
Exploratory OLAP on Linked Data

A. Abelló1, E. Gallinucci2, M. Golfarelli2, S. Rizzi2, and O. Romero1

1 ESSI, Universitat Politècnica de Catalunya, Barcelona, Spain
2 DISI, University of Bologna, Italy

Abstract. In the context of exploratory OLAP, coupling the informa-
tion wealth of linked data with the precision and detail of corporate data
can greatly improve the effectiveness of the decision-making process. In
this paper we outline an approach that enables users to extend the hi-
erarchies in their corporate cubes through a user-guided process that
explores selected linked data and derives hierarchies from them. This is
done by identifying in the linked data the recurring modeling patterns
that express roll-up relationships between RDF concepts and translating
them into multidimensional knowledge.

Keywords: OLAP, linked data, ontologies

1 Introduction and Overview

Business intelligence (BI) techniques have been enormously accelerating and im-
proving the decision making process in companies for two decades. However, the
recent years witness a push towards two directions: on the one hand, enriching
the decisional process by including, besides data extracted from the corporate
sources, also external data coming for instance from the web; on the other hand,
enabling data enthusiasts to build their own reports on-the-fly, without any sup-
port from ICT people. The resulting approach is often called exploratory OLAP
because external data must be discovered and acquired [3].

When accessing external data and integrating them in the decision-making
process, knowing the data semantics is important; ontologies may obviously offer
a strong contribution in this direction [3]. A relevant role in this context is
played by linked data, whose shared, structured, and interlinked nature should
make them easily accessible and searchable. Unfortunately, linked data are often
chaotic and badly organized, especially from the schema point of view, which
often prevents users from taking full advantage of the informative wealth lying
with linked data. On the other hand, multidimensional modeling appears to
be an effective approach to so-called small analytics on big data (essentially,
aggregate queries on large volumes of data) [12], because it enables users to get
a comprehensive yet synthetic picture of the information of interest.

The work of this paper is inspired by the fusion cubes vision [2], where a
corporate, stationary data warehouse can be dynamically extended by the users
on a self-service basis, by including some external situational data. In particular,
the goal of our approach, named iMOLD (Interactive Multidimensional Modeling
of Linked Data), is to enable users to extend the hierarchies in the corporate



cubes through a user-guided process that explores selected linked data, derives
hierarchies from them, and populates these hierarchies with data. This is done
by identifying in the linked data the recurring modeling patterns that express
roll-up relationships between RDF concepts and translating them into multidi-
mensional knowledge, to be stored locally and shared with every user for reuse
purposes. The knowledge base built and maintained by the system to store such
information is called Internal Ontology (IO)3, whereas any source of linked data
will be referred to as an External Ontology (EO).

From a functional point of view, the user locates a concept of interest in a
selected EO (e.g., the concept of city on DBpedia), then she uses it as a starting
point to build her hierarchies. The typical scenario that we envision can be
subdivided into three iterative phases.

1. Assessment: the user accesses the IO to check whether the concept of
interest is already present and which hierarchies have already been built
around it, and she can decide to reuse the information previously acquired
either by herself or by others.

2. Acquisition: if the concept of interest is not present in the IO or it is not
satisfactorily modeled, the user can search for aggregation patterns in the
EOs, build her own multidimensional schema by selecting the concepts of
interest, and integrate the results into the IO.

3. Integration: the user launches a set of system-generated queries that create
and populate new dimension tables with the data selected; these tables are
then integrated with those in the corporate cubes to enable richer analyses.

The first phase is mainly a matter of delivering a smart user interface for ef-
fectively browsing the IO. The third phase requires to automatically create and
execute some SPARQL queries to extract data, to transform and load them into
ad hoc dimension tables, and to establish a correlation between rows in these
dimension tables and rows in the corporate dimension tables. The only demand-
ing step here is the last one, which requires inter-member mappings to be found;
though this problem has not been deeply investigated in the literature, some ex-
isting approaches could be adapted to implement it (e.g., [5, 10, 7]). The second
phase, on which this paper is focused, is the one that raises the most challenging
and novel research issues.

