
Power Efficient Data Cache Designs

Jaume Abella*, Antonio González*+

* Computer Architecture Department

Universitat Politècnica de Catalunya
Barcelona (Spain)

jabella@ac.upc.es

+ Intel Barcelona Research Center

Intel Labs, Universitat Politècnica de Catalunya
Barcelona (Spain)

antonio@ac.upc.es

Abstract

This paper investigates some power efficient data cache

designs that try to significantly reduce the cache energy

consumption, both static and dynamic, with a minimal

impact in performance. The basic idea is to combine

different threshold voltages with different cache

organizations that provide different levels of performance.

Multi-banked organizations in combination with different

approaches to allocate data to cache banks are explored.

Some of the resulting cache architectures are shown to

provide a good tradeoff between power and performance.

1. Introduction

Power dissipation has become an important issue in

processor design. Dynamic power dissipation due to signal

transitions is the main power dissipation source nowadays,

but static power will become increasingly significant in

upcoming processors. While dynamic power is directly

related to the activity of the circuits, static power depends on

the amount of powered-on transistors and their physical

characteristics. Thus, large circuits are usually the main

source of static power. Caches are normally the largest

structures in the processor, so they are the most important

sources of the static power dissipation. It is also known that

increasing cache associativity and/or size to reduce the miss

ratio and increase performance has an impact on static power

and access time. On the other hand, a low access time is

desired for performance. Power and performance also

depend on the number of ports.

Due to all these factors, techniques to reduce cache power

dissipation have to be applied carefully, because a reduction

of the power requirements at the expense of losing too much

performance can result in an increase of total energy

consumption.

Aggressive techniques to reduce dynamic and static

power in caches have been proposed in the past. They can be

classified basically in two blocks: high-level and low-level

techniques. We consider high-level techniques those that try

to reduce power dissipation without changing the underlying

technology, whereas low-level techniques are those that are

based on using technology with different physical properties.

High-level techniques. Zhou et. al. [1] and Kaxiras et. al.

[2] have proposed recently different techniques to reduce

leakage power by powering off cache lines whose content is

not expected to be reused. Ghose and Kamble [3] studied the

effects of using subbanking, multiple line buffers and bit-line

segmentation to reduce dynamic power dissipation in

superscalar processor caches. Su and Despain [4]

investigated vertical cache partitioning, horizontal cache

partitioning and Gray code addressing to reduce dynamic

power. Hezavei et. al. [5] studied the effectiveness of

different low power SRAM circuit design strategies like

divided bit line, pulsed word line and isolated bit line.

Low-level techniques. Kuroda et. al. [6] proposed a

variable supply voltage scheme for low power high-speed

CMOS digital design and explored the low supply voltage,

low threshold voltage design space. R. Gonzalez et. al. [7]

investigated the effect of lowering the supply and threshold

voltages on the energy efficiency of CMOS circuits. Itoh et.

al. [8] studied the effect of reducing supply voltage and

increasing threshold voltage in order to reduce both dynamic

and static power dissipation in caches.

This paper studies different cache organizations that

reduce significantly dynamic and static power dissipation

with a small performance loss. This study tries to guide

processor designers to choose the cache organization with

best trade-off between efficiency and power dissipation.

The rest of the paper is organized as follows. Section 2

introduces the model used to choose supply and threshold

voltages. Section 3 details the definition of criticality that

guides some of the evaluated cache systems. Some

experimental cache organizations are presented in section 4

and their results are shown in Section 5. Finally, section 6

summarizes the main conclusions of this work.

2. Energy and delay models in CMOS circuits

CMOS power dissipation is given by [9][10]

leakdyn PPP (1)

where dynamic power (Pdyn) and static power (Pleak) can be

expressed as

CLKDDLtdyn fVCpP 2 (2)
DD

S
V

leak VIP
TH

100
(3)

respectively, where pt is the switching probability, CL is the

load capacitance (wiring and device capacitance), VDD is the

supply voltage and fCLK is the clock frequency. I0 is a

function of the reverse saturation current, the diode voltage

and the temperature. VTH is the threshold voltage. Finally, S

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

corresponds to the subthreshold slope and is typically about

100mV/decade. Using equation (3) can be observed that

static power dissipation decreases by 10 times if VTH

increases 0.1V.

