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Abstract

This paper investigates some power efficient data cache 

designs that try to significantly reduce the cache energy 

consumption, both static and dynamic, with a minimal 

impact in performance. The basic idea is to combine 

different threshold voltages with different cache 

organizations that provide different levels of performance. 

Multi-banked organizations in combination with different 

approaches to allocate data to cache banks are explored. 

Some of the resulting cache architectures are shown to 

provide a good tradeoff between power and performance.  

1. Introduction 

Power dissipation has become an important issue in 

processor design. Dynamic power dissipation due to signal 

transitions is the main power dissipation source nowadays, 

but static power will become increasingly significant in 

upcoming processors. While dynamic power is directly 

related to the activity of the circuits, static power depends on 

the amount of powered-on transistors and their physical 

characteristics. Thus, large circuits are usually the main 

source of static power. Caches are normally the largest 

structures in the processor, so they are the most important 

sources of the static power dissipation. It is also known that 

increasing cache associativity and/or size to reduce the miss 

ratio and increase performance has an impact on static power 

and access time. On the other hand, a low access time is 

desired for performance. Power and performance also 

depend on the number of ports.  

Due to all these factors, techniques to reduce cache power 

dissipation have to be applied carefully, because a reduction 

of the power requirements at the expense of losing too much 

performance can result in an increase of total energy 

consumption.  

Aggressive techniques to reduce dynamic and static 

power in caches have been proposed in the past. They can be 

classified basically in two blocks: high-level and low-level 

techniques. We consider high-level techniques those that try 

to reduce power dissipation without changing the underlying 

technology, whereas low-level techniques are those that are 

based on using technology with different physical properties. 

High-level techniques. Zhou et. al. [1] and Kaxiras et. al. 

[2] have proposed recently different techniques to reduce 

leakage power by powering off cache lines whose content is 

not expected to be reused. Ghose and Kamble [3] studied the 

effects of using subbanking, multiple line buffers and bit-line 

segmentation to reduce dynamic power dissipation in 

superscalar processor caches.  Su and Despain [4] 

investigated vertical cache partitioning, horizontal cache 

partitioning and Gray code addressing to reduce dynamic 

power. Hezavei et. al. [5] studied the effectiveness of 

different low power SRAM circuit design strategies like 

divided bit line, pulsed word line and isolated bit line.  

Low-level techniques. Kuroda et. al. [6] proposed a 

variable supply voltage scheme for low power high-speed 

CMOS digital design and explored the low supply voltage, 

low threshold voltage design space. R. Gonzalez et. al. [7] 

investigated the effect of lowering the supply and threshold 

voltages on the energy efficiency of CMOS circuits. Itoh et. 

al. [8] studied the effect of reducing supply voltage and 

increasing threshold voltage in order to reduce both dynamic 

and static power dissipation in caches.  

This paper studies different cache organizations that 

reduce significantly dynamic and static power dissipation 

with a small performance loss. This study tries to guide 

processor designers to choose the cache organization with 

best trade-off between efficiency and power dissipation.  

The rest of the paper is organized as follows. Section 2 

introduces the model used to choose supply and threshold 

voltages. Section 3 details the definition of criticality that 

guides some of the evaluated cache systems. Some 

experimental cache organizations are presented in section 4 

and their results are shown in Section 5. Finally, section 6 

summarizes the main conclusions of this work. 

2. Energy and delay models in CMOS circuits 

CMOS power dissipation is given by [9][10]  

leakdyn PPP (1)

where dynamic power (Pdyn) and static power (Pleak) can be 

expressed as 

CLKDDLtdyn fVCpP 2 (2)
DD

S
V

leak VIP
TH
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(3)

respectively, where pt is the switching probability, CL is the 

load capacitance (wiring and device capacitance), VDD is the 

supply voltage and fCLK is the clock frequency. I0 is a 

function of the reverse saturation current, the diode voltage 

and the temperature. VTH is the threshold voltage. Finally, S

Proceedings of the 21st International Conference on Computer Design (ICCD’03) 
1063-6404/03 $ 17.00 © 2003 IEEE 



corresponds to the subthreshold slope and is typically about 

100mV/decade. Using equation (3) can be observed that 

static power dissipation decreases by 10 times if VTH

increases 0.1V. 

CMOS propagation delay can be approximated by the 

following simple  power model
1
 [9] 

)( THDD

DDL

VV

VC
kDelay (4)

where k is a proportionality constant specific to a given 

technology. The  power reflects the fact that the transistors 

may be velocity saturated. is compressed in the range [1.. 

