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ABSTRACT

The Self-Organizing Map (SOM) is a neural network algorithm that has the special
property of creating spatially organized representatives of various features of input
signals. The resulting maps resemble real neural structures found in the cortices of de-
veloped animal brains. Also the SOM has been successful in various pattern recognition
tasks involving noisy signals as for instance speech recognition and for this reason we
are studying its application to some astronomical problems. In this paper we present
the 2-D mapping and subsequent study of one local sample of 12000 stars using SOM.
The available attributes are 14: 3-D position and velocities, photometric indexes, spec-
tral type and luminosity class. The possible location of halo, thick disk and thin disk
stars is discussed.

1. Introduction

As 13 indicated, most of the methods currently used in observational Astronomy
are rather old and need an urgent updating before they can be used with confidence
for the treatment of high quality material provided by orbital observatories. So it is
necessary to look carefully to the new trends and tools in the field of Statistics and
Information Theory.

One relevant aspect of the studies that are carried out from stellar catalogues is
the segregation of stars in 1populatlons in terms of spectral, photometric or kinematic
criteria. For instance 16+ 19:20.3.4 have also worked on this sub ject recently. The
viewpoints adopted by most of these have been statistical, numerical or dynamical
approaches.

We present in this paper the application of one recent and powerful statistical
tool to the problem of classifying one real stellar sample between several astronomi-
cal populations: thin disk, thick disk and halo (see ). This tool is the Self-Organizing
Map (SOM): a classification scheme with an unsupervised competitive learning algo-
rithm proposed by T.Kohonen in the 80’s within the artificial neural network field
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(for instance 14,15 ). The main advantage of the algorithm is that it arranges the re-
sulting groups in an associated bidimensional map, where proximity means similarity
between the global group properties.

The final suggested groups are studied and tested from a kinematic point of view
in 2. Indeed, assuming the superposition of gaussian distributions for the resid-
ual velocity it is possible to estimate Eroperties of the mixed populations such the
moments of the separate distributions * .

2. The Self-Organizing Map

2.1. Fundamentals

SOM is an unsupervised neural classifier that has been applied to astronomical
datain 11 12 The basic aim of this classifier is finding a smaller set C = {c1,...,¢p}
of p centroids that provides a good approximation of the original set S of n stars with
m attributes, encoded as ”vectors” z € S. Intuitively, this should means that for each
x € S the distance || z — cf(z) || between z and the closest centroid cy(;) shall be small.
However, the main advantage of the algorithm is that it also arranges the centroids
so that the associated mapping f(.) from A to S maps the topology of the set S in a
least distorting way. Usually A is a bidimensional set of indexes named Kohonen map
where proximity between them means similarity between the global properties of the
associated groups of stars.

From a detailed point of view, the neural network is composed by a set of p nodes
or neurons. Every neuron will represent after training, a group of stars with similar
features and the weight vector will be approximately the centroid of these associated
stars. Following the concise description of 1 , the training process consist of presenting
sequentially all the training data in parallel to all nodes. For each training vector,
each node computes the euclidean distance between its weight and that vector and
only the node whose weight is closest to the vector, and its neighbours will update
their weights by approaching them to the presented datum. So the nodes compete
approaching as many as possible the training vectors. By also updating neighbours’
weight instead of just that of winning mode, assures the ordering of the net
Finally we will have p good representatives of the input space after training with
the associated p groups of input data. In addition, weights of nodes which are close
within the grid will also be close within the input space.

The detailed algorithm scheme is:

1. We initialize the weights of the p nodes of the grid with small values: C' =

{e1y.--,¢p}
2. For each of the n training vector of the overall database, z;:

(a) We find the node k whose weight c; best approach z;: d(ck, ;) < d(c, zi),
vie{l,...,p}.
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(b) We update the weight of the winner node k and its neighbours, Ni(z):

N Ja-1)+a(@)(zi—a(t—1)) 1€ Ne(s) ,
CI(Z)—{CI(i—l) ! I ¢ No(s) I=1...p

being:

e a(i) a suitable, monotonically decreasing sequence of scalar-valued
gain coefficients, 0 < a(z) < 1. A good choice is a rapidly decreasing
function during, let’s say, the first 1000 iterations between 0.9 and 0.1
(ordering period); this function can be lineal. After the initial phase,
a(t) should attain small values (< 0.01) over a long period. A valid
dependence is a(z) o 1/3.

o The radius of the activated neighbourhood Ni(z), a monotonically
decreasing function of the iteration :. It can begins with an initial
fairly wide value, for Ni(0) (e.g. more than half the diameter of the
network), and letting it shrink with time during the ordering phase
to, say, one unit; during the fine adjustment phase the radius can be
zero (only the winner neuron is activated).

3. The process 2 is repeated for the overall database until a good final training is
obtained. A rule of thumb is that for good statistical accuracy, the number of
steps must be at least 500 times the number of nodes.