CMOS propagation delay can be approximated by the

following simple power model
1
 [9]

)(THDD

DDL

VV

VC
kDelay (4)

where k is a proportionality constant specific to a given

technology. The power reflects the fact that the transistors

may be velocity saturated. is compressed in the range [1..

2], where = 1 implies complete velocity saturation and =

2 implies no velocity saturation. For the 0.18 m technology

assumed in this paper, is typically 1.3.

From equations (2) and (3) can be deduced that

decreasing VDD reduces both dynamic and static power

dissipation and slightly increasing VTH reduces drastically

leakage, but both parameters adjustments increase the

propagation delay as equation (4) shows. Thus, there is a

trade-off between reducing power dissipation and increasing

delay propagation with minimum performance loss.

3. Criticality

In modern superscalar processors, where multiple

instructions can be processed in parallel, deciding when a

given resource should be assigned to an instruction is a well-

known problem. For instance, when two ready instructions

require the same functional unit to be executed, only one of

them can be chosen. Different policies are used to take these

decisions in existing processors, but usually they do not take

into account the impact on performance of delaying any

instruction. Some studies [11][12][13] have proposed

techniques to heuristically obtain this information and use it

to increase performance. Load instructions are especially

harmful if they have high latencies and are in the critical path

[14]. Thus, the criticality of load instructions is important

information to handle them efficiently.

An exact computation of the criticality of each load

instruction is not feasible due to its complexity. Thus, an

approximation to the criticality is proposed. Then we

propose an accurate predictor of criticality according to our

definition. For the proposed criticality-based cache

organization, we will only need to classify loads into two

categories: critical and non-critical, so we need a mechanism

to decide when a load can be delayed one or more cycles and

when delaying it will significantly degrade performance.

3.1. Criticality estimation

In order to decide whether an instruction is critical or not,

we consider if the data produced by the instruction (if any) is

immediately used by at least another critical instruction.

With this criterion only those instructions belonging to a

1
The subthreshold current is considered to be a constant and it is

assumed that transistors are in the current saturation mode.

chain of dependent instructions that are executed as soon as

possible, are considered critical. For those instructions that

do not produce data, like stores and branches, there is no

information so another additional criterion is required.

If the number of cycles elapsed since an instruction has

finished its execution until it commits is greater than a given

threshold N, then the instruction is considered non-critical.

Intuitively, this criteria indicates that the instruction belongs

to a chain of dependent instructions which is not the longest

one or that there is an instruction that stops the commit

process (for instance a load that misses L1 cache), and thus,

this chain may take some more cycles without performance

degradation. In our experiments, after evaluating different

values for N, we have observed that N=4 cycles gives the

best results for the chosen cache organizations.

The criticality predictor has been implemented as a 2048

untagged entry table where each entry is a 2-bit saturated

counter whose most significant bit is the prediction. Initially

the table indicates that all the instructions are critical. The

table is updated by every instruction that commits. If the

committing instruction has been waiting for commit less than

N cycles (N=4 in our experiments), or its produced data (if

any) is forwarded to another critical instruction through a

bypass and the depending instruction is issued immediately,

the corresponding 2-bit counter is incremented, otherwise it

is decremented.

The evaluation section describes how this criticality

predictor has been validated.

4. Cache organizations

This section describes different cache organizations that

are compared to a baseline L1 monolithic 1-cycle latency

cache. Our proposals are based on two L1 cache modules

implemented with different technologies. One of them is a 1-

cycle latency cache implemented with the same technology

than the baseline. It will be referred to as Fast Cache in the

rest of the paper. The second one is a 2-cycle latency cache

implemented with a technology with lower VDD and higher

VTH than the baseline technology, in order to reduce both

dynamic and static power dissipation at the expense of

increasing the access time. It will be referred to as Slow

Cache in the rest of the paper.

