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Abstract—There is a need to increase performance under the
same power and area envelope to achieve Exascale technology in
high performance computing (HPC). The today’s chip multipro-
cessor (CMP) design is tailored by traditional desktop and server
workloads, different from parallel applications commonly run in
HPC. In this work, we focus on the HPC code characteristics and
processor front-end which factors around 30% of core power and
area on the emerging lean-core type of processors used in HPC.
Separating serial from parallel code sections inside applications,
we characterize three HPC benchmark suites and compare
them to a traditional set of desktop integer workloads. HPC
applications have biased and mostly backward taken branches,
small dynamic instruction footprints, and long basic blocks.
Our findings suggest smaller branch predictors (BP) with the
additional loop BP, smaller branch target buffers (BTB), and
smaller L1 instruction caches (I-cache) with wider lines. Still,
the aforementioned downsizing applies only to the cores meant
to run parallel code. The difference between serial and parallel
code sections in HPC applications points to an asymmetric CMP
design, with one baseline core for sequential and many HPC-
tailored cores designed for parallel code. Predictions using Sniper
simulator and McPAT show that an HPC-tailored lean core saves
16% of the core area and 7% of power compared to a baseline
core, without performance loss. Using the area savings to add
an extra core, an asymmetric CMP with one baseline and eight
tailored cores has the same area budget as a symmetric CMP
composed out of eight baseline cores demanding 4% more power
and providing 12% shorter execution time on average.

I. INTRODUCTION

Chip multiprocessor (CMP) power consumption is one of
the first class constraints on exascale system performance
and effectiveness [1], [2]. We need more energy-efficient
CMP designs to reach the exascale milestone, providing more
performance within the same power and area budget.

Today’s high performance computing (HPC) nodes are made
of CMPs tailored for desktop and server applications. They
usually have few heavy-weight cores capable of exploiting
the available instruction-level parallelism through wide super-
scalar out-of-order execution. The core front-end is designed to
support large instruction footprints and to predict the outcomes
of branches in complex control flows. On the other side, HPC
workloads are different, running in parallel, thus demanding
throughput-oriented CMPs. Keeping the same power and area
budget, a handful of heavy cores are replaced by many
lean ones, integrated as an alternative to exploit thread-level

parallelism. For example, Intel’s Xeon Phi [3] and IBM’s
BlueGene/Q [4] CMP architectures integrate many power-
efficient lean cores targeting parallel HPC workloads.

With the current configuration of the front-end structures, an
embedded processor spends 42% of its energy on instruction
supply [5]. Instruction fetches and branch predictions consume
30% of the total power in the ARM Cortex-A15 core [6].
McPAT also shows that lean cores, such as ARM’s Cortex-A9
and Sun’s Niagara2, spend 25% of the total core area, and 30%
of the total core power on instruction delivery [7]. Therefore,
it is important to evaluate microarchitectural optimizations to
lessen front-end activity and area which can have significant
impacts on overall power consumption.

In this paper, we evaluate three HPC benchmark suites and
compare them with traditional desktop applications, found in
SPEC CPU INT. We analyse architecture independent code
properties, followed by architecture dependent implications.
Our results show that HPC applications expose different code
characteristics, quantifying each of them. With those findings,
we give recommendations on how to adequately dimension
the core front-end structures of lean cores for HPC workloads
to get maximal area and power savings without performance
impact. Moreover, this work analyses the difference between
serial and parallel code sections inside HPC workloads. Not
just that HPC cores should be tailored differently from desk-
top, but also the master core has to be tailored differently from
worker cores. With the serial section gaining relevance in new
applications, tailoring the master core separately from workers
may become critical.

The main contributions of this paper are:
• A characterization of 29 applications from three HPC

benchmark suites. Compared to SPEC CPU INT, we find
that HPC workloads have fewer branch instructions, more
biased and backward taken conditional branches, smaller
instruction footprints, and longer basic blocks. Those
findings suggest the use of smaller I-caches with wider
lines, smaller BPs with loop BPs, and smaller BTBs.

• When analysing HPC applications, we separate code
characteristics for serial and parallel code sections. We
find them different, with serial parts being more close to
desktop applications in most of the cases. This points



that as the serial bottleneck increases inside parallel
applications, we need an asymmetric CMP with many
throughput-oriented cores and one (or few) latency-
optimized core for serial code sections.

• Using McPAT and the Sniper as a multi-core simula-
tor [8], we configure an asymmetric octa-core CMP with
one baseline and seven cores with downsized front-end
structures. We estimate that 16KB I-cache (compared to
32KB I-cache), 2.5KB branch predictor (compared to
16KB BP), and 256-entry BTB (compared to 2K-entry
BTB) reduce the total lean core area budget by 16% and
core power by 7% with no impact on performance. For
the same area budget as a CMP made out of eight baseline
cores, we can add an extra core. An asymmetric CMP
with one baseline and eight tailored cores provides 12%
performance improvement on average.

The rest of the paper is organized as follows. In Section II
we explain our methodology and introduce the benchmark
suites. Architecture independent and dependent characteristics
of HPC workloads are presented in Sections III and IV. We
provide our recommendations on core front-end rebalancing
and performance evaluation in Section V. Related work is
given in Section VI. Finally, we summarize in Section VII.

