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Abstract Constructible sets are needed in many algorithms of Computer Algebra, particularly in the Gröbner1

Cover and other algorithms for parametric polynomial systems. In this paper we review the canonical form of2

constructible sets and give algorithms for computing it.3
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1 Introduction7

In the basic paper defining the Gröbner Cover [16] for discussing parametric polynomial systems of equations, we8

introduced algorithms that have been improved since then. We used our own algorithm buildtree for computing9

the initial Comprehensive Gröbner System (CGS), needed for the Gröbner Cover, now substituted in the Singular [7]10

library “grobcov.lib” by the more efficient Kapur–Sun–Wang algorithm [11]. The algorithm grobcov used specially11

simple locally closed sets, whose union is certified to be also locally closed by Wibmer’s theorem [17] (algorithm12

LCUnion).13

The Gröbner Cover is used in [15] for the automatic deduction of geometric theorems. It is also essential for14

computing geometrical loci and defining a taxonomy of the components of loci in [1], as well as for envelopes.15

In general in these tasks, the representation of locally closed sets, i.e. difference of varieties, is sufficient. But for16

more general applications, where Wibmer’s theorem [17] is not applicable, the union of locally closed sets is not17

always locally closed. This is the reason for reviewing here the canonical representation of constructible sets giving18

algorithms to compute it, as well as to use the new algorithms inside the library for computing higher dimensional19

Partially supported by MTM2011-24097 and Gen. Cat. DGR 2014SGR46.

J. M. Brunat · A. Montes (B)

Universitat Politècnica de Catalunya, Barcelona, Spain

e-mail: antonio.montes@upc.edu

J. M. Brunat

e-mail: Josep.M.Brunat@upc.edu

Journal: MCS MS: 0248 TYPESET DISK LE CP Disp.:2016/2/29 Pages: 14 Layout: Medium

A
u

th
o

r
 P

r
o

o
f

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-016-0248-2&domain=pdf


u
n
co

rr
ec

te
d

p
ro

o
f

J. M. Brunat, A. Montes

geometrical loci’s. As shown in Example 2, the algorithm for computing the canonical form of constructible sets20

can be very useful in an alternative construction of the Gröbner Cover.21

Canonical form of constructible sets were already introduced by [3], in the context of general topology. More22

recently, [10] have given a description of invariant sequences for constructible sets in Zariski topology. The object of23

this paper is, taken this last description as starting point, to give formulas and algorithms for computing effectively24

the canonical form of constructible sets.25

In Sect. 2, we give the two canonical representations of locally closed sets and an algorithm PCrep for computing26

them, that is central for our purposes. In Sect. 3, we recall the canonical structure of constructible sets introduced by27

[10], complementing it with dimension characteristics and an effective formula. This formula allows us to give an28

algorithm in Sect. 4 to build the canonical representation of constructible sets, using the Crep for locally closed sets.29

In Sect. 4 we also propose an acceleration method. Finally in Sect. 5 clarifying examples are given. In particular an30

example shows why the new algorithms are promising for an alternative approach for building the Gröbner Cover.31

Some remarks about notation. All along the paper we shall use the notations ⊆ and ⊂ to represent inclusion and32

strict inclusion, respectively. If r ≥ 1 is an integer the symbol [r ] means the set [r ] = {i ∈ N : 1 ≤ i ≤ r}. For a33

set S ⊆ Cn , the complementary set Cn\S of S is denoted Sc. Finally A ⊎ B means disjoint reunion, that is, A ∪ B34

with the additional information that A ∩ B = ∅.35

2 Canonical Representations of Locally Closed Sets36

Consider the ring Q[x] = Q[x1, . . . , xn] of polynomials in n indeterminates x1, . . . , xn with rational coefficients.37

If N ⊆ Q[x], the variety of N is the set38

V(N ) = {u ∈ Cn : g(u) = 0 for all g ∈ N }.39

Let a = rad(〈N 〉). Then V(N ) = V(〈N 〉) = V(a). The ideal a is called the ideal of the variety V(N ), and is40

denoted a = I(V(N )). If S ⊆ Cn , the closure of S is the smallest variety containing S, and is denoted S. The ideal41

of S, denoted I(S), is defined by I(S) = I(S). By the Nullstellensatz, there is a one-to-one correspondence between42

varieties V and radical ideals a. For a radical ideal a and a variety V , both I(V(a)) = a and V(I(V )) = V hold.43