According to the formulas described in section 2 we are

interested in decreasing VDD and increase VTH as much as

possible with the following limitations: these parameters

should be technologically feasible and the latency should be

at most 2 times larger than the latency of the baseline cache.

Static power dissipation can be analytically estimated, but

dynamic power depends on the program, thus optimal

generic values for VDD and VTH cannot be computed. In order

to guide the selection of these values, Figure 1 shows

different valid combinations of these values that can be

chosen and the expected dynamic and static power

dissipation compared to the baseline technology. The

assumed parameters for the baseline technology are

VDD=2.0V and VTH=0.55V [15]. The rest of the parameters

are described in section 2.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Figure 1. Power dissipation compared to the baseline
technology for different VTH and VDD values

We have chosen VTH=0.57V and VDD=1.24V technology

for the Slow Cache because it reduces both power dissipation

sources to the same percentage.

4.1. Proposed cache organizations

Two different cache organizations are proposed. The first

one is a hierarchical locality-based cache system where the

fast cache is the first level data cache, the slow cache is the

second level cache and the baseline’s second level cache is

the third level cache. In this organization the slow cache

should be larger than the fast cache to be useful.

The second one is a criticality-based cache system where

there is not the inclusion property (some data contained in

fast cache may not be in slow cache and vice versa) as in the

first proposal. Both the fast and the slow caches are accessed

always in parallel. If a critical load hits in the slow cache and

misses in the fast cache, the cache line is copied from the

slow to the fast cache. If a critical load misses both caches,

then the data fetched from the following cache level is

allocated only in the fast cache. If a non-critical load hits at

least in one of both caches, the data is not copied from one

cache to the other. If a non-critical load misses in both

caches, then the data fetched from the following cache level

is allocated only in the slow cache. Finally, if a store hits at

least in one cache there is no data copy, but if it misses,

assuming that the used policy is write-allocate, the data is

fetched to the fast or the slow cache depending on the

criticality of the store instruction.

Another important consideration is the cache sizes used.

Most of the existing processors have data caches which size

is in the range [16K.. 64K]. Table 1 describes the different

cache sizes used to compare the different alternatives. All

caches described have 32-bytes cache lines and 2 read/write

ports. The baseline and fast caches are 2-way associative.

Due to space limitations, it is only shown the evaluation for

the 16K baseline cache. For 32K and 64K similar

conclusions have been obtained.

Table 1. Cache sizes used in the comparison

Baseline Hierarchic system

/ Criticality-based

(3-way slow)

Hierarchic system

/ Criticality-based

(2-way slow)

L1 Fast Slow Fast Slow

16K 4K 12K 4K 8K

It can be seen in Table 1 that there are two versions for

both proposals. In the first one the total size is the same than

the baseline (slow cache is 3-way associative) and in the

second one the total size is smaller than the baseline but the

slow cache has the same associativy than the fast one (slow

cache is 2-way associative). The cache sizes for both

proposals are exactly the same, so their performance and

power dissipation are comparable.

5. Performance evaluation

This section evaluates the accuracy of the criticality

predictor and the performance and power dissipation of the

different cache organizations in a superscalar processor.

5.1. Experimental framework

Our power dissipation and performance results are

derived from Wattch [17], which is an architecture-level

power and performance simulator based on SimpleScalar

[16]. Table 2 shows the processor parameters.