II. METHODOLOGY AND EVALUATION

In this Section, we explain the methodology of our work.
Workload analysis is based on a set of pintools that collect
data related to code characteristics at runtime. After that, we
present benchmark suites evaluated in this work.

A. Workload analysis

We use Pin [9] as a tool for dynamic instrumentation of
application binaries. It provides an infrastructure for writing
program analysis tools called pintools. For architecture in-
dependent characterization, they only collect the statistic in
their analysis routines. For example, in the case of branch
instruction analysis, a pintool counts the number of branches,
checks for each one if it is taken or not taken, etc. For
architecture dependent characterization, pintools simulate spe-
cific HW structures. In the case of instruction fetching, a
pintool configures an I-cache and instruments each instruction
analysing if its address hits or misses in the I-cache.

For each upcoming analysis, we provide a detailed expla-
nation of the particular pintool used to obtain the results.

Performance and power estimations are done using the
Sniper multi-core simulator [8] in combination with the Mc-
PAT library [7]. We provide more information on their setup
and usage in Section V.

B. Benchmark suites

We use 29 workloads from three benchmark suites to eval-
uate the benefits of tailoring the core front-end structures for
HPC. Additionally, we analyse a set of 12 desktop applications
to point the difference between them and HPC workloads.

ExMatEx applications. This suite stands as a recent set
of eight HPC applications with real scientific workloads,
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Fig. 1: Dynamic branch instruction breakdown for each bench-
mark suite as the percentage of total instructions.

numerically intensive kernels and kernels bounded by memory,
I/O, and communication [10]. We use default input parameters
for each of these workloads. Half of the applications from
this suite are implemented using OpenMP while the other half
combine MPI and OpenMP.

SPEC OMP 2012 benchmark suite. An objective and
representative set of HPC workloads for measuring the per-
formance of shared-memory CMPs [11]. The suite covers 11
scientific and engineering applications, from computational
fluid dynamic to image manipulation1. These benchmarks
were analysed using the reference input set.

NAS Parallel Benchmark suite. NPB suite is a set of 10
pseudo-applications derived from computational fluid dynam-
ics apps [12]. Developed and maintained by NASA, it is a
widely-used and standard set of HPC workloads. We use the
C input set for analysing this suite.

SPEC CPU INT 2006 suite. These benchmarks represent
a standard set of applications for measuring the system’s
processor and memory performance [13]. This suite is included
as a comparison between HPC and desktop applications. Using
reference input set, we analyse only integer benchmarks (all
12 of them) since floating point workloads are derived from
scientific applications and many of them are already covered
by the SPEC OMP suite.

We compile each workload with the gcc 4.9 compiler
version and the -O3 optimization flag. Instrumentation is
performed on an Intel SandyBridge CMP, running eight
and analysing only the first processing element (thread0 or
process0). This is acceptable because our focus is on the
private front-end structures per core and the impact of shared
resources (such as last-level cache and interconnect network)
through interference among cores in a CMP is known to be
negligible on the instruction side [14]. Moreover, the first
processing element is the one that executes both serial and
parallel code sections.

III. MICROARCHITECTURE INDEPENDENT WORKLOAD
CHARACTERIZATION

Here, we provide intrinsic code characteristics of HPC
applications. We focus on aspects affecting the core front-
end: branches, instruction footprints, and basic blocks. We

1SPEC OMP benchmark suite has three more applications which are
identical to the corresponding ones from NPB suite.
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Fig. 2: Distribution of branch directions. Conditional branches
are dominantly decided in one direction, either taken or
not taken. Desktop applications have more evenly distributed
directions of conditional branches.

TABLE I: The average percentage of backward and forward
taken branches per benchmark suite.

Suite Serial code Parallel code
backward forward backward forward

ExMatEx 72% 28% 69% 31%
SPEC OMP 73% 27% 74% 26%
NPB 71% 29% 80% 20%
SPEC CPU INT 56% 44%

also point to a difference between sequential and parallel code
sections we observed among workloads.

A. Branch Instructions

We start our analysis determining the dynamic mix of
branch instructions. The pintool inspects every branch instruc-
tion and counts its frequency and type.

Figure 1 shows the dynamic branch instruction breakdown.
All branch instructions factor out 13% of the total dynamic
instruction mix for ExMatEx suite and around 7% for SPEC
OMP and NPB, compared to 19% on average for SPEC CPU
INT workloads (total bars). This indicates that HPC workloads
probe branch predictors less often. The number of system
calls is negligible. Indirect jumps (both branches and calls) are
rare except for EP, UA, md, kdtree, and CoEVP. On average,
they are less than 0.5% of all branches, and up to 2.5% in
case of CoEVP. The majority of dynamic branch instructions
are conditional and unconditional direct branches. This figure
also shows a big difference between serial and parallel code
sections inside the HPC applications. Closer to SPEC CPU
INT, sequential parts have almost 3× more branch instructions
than parallel parts on average.

Characteristic 1. HPC workloads, specially the parallel
sections, have almost 3× lower ratio of branch instructions
than typical desktop benchmarks.