By taking varieties as closed sets, we have a topology in Cn called the Q-Zariski topology of Cn . For concepts about44

varieties and the Q-Zariski topology of Cn not defined here (such as irreducible varieties, irreducible components,45

dimension of a variety, etc.), we refer to [2,5].46

A set S ⊆ Cn is locally closed if it is the intersection of an open set and a closed set.47

Remark 2.1 The concept of locally closed set admits different but equivalent definitions. Indeed, the following48

conditions are easily shown to be equivalent:49

(a) The set S is locally closed;50

(b) the set S is the difference of two closed sets;51

(c) the set S is open in the closure S of S;52

(d) the set S\S is closed.53

Let S be an open (resp. closed) set. As Cn is closed (resp. open), then S = S ∩ Cn is a locally closed set. Thus,54

open sets and closed sets are locally closed.55

We introduce now the canonical C-representation of a locally closed set S. Let S be a locally closed set. As S56

and S\S are closed, there exist radical ideals a and b such that57

S = V(a) and S\S = V(b).58

These ideals satisfy59

S = S\(S\S) = V(a)\V(b). (2.1)60
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Computing the Canonical Representation of Constructible Sets

Taking into account the one-to-one correspondence between radical ideals and varieties, the ideals a = I(S) and61

b = I
(

S\S
)

are uniquely determined by S. The pair Crep(S) = [a, b] is called the C-canonical representation of62

the locally closed set S. It is canonical in the sense that it does not depend on how the locally closed set S is given:63

it depends only on S. The set V(a) (or a) is called the top of S, whereas V(b) (or b) is called the hole of S.64

Remark 2.2 If [a, b] = Crep(S), then S is closed if and only if b = 〈1〉.65

Remark 2.3 Note that if S is empty, then a = 〈1〉, b = 〈1〉.66

The following Proposition explains how to obtain Crep(S) = [a, b] for a locally closed set S given in the form67

S = V(P)\V(Q) by two ideals P and Q. It uses the decomposition of V(P) into irreducible varieties, which can68

be done by [8] algorithm.69

Proposition 2.4 Let S = V(P)\V(Q) be a locally closed set given by two ideals P and Q, and let {p′
1, . . . , p

′
s}70

be the prime decomposition of P. Consider the set {p1, . . . , pr } of ideals p′
i such that V(p′

i ) �⊆ V(Q). Then, the71

C-representation [a, b] of S satisfies72

(i) a =
⋂r

i=1 pi ;73

(ii) b = rad(a + Q);74

(iii) if S is non-empty then a ⊂ b.75

Proof (i) For i ∈ [s] let Vi = V(p′
i ). Then V(P) = V1 ∪ · · · ∪ Vs is the decomposition of V(P) into irreducible76

varieties. We have77

S = V(P)\V(Q) =

(

s
⋃

i=1

Vi

)

\V(Q) =

s
⋃

i=1

(Vi\(V(Q) ∩ Vi )) .78

Let J = {i ∈ [s] : V(pi ) �⊆ V(Q)}. If i ∈ [s]\J , then Vi ∩ V(Q) = Vi and so Vi\(V(Q) ∩ Vi ) = ∅. Thus the79

set Vi\(V(Q) ∩ Vi ) can be excluded from the union, obtaining80

S =
⋃

i∈J

(Vi\(V(Q) ∩ Vi )) .81

For i ∈ J , we have V(Q) ∩ Vi ⊂ Vi . As Vi is irreducible, the closure of Vi\(V(Q) ∩ Vi ) is Vi . Therefore,82

S =
⋃

i∈J

Vi =

r
⋂

i=1

V(pi ), (2.2)83

a = I(S) =
⋂

i∈J

I(Vi ) =
⋂

i∈J

p′
i =

r
⋂

i=1

pi . (2.3)84

85

(ii) To obtain b = I(S\S) note that86

S =
⋃

i∈J
(Vi\(V(Q) ∩ Vi )) =

⋃

i∈J
(Vi\V(Q)) =

(

⋃

i∈J
Vi

)