Table 2. Processor configuration

Fetch, Decode, Issue, Commit width: 4 instructions/cycle

Issue queue size: 40 entries

Reorder Buffer size: 64 entries

IntALU’s: 3 (1 cycle)

IntMult/Div: 1 (3 cycles pipelined mult, 20 cycles non-pipelined div)

FP ALU’s: 2 (2 cycles pipelined)

FP Mult/Div: 1 (4 cycles pipelined mult, 12 cycles non-pipelined div)

Memory Ports: 2

Branch Predictor: Hybrid: 2K entry Gshare, 2K entry bimodal and

1K entry metatable

BTB: 2048 entries, 4-way

L1 Icache size: 64K 2-way, 32-byte lines, 1 cycle latency

L1 Dcache size: 2-way, 32-byte lines

L2 Unified cache: 512Kb, 4-way, 64-byte lines, 10 cycles latency

Memory: 50 cycles, 2 cycles interchunk

TLB size: 128 entries, 30 cycles miss penalty

5.2. Benchmarks

The whole SPEC2000 benchmark suite has been

evaluated. These benchmarks have been compiled with the

Compaq/Alpha compiler using –O4 –non_shared flags. For

every benchmark we have simulated 100M instructions after

skipping the initialization part, using the ref input set. The

results shown correspond to the SpecINT2000, SpecFP2000

and Spec2000 averages (harmonic mean for IPC).

5.3. Criticality evaluation

For all the configurations, SpecINT2000 has near twice

percentage of critical loads (60% approx.) than SpecFP2000

(30% approx.). The main reason for this difference is that

integer applications have less ILP than FP ones, so they have

proportionally more loads belonging to the critical path.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,55 0,56 0,57 0,58 0,59

1,2 1,22 1,24 1,26 1,28

Vth / Vdd

Pdyn

Pleak

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

After studying what percentage of loads is considered

critical, the next step consists in verifying that those loads

are really critical. In order to verify that the criticality

criterion detects the critical loads, we will compare the

execution of the criticality-based 2-way slow cache

organization versus the baseline in two ways:

The loads considered as critical or non-critical are treated

as critical or non-critical respectively.

The same percentage of loads that were considered as

critical ones in the previous simulation will be considered

critical, but this time they will be chosen randomly.

As Figure 2 shows, the criticality scheme achieves

significantly higher performance than the random scheme

across all cache sizes. It can be seen that when loads are

chosen as critical according to the criticality criterion the IPC

loss is much less than in the randomly chosen scheme so, it

can be concluded that the criticality criterion gives a good

classification of loads that can be used to guide the

criticality-based cache organization.

Figure 2. IPC loss of criticality-based cache for the
guided and the random versions w.r.t. 16K baseline

5.4. Cache organizations comparison

The comparison between the locality-based and the

criticality-based cache organizations versus the baseline has

been done based on different metrics: performance (IPC),

miss ratio, dynamic power dissipation and static power

dissipation.

5.4.1. Performance

Figure 3 shows the IPC loss for both cache organizations

versus the baseline. 2way and 3way stand for 2-way and 3-

way associative slow cache respectively. The SpecINT2000,

SpecFP2000 and SPEC2000 percentages have been

computed using the harmonic means of the IPC’s.

It can be observed that the locality-based scheme works

better than the criticality-based scheme for the SpecINT2000

but the criticality-based scheme achieves better results than

the locality-based for the SpecFP2000. We have observed

that the loads can be classified as critical or non-critical, but

it is common that the data fetched by a non-critical load is

reused by a critical one and vice versa. Due to this, if there is

no capacity limitation in the fast cache is better to fetch all

data to the fast cache than fetching some data to the slow

cache if it has to be fetched later to the fast cache by a

critical load. In general, integer applications have small

working sets so, the locality-based scheme that always

fetches the data to the fast cache works better than the

criticality-based scheme. But for floating point applications

with huge working sets, this performance loss due to

delaying some critical loads that find their data in the slow

cache instead the fast cache, is compensated by retaining in

the fast cache during more cycles data that will be reused by

critical loads, instead of replacing it with data that only will

be used by non-critical loads during that period of time.

It can be seen that for FP programs the criticality-based

scheme may achieve better results than the baseline due to

the beneficial effect of not placing data fetched by non-

critical loads in the fast cache.