Figure 2 presents a more detailed analysis of dynamic
conditional direct branches. It gives a stacked bar for each
suite showing the distribution of branches depending on the
percentage of times they are taken. HPC workloads have
between 90% (in case of NPB) to 80% (in case of ExMatEx) of
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Fig. 3: Static instruction footprint and memory we need to
store 99% of dynamic instructions per benchmark suite.

dynamic branches dominantly either taken or not taken. On the
other side, SPEC CPU INT applications have more distributed
directions of conditional branches. Interestingly, serial and
parallel code sections have similar behaviour, except that
not-taken branch instructions are more frequent in sequential
code. Additionally, Table I breaks down all taken branches
on backward and forward ones. While for HPC suites around
75% of taken branch instructions jump backwards, SPEC CPU
INT benchmarks have almost the same number of forward
and backward taken branches. Again, serial and parallel code
sections show similar ’75-to-25’ ratio between backward and
forward taken branches. These results show bias in direction
with the potentially high predictability of branches among
HPC workloads. They suggest that the use of a simple and
smaller branch predictor would yield a low misprediction ratio.
We analyse this assumption in Section IV-A.

Characteristic 2. Compared to desktop benchmarks, branch
instructions in HPC applications are more biased (predom-
inantly decided in the same direction). Most of the taken
branches are the backward ones.

B. Instruction Footprint

To find out the required I-cache design, we analyse the sizes
of both static and dynamic instruction footprints. We use a
pintool that stores the size of each basic block in bytes and
counts how many times that basic block has been executed.
That way, we find the static and dynamic instruction footprints
per basic block and, thus, for the whole application.

Figure 3 shows the total static instructions footprint and
the amount of memory needed to fit 99% of dynamic in-
structions, averaged per benchmark suite. Workloads from
SPEC OMP and NPB suites have small static code size, up to
252KB (for UA) and around 121KB on average. Workloads
from ExMatEx suite have larger static instruction footprint,
up to 800KB for VPFFT and 242KB on average. These
benchmarks are more recent, close representatives of real
applications, linked with external libraries (such as LAPACK,
BLAS, FFTW) that increase total instruction footprint. Among
HPC workloads, sequential code has larger static instruction
footprint, but still smaller than desktop applications. There is
high spatial code locality. Most of the HPC workloads (17
out of 29) fetch almost 100% of instructions from one or
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Fig. 4: Average basic block length and distance between taken
branches for each benchmark suite.

two KB of memory. Still, cases such as LULESH and CoGL
from ExMatEx or BT from NPB suite, fetch between 60% and
90% of instructions from 16KB of memory. On average, HPC
workloads in parallel execute 99% of instructions from just
14KB of memory. Serial code sections also show high spatial
locality, even higher compared to parallel sections for SPEC
OMP and NPB suites. Among these benchmarks, the total
number of instructions executed sequentially is small, thus
the existence of any loop(s) (the majority of taken branches
is backward-taken according to Table I) results in high code
spatial locality. In this case, the serial code inside parallel HPC
applications show different behaviour from SPEC CPU INT.

These results point that most of the HPC benchmark’s
dynamic code fit in less than 32KB of memory. For many
of them, even 4KB of memory is enough to store almost
every instruction. HPC applications spend most of their time
inside loops, so few basic blocks are fetched and executed
over and over again. Nevertheless, to know exactly how these
characteristics impact the number of I-cache misses, we need
to observe temporal behaviour as well. We cover this analysis
later, in Section IV-C.

Characteristic 3. HPC workloads have small instruction
footprint.

C. Basic blocks

Due to the low frequency of branch instructions, we expect
to find long basic blocks in HPC benchmarks. Traditional
desktop and server applications are known to have short basic
blocks [15], [16]. Our analysis confirms this. Many complex
features are implemented in today’s CPUs to overcome the
problem of short basic blocks and increase fetch bandwidth,
such as multiple branch predictions per cycle, instruction
alignment, and a trace cache. Tailoring an HPC core, these
may not be needed.

Figure 4 shows the average basic block length and the
average distance between taken branches per benchmark suite.
The average basic block size for HPC applications is around
78 bytes. Some of them have very long basic blocks, for ex-
ample, BT (312B), swim (152B), and LULESH (126B). The
distance between taken branches is even longer. It suggests
the usage of wider I-cache lines that would still have high
usefulness and keep fragmentation low. For those benchmarks

where basic blocks are not long, reuse distance is short. That
is the case with CoHMM, CoSP, botsspar, CG, and IS, where
the average basic block size is around 32B, but the majority
of them are executed with a reuse distance between one and
two basic blocks. Once fetched, a wide cache line would be
frequently reused without sending new fetch requests to the
I-cache, acting as a prefetch buffer [17]. Compared with SPEC
CPU INT applications, HPC workloads have around 4× longer
basic blocks and 5× longer distance between taken branches
with parallel code sections. Sequential parts are similar to
desktop applications. These results are important for a design
of the I-cache, as we show in Section IV-C.

Characteristic 4. Parallel sections of HPC workloads have
4× longer basic blocks and 5× longer distance between taken
branches compared to SPEC CPU INT benchmarks.

D. Difference between sequential and parallel code sections
in HPC workloads

Our previous measurements demonstrate that ExMatEx
benchmarks have slightly bigger code sizes, less biased
branches, and shorter basic blocks compared to SPEC OMP
and NPB. There are two reasons for such a behaviour.