\V(Q) = S\V (Q),87

S\S = S\(S\V(Q)) = S ∩ V(Q) = V(a) ∩ V(Q) = V(a + Q),88
89

so that, b = I(S\S) = rad(a + Q).90

(iii) From b = Rad(a + Q), clearly b ⊇ a. Now b = a implies S = ∅ and in this case a = b = 〈1〉. Therefore, if91

S is non-empty, then b ⊃ a. ⊓⊔92

We can further decompose Crep(S) = [a, b] and obtain another representation of S. Let {pi : i ∈ [r ]} be the93

prime decomposition of a and for i ∈ [r ] let {pi j : j ∈ [ri ]} be the prime decomposition of pi + b. The set94

Prep(S) = {[pi , {pi j : j ∈ [ri ]}] : i ∈ [r ]} (2.4)95
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is called the P-representation of S. Note that it only depends on S. Each [pi , {pi j : j ∈ [ri ]}] is called a component96

of S, from which V(pi ) (or pi ) is the top and V(pi j ) (or pi j ) with j ∈ [ri ] its holes.97

Remark 2.5 Note that if S = ∅, then Prep(S) = {[〈1〉, {〈1〉}]}.98

Proposition 2.6 Let [a, b] and {[pi , {pi j : j ∈ [ri ]}] : i ∈ [r ]} be respectively the C-representation and P-99

representation of a locally closed set S. Then100

(i) If S �= ∅, then pi ⊂ pi j , for all i ∈ [r ] and j ∈ [ri ];101

(ii) a =
⋂r

i=1 pi ;102

(iii) b =
⋂r

i=1

⋂ri

j=1 pi j ;103

(iv) S =
⋃r

i=1

(

V(pi )

∖(

⋃ri

j=1 V(pi j )

))

.104

Proof (i) It is consequence of the definition of P-representation, as b �⊂ pi for non empty S.105

(ii) It is consequence of Proposition 2.4.106

(iii) Considering the intersection of all the identities Rad(pi + b) = pi1 ∩ · · · ∩ piri
we have107

T =

r
⋂

i=1

ri
⋂

j=1

pi j =

r
⋂

i=1

Rad(pi + b) = Rad

(

r
⋂

i=1

(pi + b)

)

108

and109

V(T ) = V

(

r
⋂

i=1

(pi + b)

)

=

r
⋃

i=1

V(pi + b) =

r
⋃

i=1

(V(pi ) ∩ V(b))110

=

(

r
⋃

i=1

V(pi )

)

∩ V(b) = V(a) ∩ V(b) = V(b).111

112

Taking ideals of the varieties and using the Nullstellensatz, we have b = T , so that (iii) is proved.113

(iv) As [a, b] is the C-representation of S, we have S = V(a)\V(b). Then, by taking varieties in (ii) and (iii), we114

have115

S = V(a)\V(b) =

(

r
⋃

i=1

V(pi )

) ∖

⎛

⎝

r
⋃

i=1

ri
⋃

j=1

V(pi j )

⎞

⎠ =

r
⋃

i=1

⎛

⎝V(pi )

∖

ri
⋃

j=1

V(pi j )

⎞

⎠

116

117

⊓⊔118

Proposition 2.7 Let S be a non empty locally closed set with119

Crep(S) = [a, b] and Prep(S) = {[pi , {pi j : j ∈ [ri ]}] : i ∈ [r ]}.120

Then121

(i) dim V(pi j ) < dim V(pi ) for all i ∈ [r ] and j ∈ [ri ];122

(ii) dim V(b) < dim V(a).123

Proof (i) As the pi and pi j are prime and correspond to irreducible varieties the result is obvious.124

(ii) From Proposition 2.6 (iii) , we have125

dim V (b) = dim

r
⋃

i=1

ri
⋃

j=1

V(pi j )126

= max{dim V(pi j ) : i ∈ [r ], j ∈ [ri ]}127

< max{dim V(pi ) : i ∈ [r ]} = dim V (a).128
129

⊓⊔130
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Computing the Canonical Representation of Constructible Sets