2], where = 1 implies complete velocity saturation and =

2 implies no velocity saturation. For the 0.18 m technology 

assumed in this paper, is typically 1.3. 

From equations (2) and (3) can be deduced that 

decreasing VDD reduces both dynamic and static power 

dissipation and slightly increasing VTH reduces drastically 

leakage, but both parameters adjustments increase the 

propagation delay as equation (4) shows. Thus, there is a 

trade-off between reducing power dissipation and increasing 

delay propagation with minimum performance loss. 

3. Criticality 

In modern superscalar processors, where multiple 

instructions can be processed in parallel, deciding when a 

given resource should be assigned to an instruction is a well-

known problem. For instance, when two ready instructions 

require the same functional unit to be executed, only one of 

them can be chosen. Different policies are used to take these 

decisions in existing processors, but usually they do not take 

into account the impact on performance of delaying any 

instruction. Some studies [11][12][13] have proposed 

techniques to heuristically obtain this information and use it 

to increase performance. Load instructions are especially 

harmful if they have high latencies and are in the critical path 

[14]. Thus, the criticality of load instructions is important 

information to handle them efficiently. 

An exact computation of the criticality of each load 

instruction is not feasible due to its complexity. Thus, an 

approximation to the criticality is proposed. Then we 

propose an accurate predictor of criticality according to our 

definition. For the proposed criticality-based cache 

organization, we will only need to classify loads into two 

categories: critical and non-critical, so we need a mechanism 

to decide when a load can be delayed one or more cycles and 

when delaying it will significantly degrade performance.

3.1. Criticality estimation

In order to decide whether an instruction is critical or not, 

we consider if the data produced by the instruction (if any) is 

immediately used by at least another critical instruction. 

With this criterion only those instructions belonging to a 

1
The subthreshold current is considered to be a constant and it is 

assumed that transistors are in the current saturation mode. 

chain of dependent instructions that are executed as soon as 

possible, are considered critical. For those instructions that 

do not produce data, like stores and branches, there is no 

information so another additional criterion is required.  

If the number of cycles elapsed since an instruction has 

finished its execution until it commits is greater than a given 

threshold N, then the instruction is considered non-critical. 

Intuitively, this criteria indicates that the instruction belongs 

to a chain of dependent instructions which is not the longest 

one or that there is an instruction that stops the commit 

process (for instance a load that misses L1 cache), and thus, 

this chain may take some more cycles without performance 

degradation. In our experiments, after evaluating different 

values for N, we have observed that N=4 cycles gives the 

best results for the chosen cache organizations. 

The criticality predictor has been implemented as a 2048 

untagged entry table where each entry is a 2-bit saturated 

counter whose most significant bit is the prediction. Initially 

the table indicates that all the instructions are critical. The 

table is updated by every instruction that commits. If the 

committing instruction has been waiting for commit less than 

N cycles (N=4 in our experiments), or its produced data (if 

any) is forwarded to another critical instruction through a 

bypass and the depending instruction is issued immediately, 

the corresponding 2-bit counter is incremented, otherwise it 

is decremented. 

The evaluation section describes how this criticality 

predictor has been validated.

4. Cache organizations 

This section describes different cache organizations that 

are compared to a baseline L1 monolithic 1-cycle latency 

cache. Our proposals are based on two L1 cache modules 

implemented with different technologies. One of them is a 1-

cycle latency cache implemented with the same technology 

than the baseline. It will be referred to as Fast Cache in the 

rest of the paper. The second one is a 2-cycle latency cache 

implemented with a technology with lower VDD and higher 

VTH than the baseline technology, in order to reduce both 

dynamic and static power dissipation at the expense of 

increasing the access time. It will be referred to as Slow 

Cache in the rest of the paper. 

According to the formulas described in section 2 we are 

interested in decreasing VDD and increase VTH as much as 

possible with the following limitations: these parameters 

should be technologically feasible and the latency should be 

at most 2 times larger than the latency of the baseline cache. 

Static power dissipation can be analytically estimated, but 

dynamic power depends on the program, thus optimal 

generic values for VDD and VTH cannot be computed. In order 

to guide the selection of these values, Figure 1 shows 

different valid combinations of these values that can be 

chosen and the expected dynamic and static power 

dissipation compared to the baseline technology. The 

assumed parameters for the baseline technology are 

VDD=2.0V and VTH=0.55V [15]. The rest of the parameters 

are described in section 2.