First, it includes benchmarks with a considerable amount of
instructions executed in sequential regions bringing its charac-
teristics overall closer to SPEC CPU INT. Run on an eight-core
CMP, CoEVP has a master thread that executes around 35%
of its instructions sequentially, between parallel sections. The
similar behaviour is observed for CoMD (8% of instructions
is executed in sequential parts), CoSP (9%), and LULESH
(11%) applications, all from the ExMatEx suite. Comparing
basic block lengths, CoMD and LULESH have 2× and 3×
longer basic blocks in parallel than in sequential code sections,
respectively. Among SPEC OMP and NPB workloads, master
thread executes less than 1% of all instructions in sequential
regions, except for nab and fma3d (around 4% in sequential
parts). On the previous graphs, the total bars are always
between serial and parallel for ExMatEx, while for SPEC
OMP and NPB total is almost the same as parallel.

Second, ExMatEx benchmarks include many external li-
braries which increase their instruction footprint. This con-
sequently increases the number of branch instructions, and
as we shall see, complexity in predicting them, increasing
the number of misses in the appropriate front-end structures.
If our analysis were done only with SPEC OMP and NPB
benchmarks, we could have ignored the impact of these facts,
leading us to some wrong conclusions and findings.

Characteristic 5. Sequential and parallel code sections in
HPC applications show different behaviour. With a comparable
number of instructions executed sequentially, the analysis of
ExMatEx workloads is essential for this work while the use
of SPEC OMP and NPB benchmarks alone can be misleading
for some metrics.



On the other side, the amount of instructions executed in
serial directly depends on the number of threads running the
application and the size of input set. For example, running
fma3d and nab benchmarks from SPEC OMP with train
inputs and eight threads gives around 25% of all instructions
executed in serial by master thread. With the same inputs as
we use here (reference) but running 64 threads, the fraction
of serial code increases to 18% and 19% (from 4% with eight
threads). Today, Intel’s Xeon Phi cards and IBM’s Power8
CMPs support around 200 threads. As the number of cores
and/or hardware threads per CMP increases, handling the serial
parts of parallel applications may become crucial. Our analysis
so far shows not just that the HPC benchmarks are different
from desktop, but that also serial code sections are different
from parallel inside an HPC application.

IV. MICROARCHITECTURE DEPENDENT WORKLOAD
CHARACTERIZATION

Driven by the observations in the previous section, we
analyse how we can accommodate the core front-end structures
for HPC applications. We focus on branch predictors, branch
target buffers, and instruction caches.

A. Branch Predictor

Characteristics 2 and 3 demonstrates the existence of a small
number of biased branches in HPC applications. It suggests
the high predictability and use of simpler and smaller branch
predictors that can provide the same performance as the ones
we can currently find in today’s CPUs. To evaluate this idea,
we implement a pintool with three different branch predictors:

• gshare - branch prediction that uses one global history
table and branch history register (BHR) XORed with
branch address to index the history table [18].

• tournament - the branch predictor implemented in the
Alpha 21264 processor [19]. It has two branch predictors,
one based on private and the other on global history
tables, and the one which is currently more successful
predicts the outcome of a branch.

• TAGE - a modern branch predictor that relies on tag-
ging the entries and capturing different global history
lengths [20]. It uses a base predictor (bimodal) and a set
of tagged tables indexed using different history lengths
that form a geometric series.

To make a fair comparison between branch predictors, we
evaluate configurations that have the same hardware cost.
Table II gives an overview of the parameters used for different
branch predictors, so they have approximately the same size.
We define two sets of configuration parameters, small with a
2KB hardware budget and big with 16KB. We take this as a
reasonable assumption in a lean-core design given that on the
2nd Championship Branch Prediction competition [21], 4KB
and 32KB budgets are used for heavy-weight cores.

Since HPC workloads spend most of their time inside loops
and the majority of taken branches are backwards, we also
check how a loop branch predictor (LBP) affects mispredic-
tions when it is added to the small predictors analysed here.

TABLE II: Size parameters and hardware cost of evaluated
branch predictors. Parameter n stands for the number of
address bits used to index the tables, and parameter m stands
for branch history length.

Predictor Hardware cost (bits) Size parameters
∼2KB (small) ∼16KB (big)

gshare 2m+1 m = 13 m = 16
tournament 2n(m+ 2) + 2m+2 n = 10,m = 8 n = 12,m = 14
TAGE according to [21]2 2 tables 12 tables

ExMatEx SPEC OMP NPB SPEC CPU INT
0

5

10

15

20

25

30

B
ra

n
ch

 M
P
K

I

gshare-big

tournament-big

tage-big

gshare-small

tournament-small

tage-small

L-gshare-small

L-tournament-small

L-tage-small

HPC Desktop

Fig. 5: Branch MPKI for different branch predictor configu-
rations and benchmark suites.

An LBP tries to identify loops with a constant number of
iterations. The prediction is by default provided by the base
predictor, but, in cases where high confidence is achieved,
the prediction from an LBP is taken as the final decision.
We implement a 64-entry LBP with an approximate hardware
budget of 512B.