Figure 3. Performance loss of locality-based and
criticality-based organizations w.r.t. 16K baseline

5.4.2. Miss ratios

Figure 4 shows the miss ratios for critical and non-critical

loads. This figure classifies loads into L1 hits and misses for

the baseline. For the other organizations the loads are

classified into three groups: those that hit in Fast cache, those

that miss in Fast cache but hit in Slow cache, and those that

miss in both L1 caches. Note that the scale for all the figures

begins at 50% for the sake of showing better the hit/miss

distribution because the fast cache hit ratio is always higher

than 50%.

Hit fast, hit slow and miss stand for hit in the fast cache,

miss in the fast cache but hit in the slow cache, and miss in

both L1 caches respectively.

Figure 4. Miss ratios for 16K baseline cache

Figure above shows that in general for the SpecFP2000

the fast cache hit ratio of the critical loads in the criticality-

4K + 8K

-1%

0%

1%

2%

3%

4%

5%

SPECINT SPECFP SPEC

%
 I

P
C

 l
o

s
s

criticality scheme

random scheme

16K baseline

-1%

0%

1%

2%

3%

SPECINT SPECFP SPEC

%
 I

P
C

 l
o

s
s

locality 3way

criticality 3way

locality 2way

criticality 2way

16 Kb - Critical loads

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

SPECINT SPECFP SPEC

hit fast hit slow miss

16 Kb - Non-critical loads

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

b
a
s
e
lin

e
lo

c
a
lit

y
 3

w
a
y

c
ri
ti
c
a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
ti
c
a
lit

y
 2

w
a
y

SPECINT SPECFP SPEC

hit fast hit slow miss

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

based schemes is slightly higher than the same ratio in the

locality-based schemes. For the SpecINT2000 higher hit

ratios in the fast cache are achieved in the locality-based

schemes because the working sets are small and critical loads

reuse data fetched by non-critical loads to the fast cache.

The hit ratio for the critical loads in the slow cache is

higher for both criticality-based schemes. Non-critical loads

fetch data to the slow cache and critical loads later reuse this

data. For the integer applications this means that in the

locality-based schemes some critical loads find their data in

the fast cache whereas in the criticality-based schemes they

find their data in the slow cache, increasing their latency. For

the FP programs this means that some critical loads that in

the locality-based schemes do not find their data in L1

caches (fast and slow), in the criticality-based schemes find

their data in the slow cache, decreasing their latency. For the

floating point applications, with huge working sets, the data

fetched by critical loads stays during more time in the fast

cache because it is not evicted by data fetched by non-critical

loads, but also the criticality-based schemes do not have the

inclusion property in fast and slow cache so more different

data can be stored in both caches.

For non-critical loads it can be observed that criticality-

based schemes achieve lower miss ratios in the L1 caches

and higher hit ratios in the slow cache because the

classifying mechanism places data fetched by non-critical

loads in the slow cache and this data is not evicted by data

fetched by critical loads.

After analyzing the miss ratios it can be understood why

the criticality-based scheme does not improve significantly

the locality-based one in both kinds of benchmarks. The

loads can be considered as critical or non-critical, but a

critical load can use the data fetched by a non-critical one or

vice versa (the same data or other data contained in the same

cache line).

5.4.3. Dynamic power dissipation

After understanding the reasons that produce those

performance differences between the proposed cache

organizations, we will compare the power requirements of

each organization in order to decide which one achieves the

best tradeoff between power and performance. Figure 5

shows the percentages of dynamic power dissipation for

every scenario. All percentages have been computed with

respect to the baseline cache organization. The power

dissipation of the locality-based scheme and the criticality-

based scheme is broken down into different power

dissipation sources: fast cache, slow cache, L2 cache power

increase and, only for the criticality-based scheme, the

additional structures to decide when a load is or not critical

(table to decide when a load is critical or not and counters to

know if an instruction that has finished its execution has

been in the reorder buffer during more than 4 cycles).