2.2. Calculations

The observational data considered is the 6 stellar catalogue (see 7 ). It was made
from the S.A.O. catalogue that contains all the kinematic and astrophysical informa-
tion available about more than 250000 stars 7> 18" The final catalogue contains
12824 stars with enough information to estimate the spatial velocity. The most rel-
evant data for our purposes are the galactic longitude, latitude and the heliocentric
distance; the spectral type and luminosity class; the Johnson photometric magnitude
and indexes m,, B — V, U — B; the spatial residual velocities taking out the sim-
ple rotation model in a galactic heliocentric reference frame; and finally the velocity
components in the same reference system as the residual velocity components.

SOM has been applied working in a 14 dimensional characteristic space, i.e., the
space formed by the 14 properties described above. We assume the symmetry referred
to the galactic plane for the galactic latitude and for the perpendicular to galactic
plane residual velocity component, that means considering its absolute values | b |
and | W | respectively. In the calculations we have taken 828 = 64 centroids to be
determined after 4.10° training iterations of the neural network (= 330 presentations
of the entire database). So, the resultant Kohonen map consists of a two-dimensional
grid of 828 = 64 neurons, with a 14 dimensional centroid vector and an associated
group of stars for every node. To evaluate the results it is interesting to keep in
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Figure 1: In figure (1) | W;| is plotted again the height above the galactic plane, | Z|,
for the 64 centroids calculated. In figure (2) the distribution of the three families of
centroids in the Kohonen map, regarding the |W; | characteristic is represented; (A)
with |W; |< 24Km/s (white squares), (B) with 24 <|W;|< 60Km/s (gray squares)
and (C) with |W;|> 60Km/s (black squares).

mind that if the j-th characteristic is significant in the segregation problem, then a
systematic trend for that characteristic appears in the Kohonen map. The centroids
obtained for the stellar catalogue present as the main significant characteristics, the
distance and the absolute value of the residual velocity component perpendicular to
the galactic plane | Wi |. The distance is directly correlated with other significant
characteristics such as the spectral type and the luminosity class.

Using the Kohonen map we can segregate the catalogue from an astronomical
point of view. Indeed, | W, | gives us the maximum perpendicular distance to which
the star can climb away from the plane. This parameter is related directly with
its metallicity and with the population to which the star can belong: disk and halo
populations with low and high values, and the recent proposal of a third population,
the thick disk, with intermediate values of | W | 8

In Figure 1.1 the | W, | in function of the distance perpendicular to the galactic
plane | Z | appears, calculated as rsin |b|, for the 64 centroids obtained. We can
distinguish between three groups of neighbouring centroids in the Kohonen map: (A)
with | W, |< 24Km/s (distances basically lower than 550 pc), (B) with 24 <|W; |<
60Km/s (distances between =~ 380 and 1400 pc) and (C) with | W, |[> 60Km/s
and distances in general greater than 1400 pc (Figure 1.2). These intervals agree
with the kinematic bins considered by 2 ; and related to the metallicity and to the
Galaxy populations: region (A) with a predominant thin disk component, (B) with
the thick disk and (C) with the halo population. By the other hand the residual
velocity moments for the groups (A), (B) and (C) are listed in Table 1. The 2nd.
order moments are compatible with the accepted values for the thin disk, thick disk
and halo (for instance 4 ). A detailed study of each group from these moments is
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Group A (a) Group B (b) Group C (c)
Moment Error Moment Error Moment Error
U, 10.87 0.34 4.5 1.3 27.1 4.7
Vo 18.09 0.26 13.0 11 3.6 3.7
W, 7.65 0.20 5.0 1.2 21.6 5.7
©11 1257 31 2820 150 8000 700
w22 735 24 2110 130 5040 470
n33 435 16 2440 130 11900 890
B12 115 18 - - 1200 | 400
H112 -237 23 - - - -
n222 -363 39 - - - -
1233 -87 14 - - - -
Hi111 1187 95 4820 580 24600 4300
11122 328 30 1570 220 6180 880
H2222 674 82 3310 580 10600 2000
$#1133 181 18 1310 190 8300 1100
p2233 158 18 1060 | 120 5230 | 640
13333 305 60 3460 420 43400 5700

Table 1: The mean residual velocities, U,, V,, W, and the non-vanishing central mo-
ments (3-sigma level) of order two, three and four,p;; , ik , pijr respectively,
with the associated errors are listed for the groups A, B and C of stars (those with
residual velocity greater than 300 Km/s have not been taken into account). The units
for the 2nd, 3rd and 4th order moments are (Km/s)?, 10*(Km/s)® and 10*(Km/s)*
respectively.

5 .

done in

3. Conclusions

In this paper we have applied the Self-Organizing Map method to the study of a
stellar catalogue that contains 3D positions, jointly with spectral, photometric and
kinematic data for a total of more than 12000 stars in the solar neighbourhood. We
have found the existence of three regions of neighbouring centroids in the resulting
Kohonen map from the | W, | attribute. Other important feature in the classification
has been the distance. Hence the resulting groups present properties related with the
locality. These three regions seem to correspond basically to the thin disk (A), thick
disk (B) and halo populations (C) also taking into account the respective residual
velocity moments. In order to characterize the efficiency of SOM in this kind of
a,stro?gmica,l problems it is interesting to apply that algorithm to synthetic samples
(see V).
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