Figure 5 shows the number of branch mispredictions per
kilo instructions (branch MPKI) for every branch predictor
and three configurations per BP: big, small, and small with
an LBP (bars with prefix L on a graph). There are several
things to observe here. First, Figure 5 demonstrates the dif-
ference between desktop and HPC workloads for the same
configurations and types of branch predictors. As pointed by
Characteristics 1 and 2, HPC workloads have fewer branch
instructions per execution and more biased branches. This
results in SPEC CPU INT applications having around 3×
higher branch MPKI compared to ExMatEx ones, and around
5× compared to SPEC OMP and NPB ones. For every HPC
benchmark suite, sequential parts have higher branch MPKI
than its parallel parts, but lower than SPEC CPU INT.

Second, it is clear that TAGE outperforms the other two
branch predictors for all cases. This holds not just on per
suite, but also, on per benchmark level. TAGE is much better
in reducing the interference or aliasing which occurs when
different branch instructions point to the same prediction bits.
With the simple usage of lower address bits or XORing them
with a history register, different branch instructions can map
to the same prediction entry which reduces the effective usage
of a prediction table. It can even be destructive if the branch

2The original proposal considered 32KB hardware budget and 12 tagged
components. For our big configuration, we use the same number of compo-
nents with half the number of entries. For small configuration, we use just
two tables (for history lengths of 4 and 16) with approximately 3× fewer
entries per table.
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Fig. 6: Branch MPKI breakdown for gshare branch predictor
and a subset of workloads. We distinguish mispredictions on
not taken, taken backward, and taken forward branches.

instructions take different directions. By (partially) tagging its
entries, TAGE eliminates (reduces) this effect. Also, TAGE
has multiple components each for a different global history
length from very short to very long. Compared to the other two
branch predictors and for HPC benchmarks, TAGE provides
almost the same branch MPKI values regardless of its size.
With just a 2KB hardware budget, small TAGE is better than
16KB big gshare or tournament predictor.

Figure 5 also demonstrates how desktop and HPC applica-
tions are different in exploiting the LPB. For each benchmark
suite, it shows the reduction of branch MPKI values when an
LPB is implemented together with a small base predictor. It
barely reduces the number of misses for desktop applications.
On the other hand, HPC applications, both sequential and
parallel code sections, benefit from an LPB. Still, reducing the
size of branch predictor increases the MPKI values in serial
parts. These results show that a core used to execute parallel
HPC code should have a branch predictor tuned differently
than the one used to run desktop applications. With biased and
mostly backward taken branches, long basic blocks, and low
fraction of branch instructions in the instruction mix, smaller
and properly configured branch predictors can be used in HPC
cores without performance loss.

Implication 1. HPC and desktop applications express dif-
ferent behaviour, thus require different tuning of a branch
predictor. A loop BP is essential for HPC applications, while
desktop workloads benefit from bigger BPs.

Figure 6 breaks down the branch MPKI values obtained with
gshare predictor for a subset of workloads. A branch mispre-
diction can be caused by a not taken, a taken backward, or
a taken forward branch instruction. As expected, the presence
of a loop BP reduces the number of branch mispredictions
on taken backward branches, especially for HPC workloads.
While it has a moderate effect on branch MPKI values for
benchmarks like CoEVP and CoMD, in cases of botsspar and
imagick, an LBP eliminates the branch mispredictions, not just
the taken backward, but also the not taken ones. After the last
loop iteration when the branch should not be taken, a two-
bit entry in a gshare table would miss because the saturating
counter is in a strongly-taken prediction state, while an LBP
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Fig. 7: BTB MPKI for different number of entries and asso-
ciativity. We use branch address to index BTB.

knows exactly how many iteration that loop will execute. Still,
there are some HPC benchmarks where the presence of a loop
BP has no effect on a branch MPKI value such as in case
of EP. Looking at the SPEC CPU INT benchmarks, taken
backward misses exist but they are not reduced by an LBP
since those are not part of loop structures. It is interesting to
note that the majority of all mispredictions comes from the
not taken branches, for all benchmark suites.

TAGE branch predictor shows similar behaviour as gshare
on Figure 6 but with lower branch MPKI values and without
the difference between big and small configurations for HPC
benchmarks. An LBP is also beneficial for TAGE but mostly
reducing mispredictions on not taken branches. When the
control flow inside the loop is regular, TAGE predictor is able
to predict loops with constant number of iterations, just as an
LBP. On the other hand, when the control flow in the loop body
is changeable, TAGE predictor may fail to correctly predict the
exit of the loop [21].

B. Branch Target Buffer

The branch predictor provides information about whether
the next branch will be taken or not taken. Still, it does not
supply the target address in case the branch is predicted as
taken. For that, we use the branch target buffer (BTB) which
is implemented as a cache that stores the branch target address
for taken branches. We use the current instruction address to
index and lookup in the BTB and, if the address is found,
then the instruction being fetched is a taken branch, and the
data part of the entry contains the next PC after the branch.
In the BTB, we store only branches predicted as taken since
not-taken ones will continue fetching from the next sequential
instruction. With a correctly predicted outcome of a branch
and a correct target address stored in the BTB, we have a
zero branch penalty.

