

Proceedings of the 23rd International Conference on Computer Design, 2005.

[18] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation: Increasing cache

capacity by filtering unused words in cache lines,” in Proceedings of the 13th

International Symposium of High-Performance Computer Architecture, 2007.

[19] M. K. Qureshi, A. Jaleel, and Y. N. Patt, “Adaptive insertion policies for

high-performance caching,” in Proceedings of the 34th International Symposium

on Computer Architecture, 2007.

[20] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A nuca

substrate for flexible cmp cache sharing,” in Proceedings of the 19th ACM

International Conference on Supercomputing, 2005.

[21] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son, “A novel migration-based nuca

design for chip multiprocessors,” in Proceedings of the ACM/IEEE conference

on Supercomputing, 2008.

[22] N. Muralimanohar and R. Balasubramonian, “Interconnect design considerations

for large nuca caches,” in Proceedings of the 34th International Symposium on

Computer Architecture, 2007.

281