Proceedings of the 21st International Conference on Computer Design (ICCD’03) 
1063-6404/03 $ 17.00 © 2003 IEEE 



Figure 1. Power dissipation compared to the baseline 
technology for different VTH and VDD values 

We have chosen VTH=0.57V and VDD=1.24V technology 

for the Slow Cache because it reduces both power dissipation 

sources to the same percentage. 

4.1. Proposed cache organizations 

Two different cache organizations are proposed. The first 

one is a hierarchical locality-based cache system where the 

fast cache is the first level data cache, the slow cache is the 

second level cache and the baseline’s second level cache is 

the third level cache. In this organization the slow cache 

should be larger than the fast cache to be useful.  

The second one is a criticality-based cache system where 

there is not the inclusion property (some data contained in 

fast cache may not be in slow cache and vice versa) as in the 

first proposal. Both the fast and the slow caches are accessed 

always in parallel. If a critical load hits in the slow cache and 

misses in the fast cache, the cache line is copied from the 

slow to the fast cache. If a critical load misses both caches, 

then the data fetched from the following cache level is 

allocated only in the fast cache. If a non-critical load hits at 

least in one of both caches, the data is not copied from one 

cache to the other. If a non-critical load misses in both 

caches, then the data fetched from the following cache level 

is allocated only in the slow cache. Finally, if a store hits at 

least in one cache there is no data copy, but if it misses, 

assuming that the used policy is write-allocate, the data is 

fetched to the fast or the slow cache depending on the 

criticality of the store instruction. 

Another important consideration is the cache sizes used. 

Most of the existing processors have data caches which size 

is in the range [16K.. 64K]. Table 1 describes the different 

cache sizes used to compare the different alternatives. All 

caches described have 32-bytes cache lines and 2 read/write 

ports. The baseline and fast caches are 2-way associative. 

Due to space limitations, it is only shown the evaluation for 

the 16K baseline cache. For 32K and 64K similar 

conclusions have been obtained.

Table 1. Cache sizes used in the comparison 

Baseline Hierarchic system 

/ Criticality-based 

(3-way slow) 

Hierarchic system 

/ Criticality-based 

(2-way slow) 

L1 Fast Slow Fast Slow 

16K 4K 12K 4K 8K 

It can be seen in Table 1 that there are two versions for 

both proposals. In the first one the total size is the same than 

the baseline (slow cache is 3-way associative) and in the 

second one the total size is smaller than the baseline but the 

slow cache has the same associativy than the fast one (slow 

cache is 2-way associative). The cache sizes for both 

proposals are exactly the same, so their performance and 

power dissipation are comparable. 

5. Performance evaluation 

This section evaluates the accuracy of the criticality 

predictor and the performance and power dissipation of the 

different cache organizations in a superscalar processor. 

5.1. Experimental framework 

Our power dissipation and performance results are 

derived from Wattch [17], which is an architecture-level 

power and performance simulator based on SimpleScalar 

[16]. Table 2 shows the processor parameters. 

Table 2. Processor configuration 

Fetch, Decode, Issue, Commit width: 4 instructions/cycle 

Issue queue size: 40 entries 

Reorder Buffer size: 64 entries 

IntALU’s: 3 (1 cycle) 

IntMult/Div: 1 (3 cycles pipelined mult, 20 cycles non-pipelined div) 

FP ALU’s: 2 (2 cycles pipelined) 

FP Mult/Div: 1 (4 cycles pipelined mult, 12 cycles non-pipelined div) 

Memory Ports: 2

Branch Predictor: Hybrid: 2K entry Gshare, 2K entry bimodal and 

1K entry metatable 

BTB: 2048 entries, 4-way 

L1 Icache size: 64K 2-way, 32-byte lines, 1 cycle latency 

L1 Dcache size: 2-way, 32-byte lines 

L2 Unified cache: 512Kb, 4-way, 64-byte lines, 10 cycles latency 

Memory: 50 cycles, 2 cycles interchunk 

TLB size: 128 entries, 30 cycles miss penalty 

5.2. Benchmarks 

The whole SPEC2000 benchmark suite has been 

evaluated. These benchmarks have been compiled with the 

Compaq/Alpha compiler using –O4 –non_shared flags. For 

every benchmark we have simulated 100M instructions after 

skipping the initialization part, using the ref input set. The 

results shown correspond to the SpecINT2000, SpecFP2000 

and Spec2000 averages (harmonic mean for IPC).  