Figure 7 shows how the number of misses in the BTB
depends on its size and associativity. Changing the BTB size
from 256 to 1024 entries, has no impact on the number of
misses for HPC applications. High associativity is needed to
reduce the aliasing problem, especially for ExMatEx bench-
marks, mostly due to a simple modulo indexing to the BTB.
Characteristics 1 and 2 state that HPC benchmarks have a
small number of branches and they are strongly biased. Once
when BTB stores a destination address for a taken branch, that
branch is probably going to be taken the next time it occurs
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The cache size is 16KB.

with the same destination address. This results in the same
MPKI values regarding the size of the BTB. Similar to the
findings in the previous Section, desktop applications show
higher BTB MPKI values for the same BTB configurations
compared to HPC applications. Bigger branch target buffers
provide significantly lower BTB MPKI, such as in cases of
gcc, gobmk, and sjeng.

Implication 2. A low(er) number of entries in the BTB is
enough for HPC applications.

C. Instruction cache

Characteristic 3 says that HPC applications have a small
dynamic instruction footprint. Moreover, most of the execution
time is spent in loops where only a few basic blocks are
executed many times. Figure 3 shows that for parallel parts
of HPC benchmarks about 99% of all instructions are fetched
from less than 16KB of memory. On the other side, an I-
cache factors out a considerable part of power and area on lean
cores. We check how different I-cache sizes and associativities
impact the number of misses.

Our pintool simulates the I-cache behaviour throughout the
execution. In the beginning, it creates a cache structure with
the specified characteristics such as cache size, line width, and
associativity. We implement LRU replacement policy.

Characteristic 4 points that HPC applications have long
basic blocks. Once we fetch an I-cache line, we extract the
instructions sequentially, without accessing the I-cache again,
until we reach the end of a line or a taken branch. Due to
the long distance between taken branches (see Figure 4) and
without any alignment techniques, even 128B-wide I-cache
lines have a high usefulness, 71% on average. We define

usefulness as the number of different bytes accessed in a line
out of the total line size. For the same line width, SPEC CPU
INT has only 33% usefulness. Besides that, wider cache lines
also reduce the number of accesses to the I-cache.

Figure 8 shows how the number of misses in the I-cache
depends on its size and associativity, averaged per benchmark
suite. Desktop applications, with their large static code foot-
prints, need larger I-caches. Reduction in size is not an option
for them since the use of a 16KB I-cache increases the MPKI
2.5× compared to a 32KB I-cache. For all benchmarks in
SPEC OMP (except the fma3d) and NPB suites, even an 8KB
I-cache provides MPKI values bellow 1. ExMatEx applications
stress more the I-cache. They have larger static and dynamic
instruction footprints, as we saw in Figure 3. For them, an
8KB I-cache is not an option. With high associativity and
128B lines, a 16KB I-cache increases the MPKI from 1 to
2 on average, compared with a standard-size 32KB I-cache.
Instructions executed in sequential regions miss by 50% more
on average, and in case of CoSP up to 2×, compared to
instructions from parallel regions.

There is an interesting observation analysing the impact of
the I-cache line width on the MPKI values. Figure 9 shows
these dependencies for a subset of benchmarks. While wider
lines reduce the number of misses in the I-cache for HPC
applications, for SPEC CPU INT workloads is the opposite.
For a fixed size and associativity, HPC applications miss by
16% less in a 128B-line than in a 32B-line I-cache. For the
same comparison, SPEC CPU INT benchmarks have 19%
more I-cache misses on average. This is a direct consequence
of our Characteristic 4. With short basic blocks and short
distance between taken branches, wider cache lines used
with desktop applications have low usefulness and reduce the
number of total cache lines available in a fixed-size I-cache.
On the other side, HPC workloads benefit from wider I-cache
lines, not just due to reducing the number of accesses to the
I-cache but also from the high usefulness of wide lines. The
existence of hot code regions, such as loops, forces the running
thread to execute a few basic blocks multiple times. No matter
how large static code is (due to external library linking or any
other reason), dynamic instruction footprint remains small and
able to fit in less than 32KB of cache memory.

Implication 3. With small dynamic instruction footprints
and long basic blocks, HPC benchmarks can use smaller I-
caches with wider lines without performance loss.

V. IMPACT ON PERFORMANCE, POWER AND AREA

As our Section III highlights, HPC workloads have specific
code characteristics. They have a low number of biased, and
mostly backward taken branches. Dynamic instruction foot-
prints are small and basic blocks long. Those results suggest
a redimensioning of the core front-end structures for HPC,
such as I-cache, branch predictor, and BTB. In this section,
we evaluate power and area savings of downscaling those
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averaged per benchmark suite. We analyse only cores and L2 caches since the rest of CMP is shared and same for all
configurations. Asymmetric++ CMP has the same area budget as Baseline CMP.
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Fig. 11: Execution time for a subset of benchmarks, normal-
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structures to a configuration that may not impose performance
decrease based on our characterization.