Figure 5. Dynamic power dissipation for a 16K
baseline cache

As shown above, criticality-based schemes save near 25%

data cache power for the 3-way slow cache configuration and

near 40% for the 2-way slow cache configuration, whereas

the locality-based organizations save near 60% dynamic

power versus the baseline. The L2 power increase becomes

negligible for larger caches because the miss ratios of the

criticality-based and locality-based schemes are very similar

to the baseline scheme miss ratio.

Slow cache power requirements are higher for the

criticality-based schemes than for the locality-based schemes

because fast and slow caches are accessed in parallel in the

criticality-based schemes. In order to reduce these power

requirements we did some experiments with different cache

access policies like:

Accessing only one cache and access the other just in

case of miss.

Access both in parallel for a critical load and only the

slow cache for non-critical ones.

Access both in parallel for a critical load and first the

slow followed by the fast cache in case of miss for a non-

critical load.

This kind of schemes showed to be especially harmful for

performance because, as shown before, some critical loads

miss in fast cache and hit in slow cache, so accessing

sequentially to the L1 caches increases their latency.

Additionally, even if load instructions access sequentially

both caches, it is not saved as much power as in the locality-

based schemes because in the criticality-based schemes the

store instructions should access both caches in order to

maintain cache coherence. In all cases the results did not

show drastic power reduction but the performance loss was

significant, so we decided to choose the policy with best

performance even if it does not save as much power as the

other organizations.

Finally, as figure shows, the additional structures power

dissipation of the criticality-based schemes is quite small.

16 Kb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
a
s
e
lin

e

lo
c
a
lit

y
 3

w
a
y

c
ri
tic

a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
tic

a
lit

y
 2

w
a
y

b
a
s
e
lin

e

lo
c
a
lit

y
 3

w
a
y

c
ri
tic

a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
tic

a
lit

y
 2

w
a
y

b
a
s
e
lin

e

lo
c
a
lit

y
 3

w
a
y

c
ri
tic

a
lit

y
 3

w
a
y

lo
c
a
lit

y
 2

w
a
y

c
ri
tic

a
lit

y
 2

w
a
y

SPECINT SPECFP SPEC

L2 increase

Add. Structs

Slow Cache

Fast Cache

total

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

5.4.4. Static power dissipation

Figure 6 shows the static power dissipation for all

scenarios with respect to the baseline. It can be observed that

for the locality-based and the criticality-based schemes the

fast cache and slow cache static power requirements are the

same for every slow cache configuration (2-way or 3-way

associative). As shown in the figure, the static power

dissipated by the proposed cache organizations is

substantially smaller than the static power dissipated by the

baseline architecture because these organizations use a

technology with less static power requirements for the slow

cache and have less capacity for the 2-way associative slow

cache organizations.

Figure 6. Static power requirements

6. Conclusions

This study shows how different L1 multi-banked data

cache organizations can obtain similar performance to that

where a monolithic cache is used, requiring at the same time

less dynamic and static power and enabling to reduce the

cache access time. It has been shown that different

technology parameters can be combined to obtain high

performance caches with small power requirements.

Another important conclusion is that the improvement in

performance that a criticality-based scheme can obtain with

respect to a locality-based scheme in some cases, does not

justify the additional complexity to detect which instructions

are critical and which not, and the additional power

requirements. The criticality detection applied in a cache

system cannot improve substantially performance because

we use it to classify data, whereas the criticality is an

instruction property, not a data property. Storing some data

in a slow cache because a non-critical load fetched it can

degrade performance if a critical load requires this data later.

Finally, we can conclude that a locality-based cache

organization that combines different supply and threshold

voltages can achieve high performance with small power

requirements (both dynamic and static), small cache access

time and reduced complexity.

Acknowledgements

This work has been supported by CICYT project

TIC2001-0995-C02-01, the Ministry of Education, Culture

and Sports of Spain, and Intel Corporation. We would like to

thank the anonymous reviewers by their comments.