2 Aggregation Patterns in Ontologies

The multidimensional model is the core of data warehouse and OLAP applica-
tions. Our specific goal in this work is to detect hierarchies in linked data, for
this reason we will focus on the modeling of hierarchies.

3 The description of the IO structure is not given here for space reasons; we just
mention that it reuses the QB4OLAP model to represent OLAP cubes in the RDF
format [6] and the SM4AM metamodel to store metadata on a QB4OLAP cube [13].



Species 

Family 

Mammal 

Cat Dog 

Class 

Felidae Canidae 

Lion 

Fig. 1. An example of multidimensional modeling: levels and roll-up relationships (left),
members and part-of relationships (right)

ex:ParentMember	  

ex:ParentLevel	  

ex:ChildMember	  

ex:ChildLevel	  

ex:partOf	  
	  

rdf:type	   rdf:type	  

ex:ChildLevel	  

ex:ParentMember	  

rdf:subclassOf	  

ex:ChildMember	  

rdf:type	  

ChildLevel 

ParentLevel ParentMember 

ChildMember 

(a)

(b)

Fig. 2. The two main RDF aggregation patterns represented in UML (top) and their
multidimensional counterpart (bottom)

Definition 1 (Hierarchy and Roll-up Relationship). An aggregation hier-
archy (or, briefly, a hierarchy) is a directed tree of levels rooted in a dimension.
Each arc models a roll-up relationship u = (l, p, l′) between two levels, a child l
and a parent l′, and has semantics p. Each level has a domain made by a set of
members. The roll-up relationship u induces a one-to-many part-of relationship
on the members of l and l′, such that each member of l is part of exactly one
member of l′.

Example 1. As a working example we use the hierarchy in Figure 1. Levels are
shown as white circles; for instance, Species rolls-up to (i.e., is a child of) Family.
Members are shown as black circles; for instance, Canidae and Felidae (member
instances of Family) are part of member Mammal (member instance of Class).

In the remainder ot this section we describe the two main aggregation pat-
terns in RDF data that that can give rise to roll-up relationships. To this end we
assume that the EOs we query may not be completely correct, and that linked
data are incomplete (since they follow the open world assumption).

It is well known that aggregation hierarchies are based on part-whole rela-
tionships [1], which in RDF are commonly modeled using properties. Thus, as
exemplified in Figure 2, pattern (a) corresponds to two classes (e.g., ex:Family
and ex:Class in Figure 3) whose instances are related by an RDF property (be-
cause of the incompleteness of linked data, we cannot assume that this property
also exists at the level of classes). Noticeably, the ontology designer may have
modeled the association in one direction or the other. For instance, the aggre-



ex:Canidae	  

ex:Mammal	  

ex:Family	  

ex:Class	  

ex:belongsTo	  

ex:Felidae	  

ex:Dog	  ex:Species	  

ex:belongsTo	  

ex:belongsTo	  

ex:Cat	  

ex:belongsTo	  

ex:Lion	  

ex:Species	  

rdf:type	  

rdf:type	  

rdf:type	  

ex:Felidae	  

ex:Mammal	  

rdf:subclassOf	  

rdf:subclassOf	  

ex:Canidae	  

rdf:subclassOf	  

ex:Dog	   ex:Cat	   ex:Lion	  

rdf:type	   rdf:type	  

Fig. 3. The hierarchy in Figure 1 modeled in RDF using associations (left) and gener-
alizations (right)

gation between ex:Family and ex:Class in Figure 3 could also have been modeled
with the RDF property ex:hasFamily, where ex:Class is the domain and ex:Family
is the range. For this reason, the child and parent roles can be inverted with ref-
erence to those shown in Figure 2. Another variant of this pattern arises when
the instances are associated to a data type instead of a class (i.e., we have liter-
als instead of objects); in this case there is no class modeling the parent (child)
level, so its name must be provided by the user.

Unfortunately, we cannot rely on the existence of multiplicities in RDF
(which is only part of the OWL specification). Thus, in pattern (a) we have
to sample the associated instances to check the proportion of existing many-
to-one relationships (e.g., we retrieve from the SPARQL end-point how many
instances of Class are related to each instance of Family). Then, these patterns
are identified only if the average cardinality of the association is close to 1 on
the side of the parent, i.e., if an approximate functional dependency holds [9].