5.3. Criticality evaluation 

For all the configurations, SpecINT2000 has near twice 

percentage of critical loads (60% approx.) than SpecFP2000 

(30% approx.). The main reason for this difference is that 

integer applications have less ILP than FP ones, so they have 

proportionally more loads belonging to the critical path. 
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After studying what percentage of loads is considered 

critical, the next step consists in verifying that those loads 

are really critical. In order to verify that the criticality 

criterion detects the critical loads, we will compare the 

execution of the criticality-based 2-way slow cache 

organization versus the baseline in two ways: 

The loads considered as critical or non-critical are treated 

as critical or non-critical respectively. 

The same percentage of loads that were considered as 

critical ones in the previous simulation will be considered 

critical, but this time they will be chosen randomly.  

As Figure 2 shows, the criticality scheme achieves 

significantly higher performance than the random scheme 

across all cache sizes. It can be seen that when loads are 

chosen as critical according to the criticality criterion the IPC 

loss is much less than in the randomly chosen scheme so, it 

can be concluded that the criticality criterion gives a good 

classification of loads that can be used to guide the 

criticality-based cache organization.

Figure 2. IPC loss of criticality-based cache for the 
guided and the random versions w.r.t. 16K baseline 

5.4. Cache organizations comparison 

The comparison between the locality-based and the 

criticality-based cache organizations versus the baseline has 

been done based on different metrics: performance (IPC), 

miss ratio, dynamic power dissipation and static power 

dissipation. 

5.4.1. Performance 

Figure 3 shows the IPC loss for both cache organizations 

versus the baseline. 2way and 3way stand for 2-way and 3-

way associative slow cache respectively. The SpecINT2000, 

SpecFP2000 and SPEC2000 percentages have been 

computed using the harmonic means of the IPC’s. 

It can be observed that the locality-based scheme works 

better than the criticality-based scheme for the SpecINT2000 

but the criticality-based scheme achieves better results than 

the locality-based for the SpecFP2000. We have observed 

that the loads can be classified as critical or non-critical, but 

it is common that the data fetched by a non-critical load is 

reused by a critical one and vice versa. Due to this, if there is 

no capacity limitation in the fast cache is better to fetch all 

data to the fast cache than fetching some data to the slow 

cache if it has to be fetched later to the fast cache by a 

critical load. In general, integer applications have small 

working sets so, the locality-based scheme that always 

fetches the data to the fast cache works better than the 

criticality-based scheme. But for floating point applications 

with huge working sets, this performance loss due to 

delaying some critical loads that find their data in the slow 

cache instead the fast cache, is compensated by retaining in 

the fast cache during more cycles data that will be reused by 

critical loads, instead of replacing it with data that only will 

be used by non-critical loads during that period of time.   

It can be seen that for FP programs the criticality-based 

scheme may achieve better results than the baseline due to 

the beneficial effect of not placing data fetched by non-

critical loads in the fast cache.

Figure 3. Performance loss of locality-based and 
criticality-based organizations w.r.t. 16K baseline 

5.4.2. Miss ratios 

Figure 4 shows the miss ratios for critical and non-critical 

loads. This figure classifies loads into L1 hits and misses for 

the baseline. For the other organizations the loads are 

classified into three groups: those that hit in Fast cache, those 

that miss in Fast cache but hit in Slow cache, and those that 

miss in both L1 caches. Note that the scale for all the figures 

begins at 50% for the sake of showing better the hit/miss 

distribution because the fast cache hit ratio is always higher 

than 50%. 

Hit fast, hit slow and miss stand for hit in the fast cache, 

miss in the fast cache but hit in the slow cache, and miss in 

both L1 caches respectively.

Figure 4. Miss ratios for 16K baseline cache 

Figure above shows that in general for the SpecFP2000 

the fast cache hit ratio of the critical loads in the criticality-
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based schemes is slightly higher than the same ratio in the 

locality-based schemes. For the SpecINT2000 higher hit 

ratios in the fast cache are achieved in the locality-based 

schemes because the working sets are small and critical loads 

reuse data fetched by non-critical loads to the fast cache.  

The hit ratio for the critical loads in the slow cache is 

higher for both criticality-based schemes. Non-critical loads 

fetch data to the slow cache and critical loads later reuse this 

data. For the integer applications this means that in the 

locality-based schemes some critical loads find their data in 

the fast cache whereas in the criticality-based schemes they 

find their data in the slow cache, increasing their latency. For 

the FP programs this means that some critical loads that in 

the locality-based schemes do not find their data in L1 

caches (fast and slow), in the criticality-based schemes find 

their data in the slow cache, decreasing their latency. For the 

floating point applications, with huge working sets, the data 

fetched by critical loads stays during more time in the fast 

cache because it is not evicted by data fetched by non-critical 

loads, but also the criticality-based schemes do not have the 

inclusion property in fast and slow cache so more different 

data can be stored in both caches. 