References

[1] H. Zhou, M. Toburen, E. Rotenberg, T. Conte, “Adaptative Mode

Control: A Static-Power-Efficient Cache Design” in PACT’01,

Barcelona, Spain, September 2001.

[2] S. Kaxiras, Z. Hu, M. Martonosi, “Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power” in ISCA’01,

Göteborg, Sweden, June 2001.

[3] K. Ghose, M.B. Kamble, “Reducing Power in Superscalar

Processor Caches Using Subbanking, Multiple Line Buffers and Bit-line

Segmentation” in ISLPED’99, San Diego, California, August 1999.

[4] C.L. Su, A.M. Despain, “Cache Design Trade-offs for Power and

Performance Optimization: A Case Study” in ISLPED’95, Dana Pt.,

California, April 1995.

[5] J. Hezavei, N. Vijaykrishnan, M.J. Irwin, “A Comparative Study

of Power Efficient SRAM Designs” in GLSVLSI’00, Evanston, Illinois,

March 2000.

[6] T. Kuroda et. al., “Variable Supply-Voltage Scheme for Low-

Power High-Speed CMOS Digital Design” in IEEE Journal of Solid-

State Circuits (JSSC) vol. 33 no. 3, March 1998.

[7] R. Gonzalez, B.M. Gordon, M.A. Horowitz, “Supply and

Threshold Voltage Scaling for Low Power CMOS” in IEEE Journal of

Solid-State Circuits (JSSC) vol. 32 no. 8, August 1997.

[8] K. Itoh, K. Sasaki, Y. Nakagome, “Trends in Low-Power RAM

Circuit Technologies” in Proc. of the IEEE vol. 83 no. 4, April 1995.

[9] T. Sakurai, A.R. Newton, “Alpha-Power Law MOSFET Model

and its Applications to CMOS Inverter Delay and Other Formulas” in

IEEE Journal of Solid-State Circuits (JSSC) vol. 25 no. 2, April 1990.

[10] T. Sakurai, H. Kawaguchi, T. Kuroda, “Low-Power CMOS Design

through VTH Control and Low-Swing Circuits” in ISLPED’97,

Monterey, California, August 1997.

[11] S.T. Srinivasan, R.D. Ju, A.R. Lebeck, C. Wilkerson, “Locality vs.

Criticality” in ISCA’01, Göteborg, Sweden, June 2001.

[12] B. Fields, S. Rubin, R. Bodík, “Focusing Processor Policies via

Critical-Path Prediction” in ISCA’01, Göteborg, Sweden, June 2001.

[13] R. Rakvic, B. Black, D. Limaye, J.P. Shen, “Non-vital Loads” in

HPCA’02, Cambridge, Massachusetts, February 2002.

[14] M. Schlansker, V. Kathail, “Critical Path Reduction for Scalar

Programs” in MICRO’95, Ann Arbor, Michigan, November 1995.

[15] G. Cai, C.H. Lim, “Architectural Level Power/Performance

Optimization and Dynamic Power Estimation” in Proceedings of Cool

Chips Tutorial, in conj. with MICRO’99, Haifa, Israel, November 1999.

[16] D. Burger, T. Austin, “The SimpleScalar Tool Set, Version 2.0”

Technical report #1324, Computer Sciences Department, University of

Wisconsin-Madison, June 1997.

[17] D. Brooks, V. Tiwari, M. Martonosi, “Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations” in ISCA’00,

Vancouver, Canada, June 2000.

[18] M.J. Charney, T.R. Puzak, “Prefetching and Memory System

Behaviour of the SPEC95 Benchmark Suite” in IBM Journal of

Research & Development vol. 41 no. 3 – Performance Analysis and its

Impact on Design, 1997.

Static Power Dissipation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

baseline locality

3way

criticality

3way

locality

2way

criticality

2way

16K

Add. Structs

Slow Cache

Fast Cache

total

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