The second possibility for modeling an aggregation hierarchy in RDF is based
on generalization. Though generalizations are binary relationships between pairs
of classes, from a conceptual point of view they can be grouped depending on
the criteria used (generalization set or powertype in UML terminology). Thus,
in pattern (b), the class corresponding to the child level is specialized into sub-
classes, each corresponding to a parent member, using the parent level as a
generalization set. For instance, class Species is specialized into Canidae and Fe-
lidae based on generalization set Family; these two subclasses give rise to two
parent members, and their instances (Dog, Cat, and Lion) to child members. A
variant of this pattern arises when child members are modeled as classes rather
than instances in the linked data, which may happen because of incompleteness
or because of a different level of abstraction chosen by the ontology designer. In
this case the different classes corresponding to child members (e.g., Cat and Lion,
whose instances could be for instance Felix and Simba) would be generalized into
a superclass (Felidae) that would be the corresponding parent member.

Generalization sets are normally not made explicit in RDF. In principle, they
could be explicitly represented in RDF at the metalevel, i.e., using metaclasses;
however, this type of metamodeling is extremely rare in linked data, so the user
will have to provide names for the levels corresponding to generalization sets.



Algorithm 1 Detect Pattern (a)
Input EO: an external ontology, c: a starting class, dir: a direction (either ’outbound’ or ’inbound’);

multTol: tolerance for giving -to-one multiplicity to an association
Output R: a set of roll-up relationships
1: R← ∅ . Initialize R
2: q ← Query(c, dir) . Create q...
3: A← Execute(EO, q) . ...and execute it against EO
4: for each a ∈ A do . Find the roll-up relationships in A
5: if leftCard(a) > multTol ≥ rightCard(a) then . If a is many-to-one...
6: R← R ∪ {a} . ...add it to R
7: else
8: if leftCard(a) ≤ multTol < rightCard(a) then . If a is one-to-many...
9: R← R ∪ {Rev(a)} . ...add its opposite to R

10: return R

3 Acquisition

In this section we discuss the core phase of iMOLD, whose goal is to build
aggregation hierarchies out of an EO by letting users choose the specific roll-up
relationships of interest.

As previously stated, the acquisition of multidimensional knowledge is done
by detecting aggregation patterns on a selected EO. Exploring an EO in its
entirety to find every potential roll-up relationship is clearly unfeasible. Some
approaches have been devised for effectively exploring linked data using advanced
visualization techniques (e.g., [8, 4]); in this work we adopt a basic approach for
supporting the user interaction with the EO, and we simply require the user to
first choose a class of interest c in an EO, to be mapped into a level l and used
as an entry point for pattern detection.

Every detection is focused, besides on c, on a direction dir, which can be
either outbound or inbound ; this means that, given c and dir, we detect the
patterns by exploring the triples where c (or its instances) is either the subject
(dir = ’outbound’) or the object (dir = ’inbound’). Indeed, given a relationship
a between subject s and object o, a is equally detected either by starting from
s and moving to o in the outbound direction, or by starting from o and moving
to s in the inbound direction. Pattern detection relies on a SPARQL query, to
be directly submitted to the SPARQL endpoint of a selected EO. Each pattern
detected is then mapped into a roll-up relationship. The detection process is
done in a breadth-first fashion: this means that c is completely analyzed in its
relationships with other classes or datatypes but no recursive detection is done.
The roll-up relationships selected by the user lead to new classes, from which
the user can iteratively perform new searches.

A key feature of linked data is that of creating connections between different
ontologies, so as to enable the reuse of knowledge. In an ontology, this connection
is provided by mentioning objects of a different ontology with their original
URIs. An example is the triple <dbpedia:Barcelona rdf:type yago:City108524735>,
specified in DBPedia, which reuses a class defined in YAGO, therefore providing
a link between the two ontologies. In iMOLD, the connectivity of linked data
is exploited to enable users to jump from the currently explored ontology to a
different one whenever the application of a pattern detects an external concept



(i.e., one whose namespace is different from the one of the starting concept). At
this point, if the user wishes to continue the exploration of the external concept,
she will be asked by the system whether she wants to jump to the ontology
that concept belongs to. If so, the transition can be seamlessly made by simply
launching the next searches for patterns on the SPARQL endpoint of the new
ontology.