We use Sniper [8] and McPAT [7] to simulate the per-
formance impact and project power and area savings by
tailoring the core front-end for HPC applications. We have
selected the ARM Cortex-A9 configuration file from the Mc-
PAT bundle because it has been validated against real silicon
and is representative of lean cores. It also has similar area
footprint compared to an IBM BlueGene/Q core and recent
research works consider ARM a potential player in the HPC
market [22]. In Sniper, we configure an eight-core CMP with
Cortex-A9-like cores, private 256KB L2, and 4MB shared
L3 cache. HPC applications are run with eight threads (or
processes) while SPEC CPU INT are run sequentially. Here,
we simulate up to 100 billion instructions starting from the
first parallel region. For our baseline core model, we use
32KB, 64B-line I-cache, 16KB tournament BP, and 2K-entry
BTB. Based on the results from our previous Sections, for the
alternative HPC-core design we simulate 16KB, 128B-line I-
cache, 2KB tournament predictor with loop BP, and 256-entry
BTB. We refer to it as a tailored core model.

Figure 10a shows the average execution time normalized to
the baseline CMP configuration. Figure 11 is similar, present-
ing the same metric for a subset of benchmarks. As expected,
reducing the sizes of front-end structures is not acceptable
for desktop applications, although, in some particular cases, it
provides no performance degradation (like for h264). They
need large branch prediction structures to handle complex
branch instructions and large I-cache to store the code. SPEC
OMP and NPB benchmarks increase their execution time by

TABLE III: I-cache, BP, and BTB share in total area and
power budget on a Cortex-A9 core level. BP has 12-cycle miss
penalty. The numbers are obtained using McPAT and CACTI
tools with processing technology of 40 nm.

Area[mm2] Power[W]

B
as

el
in

e Total core 2.49 (100%) 0.85 (100%)
I-cache (32KB, 64B line) 0.31 0.075
Big BP (16KB) 0.14 0.032
BTB (2K entries) 0.125 0.017

Ta
ilo

re
d Total core 2.11 (84%) 0.79 (93%)

I-cache (16KB, 128B line) 0.14 0.049
Small BP with LBP (2.5KB) 0.04 0.011
BTB (256 entries) 0.022 0.002

less than 1% when they are executed on a CMP made out
of tailored cores compared to the baseline ones. Among NPB
workloads, there is no a single benchmark with more than 3%
of execution time increase, while for SPEC OMP, only fma3d
demonstrates a significant performance loss of 6%, mostly
due to the I-cache misses. Running ExMatEx benchmarks on
an eight-core tailored CMP increases the execution time by
almost 6% on average, hurting four out of eight workloads
(CoHMM, CoEVP, CoMD, and CoGL). The highest is CoEVP,
whose execution time goes up by 22%.

As we mentioned before, CoEVP benchmark with default
inputs and running eight threads spends around 35% of its
time inside the serial code. Binding the master thread to run
on a baseline core, while the rest of threads run on tailored
cores (Asymmetric CMP) provides the same performance as
running this benchmark on an eight-core Baseline CMP. This
shows that heterogeneity which already exists in HPC systems
with accelerators, should be implemented even deeper, on a
CMP level. Used as a stand-alone component, accelerators
as Intel Xeon Phi may suffer from either under-dimensioning
the master core (and slowing down the serial part), or over-
dimensioning the workers (and wasting resources on them).
Asymmetric CMP designs are already present in different
markets (IBM’s Cell or ARM’s big.LITTLE), and our results
show that a similar approach has an advantage in HPC as well.

Implication 4. CMPs used in HPC should be composed out
of many tailored cores optimized for parallel, and one (or few)
baseline cores designed for sequential executions.



In the baseline configuration, a 32KB I-cache with 64B
lines contributes with 12% and 9% of the total area and
power core budget, respectively. A 16KB branch predictor,
implemented as a tournament predictor in McPAT and thus in
Sniper for consistency, factors out around 5% in area and 4%
of core power. A 2K-entry BTB in baseline contributes with
5% and 2% of the total core area and power budget. Table III
provides these numbers in absolute values.

As results suggest the use of a smaller I-cache, smaller
BP with LBP, and a BTB with less entries, we compare the
baseline numbers with the ones obtained configuring a 128B-
line 16KB I-cache, 2KB BP, and a 256-entry BTB. Reducing
the sizes of these hardware structures gives 16% savings in
area and 7% savings in power at the core level.

Saving this amount of area per core on an asymmetric eight-
core CMP, opens the opportunity to add an extra core. With
the abundant TLP, we can scale performance with core count
under the same area budget. Figures 10a and 11 compare the
execution times of HPC workloads on an Asymmetric++ CMP
composed out of one baseline and eight tailored cores to a
Baseline CMP composed out of eight baseline cores. For the
same area budget, Asymmetric++ CMP provides 12% time
reduction on average and up to 20% for FT.

The rest of plots on Figure 10 show normalized power,
energy, and energy-delay (ED) product for different CMP
configurations. There is an interesting tradeoff present on
Figure 10b. Power is estimated as a sum of the static and
dynamic power of private structures: cores and L2 caches.
Downsizing the front-end structures we save static power and
reduction of dynamic power comes mostly due to the increased
execution time for a Tailored CMP. With an additional core,
Asymmetric++ CMP increases the power budget by 4% com-
pared to Baseline CMP, on average. With 12% performance
improvement and within the same area, this translates into 8%
of energy savings and reduction of ED product by 18%.