For non-critical loads it can be observed that criticality-

based schemes achieve lower miss ratios in the L1 caches 

and higher hit ratios in the slow cache because the 

classifying mechanism places data fetched by non-critical 

loads in the slow cache and this data is not evicted by data 

fetched by critical loads. 

After analyzing the miss ratios it can be understood why 

the criticality-based scheme does not improve significantly 

the locality-based one in both kinds of benchmarks. The 

loads can be considered as critical or non-critical, but a 

critical load can use the data fetched by a non-critical one or 

vice versa (the same data or other data contained in the same 

cache line).

5.4.3. Dynamic power dissipation 

After understanding the reasons that produce those 

performance differences between the proposed cache 

organizations, we will compare the power requirements of 

each organization in order to decide which one achieves the 

best tradeoff between power and performance. Figure 5 

shows the percentages of dynamic power dissipation for 

every scenario. All percentages have been computed with 

respect to the baseline cache organization. The power 

dissipation of the locality-based scheme and the criticality-

based scheme is broken down into different power 

dissipation sources: fast cache, slow cache, L2 cache power 

increase and, only for the criticality-based scheme, the 

additional structures to decide when a load is or not critical 

(table to decide when a load is critical or not and counters to 

know if an instruction that has finished its execution has 

been in the reorder buffer during more than 4 cycles). 

Figure 5. Dynamic power dissipation for a 16K 
baseline cache 

As shown above, criticality-based schemes save near 25% 

data cache power for the 3-way slow cache configuration and 

near 40% for the 2-way slow cache configuration, whereas 

the locality-based organizations save near 60% dynamic 

power versus the baseline. The L2 power increase becomes 

negligible for larger caches because the miss ratios of the 

criticality-based and locality-based schemes are very similar 

to the baseline scheme miss ratio.  

Slow cache power requirements are higher for the 

criticality-based schemes than for the locality-based schemes 

because fast and slow caches are accessed in parallel in the 

criticality-based schemes. In order to reduce these power 

requirements we did some experiments with different cache 

access policies like: 

Accessing only one cache and access the other just in 

case of miss. 

Access both in parallel for a critical load and only the 

slow cache for non-critical ones. 

Access both in parallel for a critical load and first the 

slow followed by the fast cache in case of miss for a non-

critical load. 

This kind of schemes showed to be especially harmful for 

performance because, as shown before, some critical loads 

miss in fast cache and hit in slow cache, so accessing 

sequentially to the L1 caches increases their latency. 

Additionally, even if load instructions access sequentially 

both caches, it is not saved as much power as in the locality-

based schemes because in the criticality-based schemes the 

store instructions should access both caches in order to 

maintain cache coherence. In all cases the results did not 

show drastic power reduction but the performance loss was 

significant, so we decided to choose the policy with best 

performance even if it does not save as much power as the 

other organizations.  

Finally, as figure shows, the additional structures power 

dissipation of the criticality-based schemes is quite small.
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5.4.4. Static power dissipation 

Figure 6 shows the static power dissipation for all 

scenarios with respect to the baseline. It can be observed that 

for the locality-based and the criticality-based schemes the 

fast cache and slow cache static power requirements are the 

same for every slow cache configuration (2-way or 3-way 

associative). As shown in the figure, the static power 

dissipated by the proposed cache organizations is 

substantially smaller than the static power dissipated by the 

baseline architecture because these organizations use a 

technology with less static power requirements for the slow 

cache and have less capacity for the 2-way associative slow 

cache organizations.  

Figure 6. Static power requirements 

6. Conclusions 

This study shows how different L1 multi-banked data 

cache organizations can obtain similar performance to that 

where a monolithic cache is used, requiring at the same time 

less dynamic and static power and enabling to reduce the 

cache access time. It has been shown that different 

technology parameters can be combined to obtain high 

performance caches with small power requirements. 

Another important conclusion is that the improvement in 

performance that a criticality-based scheme can obtain with 

respect to a locality-based scheme in some cases, does not 

justify the additional complexity to detect which instructions 

are critical and which not, and the additional power 

requirements. The criticality detection applied in a cache 

system cannot improve substantially performance because 

we use it to classify data, whereas the criticality is an 

instruction property, not a data property. Storing some data 

in a slow cache because a non-critical load fetched it can 

degrade performance if a critical load requires this data later. 

Finally, we can conclude that a locality-based cache 

organization that combines different supply and threshold 

voltages can achieve high performance with small power 

requirements (both dynamic and static), small cache access 

time and reduced complexity.
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