In the remainder of this section we give a short description of how the two
main aggregation patterns seen in Section 2 can be detected on an RDF ontology.

3.1 Acquisition of Pattern (a)

Detecting this pattern means determining whether a property p involving c can
be mapped to a roll-up relationship, where the domain and range of p are mapped
to a child and a parent level (or vice versa) in the hierarchy.

Definition 2 (Association). An association is a triple a = (d, p, r) where p
is a property, d is the domain of p, and r is the range of p. Association a
is characterized by its right cardinality rightCard(a), i.e., the average number
of distinct instances of r linked to each instance of d through p, and by its left
cardinality leftCard(a), i.e., the average number of distinct instances of d linked
to each instance of r through p. Given a = (d, p, r), let Rev(a) = (r, p, d) be its
opposite.

An association a is a roll-up relationship if its multiplicity is either many-
to-one or one-to-many; in particular, a corresponds to a roll-up relationship
u = a if its multiplicity is many-to-one, to a roll-up relationship u = Rev(a)
if its multiplicity is one-to-many. Since the RDFS vocabulary does not provide
means to describe the multiplicity of a property, the only way to determine
the multiplicity of a is through a statistical analysis at the instance level, which
means inspecting the relationships in which the instances of d and r are involved.

The pseudocode for detecting association-based patterns is shown in Algo-
rithm 1. First of all, a SPARQL query q is generated by function Query (line 2);
given a starting class c and an offset, q returns a set A of associations involving c
in direction dir, together with the left and right cardinality of each association.
The specific form of q depends on dir; for instance, this is the query generated
in the outbound direction:

SELECT ?prop ?range (?nProp/?nObj AS ?rightCard) (?nProp/?nSubj AS ?leftCard) ?nObj ?nSubj
WHERE
{ SELECT ?prop ?range (COUNT(*) AS ?nProp) (COUNT(DISTINCT(?obj)) AS ?nObj)

(COUNT(DISTINCT(?subj)) AS ?nSubj)
WHERE
{ { SELECT ?subj . Step 1: select instances of c

WHERE { ?subj rdf:type ?c . } } .
?subj ?prop ?obj . . Step 2: retrieve the associations of each subject
?obj rdf:type ?range . } . Step 3: retrieve the classification of each object

GROUP BY ?prop ?range } . Step 4: group the instances to get the list of associations

Function Execute (line 3) submits q to the SPARQL endpoint of the EO. In the
lines from 4 to 9, the associations in A are filtered according to their multiplicities



and added to R. Threshold multTol is applied to left and right cardinalities to
determine if each association a is to-one or to-many (lines 5 and 8).

We close this section by remarking that, due to the huge number of roll-up
relationships potentially found, only the most relevant relationships in R should
be returned to the user, being the relevance of a relationship defined in function
of its support in the EO.

3.2 Acquisition of Pattern (b)

This pattern is simpler to detect than the previous one because (i) no query
at the instance level is required and (ii) the only inter-class property that must
be considered is rdfs:subClassOf. On the other hand, it applies less intuitive
transformations to classes: whereas distinct classes always correspond to distinct
levels in pattern (a), in (b) distinct subclasses that belong to the same superclass
can be grouped together to become members of a single level, which corresponds
to the generalization set of the subclasses.

Consistently with our acquisition approach, the generalizations g involving a
given class c are detected by navigating the rdfs:subClassOf properties according
to direction dir: the superclasses of c are found by bounding d to c and taking
dir = ’outbound’, while the subclasses of c are found by bounding r to c and
taking dir = ’inbound’. In both cases, an interaction with the user is necessary
to filter out non-relevant generalizations; more specifically: (i) when operating
in the inbound direction the user must manually select the subclasses of c that
belong to the generalization set of interest and provide its name; (ii) when oper-
ating in the outbound direction, the user must manually select the superclasses
of interest when searching for generalizations of c.