VI. RELATED WORK

Understanding the workload characteristics is important in
the design of efficient computer architectures. Our work targets
HPC workload characteristics affecting the core front-end. In
contrast to todays fat-core CMPs used in HPC, emerging lean-
core ones spend a considerable part of the area and power
budget on the front-end hardware structures. There is a need
to perform a deep study on HPC and scientific applications
at the core level to avoid overprovisioning and increase the
performance per power and area. This paper addresses this
need, provides a comprehensive characterization and, based on
it, a proposal to downscale the core front-end of lean cores.

There is a broad scope of previous application perfor-
mance analyses run in HPC systems. Most of them evaluate
inter-node communication overheads, scalability, bandwidth
requirements, and data access behaviour [23], [24]. Our work
targets HPC workload characteristics affecting the core front-
end. Opposite to todays heavy-core CMPs used in HPC,
emerging lean-core ones spend a considerable part of the core
area and power on the front-end hardware structures. There

is a need to perform a deep study on HPC and scientific
applications at the core level to avoid overprovisioning and
increase the performance per power and area. This paper
addresses this need, provides a comprehensive characterization
and, based on it, a proposal to downscale the core front-end.

Vector processors are particularly useful for HPC appli-
cations. A single vector instruction replaces an entire loop,
and so the instruction fetch and decode bandwidth needed to
keep multiple functional units busy is reduced. Many aspects
of the analysis performed in this paper were done in the
past in the context of vector machines [25], [26]. Scientific
and engineering applications have small instruction footprints,
long basic blocks, and low control divergence which makes
them suitable for SIMD execution. Nowadays, Intel’s Xeon Phi
cores [27] and Fujitsu’s SPARC64 series of chips [28] imple-
ment wide vector units to exploit these code characteristics and
gain performance. Our work revisits these findings considering
modern HPC workloads and in the context of CMPs made out
of light-weight out-of-order cores.

Current GPU cards used as accelerators in HPC systems
have completely redesigned front-end compared to current
CPUs. Power-hungry branch prediction structures are not
implemented, and pipeline stalls caused by prolonged branch
resolution are leveraged by running many threads concurrently.
A programmer has to be aware of reducing the control
divergence among threads in a warp since they all execute
the same instructions in any given cycle. A recent study
shows that about 95% of branches executed on GPUs can
be correctly predicted either with a bimodal or a branch pre-
dictor based on local history tables [29]. The cache hierarchy
that services the instruction supply is well suited for HPC
applications. The first-level I-cache is small (4KB) with wide
cache lines (256B) [30]. Moreover, all of the scalar cores
in a single streaming multiprocessor share one I-cache, with
threads fetching and executing the same instruction in lock-
step mode every cycle [31]. We believe that similar front-end
organization should be designed for future CMPs used in HPC,
allowing each core to run its thread independently.

There are examples where commodity CPUs have been
redesigned to suit better an application domain. A recent study
calls for a change in future core design identifying the key
micro-architectural needs for emerging scale-out workloads
as the opposite of traditional scale-up applications used in
data centres [32]. Server applications have large instruction
footprints and most stall cycles come from I-cache misses [33].
Because of that, ARM’s Cortex-A57 cores, used in micro-
servers, have a larger 48KB I-cache to reduce the impact
of I-cache misses [34]. An Intel Xeon Phi core has 512-
bit wide vector processing unit so it can exploit the SIMD
characteristics of scientific codes [27]. Our findings suggest
that a similar core tailoring can be applied to lean-core CMPs
used in HPC by redimensioning the existing structures based
on application demands.

Asymmetric CMP design refers to a number of cores that
use the same instruction set architecture but deliver different
performance, and thus, have different power and area demands.



Properly distributing a given hardware budget, an asymmetric
CMP implements different types and number of cores to suit
various needs of running code. It outperforms a traditional
symmetric CMP by running sequential code on one (few)
heavy-weight cores and parallel code on many lean ones [35].
HPC applications show similar behaviour, with the sequential
code being different from parallel, thus requiring different core
front-end tailoring on a single CMP. Downsizing the front-end
structures of cores that execute the parallel code, we provide
enough space for adding an extra core which translates into
higher performance.

VII. CONCLUSION

Characterizing 29 applications from three generations of
benchmark suites, and comparing them with desktop bench-
marks, we found a set of valuable insights about the HPC
workloads regarding their requirements and effect on the core
front-end hardware structures.

HPC applications have a fewer branch instructions, highly
biased, and mostly backward taken. The dynamic code foot-
print of HPC applications is small, and most of them fit in
16KB. Basic blocks are long, and distance between taken
branches even longer, which enables the usage of wider I-
cache lines. Branch predictors should be tailored for HPC
applications and augmented with a loop branch predictor.
Moreover, the results show that HPC benchmarks are not
sensible to the size of the BTB (due to the small number
of branch instructions) as long as BTB associativity is high.

Compared to traditional desktop and server applications, we
find that the demands of HPC applications are lower with
regards to the core front-end structures. The conclusion is that
the front-end is over dimensioned for these applications and,
therefore, we propose a downscaling to save area and power
while maintaining the same performance. This holds for cores
running the parallel regions of the code but not for the one
that runs the sequential sections. Our tailored core front-end
configuration requires 16% less area and 7% less power in
a lean-core design. On an octa-core CMP, these savings can
be used to add additional core and obtain 12% performance
improvement for the same area budget.
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