Though the algorithm pseudocode is not shown for space reasons, we mention
that, when a generalization taxonomy is iteratively explored by the user, the
process of mapping the patterns detected into levels of a hierarchy H is more
complex than for pattern (a), because the way the mapping is done depends not
only on dir, but also on the previous structure of H.

4 Related Work and Conclusion

Remarkably, while several previous papers address the problem of building mul-
tidimensional schemata starting from source data, most of them are meant to be
used at design-time in the context of so-called supply-driven design and consider
well-structured data sources (e.g., Entity/Relationship diagrams and relational
schemata) where hierarchies can be easily detected by following functional depen-
dencies (represented, respectively, by many-to-one relationships and by foreign
keys). Conversely, our approach operates at query time to integrate the corporate
cubes with situational data; besides, the modeling heterogeneity of linked data
and the impossibility of describing the multiplicity of properties in the RDFS
vocabulary make hierarchy detection more complex. Most of the approaches that
consider ontologies and semi-structured sources work at the schema level to avoid



sampling or querying instances [11]. A solution that stands in the middle is the
one proposed in [14], which is based on XML schema but, in some cases, infers
many-to-one relationships from instances. Finally, in [13] an instance-based ap-
proach is sketched but only basic rules are described and no formal definitions
of their expressiveness is provided.

The prototype we built to test iMOLD is implemented as a Java web applica-
tion; we rely on the Jena Library for the communication with SPARQL endpoints
and for in-memory manipulation of ontologies. The IO is stored within a simple
RDF file. Finally, we used Javascript to implement the user interface and we
adopted the D3 library for the graphical visualization of the IO. To increase the
effectiveness of the user experience, two alternative (and freely interchangeable)
interaction approaches are proposed to the user in our prototype: an ontology-
driven experience, oriented to users who have good familiarity with ontologies
and semantic web, where the focus is set on the EO; and an OLAP-driven ex-
perience, targeted to users who have good familiarity with multidimensional
modeling, where the focus is set on the hierarchy being built in the IO.

References

1. Abelló, A., Samos, J., Saltor, F.: Understanding analysis dimensions in a multidi-
mensional object-oriented model. In: Proc. DMDW. p. 4 (2001)

2. Abelló, A., et al.: Fusion cubes: Towards self-service business intelligence. IJDWM
9(2), 66–88 (2013)

3. Abelló, A., et al.: Using semantic web technologies for exploratory OLAP: a survey.
IEEE Trans. Knowl. Data Eng. 27(2), 571–588 (2015)

4. Castano, S., Ferrara, A., Montanelli, S.: Thematic exploration of linked data. In:
Proc. VLDS. pp. 11–16 (2011)

5. Chang, K.C., Garcia-Molina, H.: Mind your vocabulary: Query mapping across
heterogeneous information sources. In: Proc. SIGMOD. pp. 335–346 (1999)

6. Etcheverry, L., Vaisman, A.: QB4OLAP: A vocabulary for OLAP cubes on the
semantic web. In: Proc. COLD. CEUR-WS.org (2012)

7. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP query
reformulation in peer-to-peer data warehousing. Inf. Syst. 37(5), 393–411 (2012)

8. Hirsch, C., Hosking, J., Grundy, J.: Interactive visualization tools for exploring the
semantic graph of large knowledge spaces. In: Proc. VISSW. vol. 443 (2009)

9. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. Comput. J. 42(2),
100–111 (1999)

10. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Mayorova, D.: A requirement-
driven approach to the design and evolution of data warehouses. Information Sys-
tems 44, 94–119 (2014)

11. Romero, O., Calvanese, D., Abelló, A., Rodriguez-Muro, M.: Discovering functional
dependencies for multidimensional design. In: Proc. DOLAP. pp. 1–8 (2009)

12. Stonebraker, M.: What does ’big data’ mean? http://cacm.acm.org/blogs/ (2012)
13. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: SM4AM: A semantic meta-

model for analytical metadata. In: Proc. DOLAP. pp. 57–66 (2014)
14. Vrdoljak, B., Banek, M., Rizzi, S.: Designing web warehouses from XML schemas.

In: Proc. DaWaK. pp. 89–98 (2003)