[Crep, Prep] ← CPrep(P, Q)

Input:

[P, Q]: a pair of ideals representing the set S = V(P)\V(Q)

Output:

[a, b] the C-representation of S and
{

[pi , {pi1, . . . , piri
}] : 1 ≤ i ≤ r

}

the P-representation of S

begin

a = 〈1〉; Prep = ∅; i = 0

{p′
1, . . . , p′

s} = PrimeDecomp(P)

for j = 1 to s do

if Q �⊆ p′
j then

i = i + 1; pi = p′
j ; a = a∩ pi

{pi1, . . . , piri
} = PrimeDecomp(Q + pi )

Prep = Prep ∪ {[pi , {pi1, . . . , piri
}]}

end if

end for

b = rad(Q + a)

Crep = [a, b]

return([Crep, Prep])

end

Algorithm 1: CPrep

Corollary 2.8 Let V and W be varieties and S = V \W . If W ⊂ V and V = S, then Crep(S) = [I(V ), I(W )] and131

dim W < dim V .132

Proof If S = V then a = I(S) = I(V ). Moreover133

S\S = (S ∩ (S
c
∪ W ) = S ∩ W = W.134

Thus b = I(W ). The dimension relation is a consequence of Proposition 2.7. ⊓⊔135

Proposition 2.4 and the definition of P-representation justify Algorithm 1 CPrep for obtaining the canonical136

representations Crep and Prep of a locally closed set S = V(P)\V(Q) given by a pair of ideals [P, Q]. The137

algorithm can be easily modified for obtaining only the C-representation Crep(S) of S.138

Remark 2.9 If the set S is empty, the algorithm for obtaining CPrep(S) will return CPrep(S) = [[〈1〉, 〈1〉], {[〈1〉,139

{〈1〉}]}].140

3 Canonical Representation of Constructible Sets141

A set S ⊆ Cn is constructible if it is a finite union of locally closed sets. In particular, locally closed sets are142

constructible. Constructible sets appear naturally in solving parametric polynomial systems of equations. Many143

authors give special representations for constructible sets [4,10,12,13], adequate for its goals. Our goal is developing144

the invariant sequence of a constructible set described in [10] setting the outlook on its effective computation, to145

generalize the Crep of a locally closed set.146

Next lemma recalls the behaviour of locally closed sets and constructible sets respect to union, intersection and147

complementation. We omit the proofs which are straightforward.148

Lemma 3.1 .149

(i) If S is locally closed, then Sc is constructible;150

(ii) If S1 and S2 are locally closed, then S1 ∪ S2 is constructible and S1 ∩ S2 is locally closed;151

(iii) If S1 is locally closed and S2 is constructible, then S1 ∪ S2 and S1 ∩ S2 are constructible;152
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(iv) If S1 and S2 are constructible, then S1 ∪ S2 and S1 ∩ S2 are constructible.153

(v) if S is constructible, then Sc is constructible.154

(vi) if S1 and S2 are constructible, then S1\S2 is constructible.155

In the following L denotes the family of locally closed sets and C the family of constructible sets.156

Remark 3.2 According to Lemma 3.1, if S1 and S2 are constructible, then S1 ∪ S2, S1 ∩ S2 and Sc
1 are constructible157

sets, too. Then C is a Boolean algebra of subsets of Cn containing L. On the other hand, if a Boolean algebra A158

contains L then it must contain the finite union of locally closed sets, that is, C ⊆ A. We conclude that C is the159

Boolean algebra generated by L. Let T be the union of the family of open sets and the family of closed sets. The160

boolean algebra generated by T contains L, so C is also the boolean algebra generated by T .161

The first step of the construction of the canonical structure of the constructible set S given as a union of locally162

closed sets is to separate S into two disjoint sets: S = S ⊎ C where C is the complement of S with respect to S.163

Having this in mind we define:164

C(S) = S\S, L(S) = S\C(S), (3.1)165

(If the set S is clear from the context, we often write C and L instead of C(S) and L(S) respectively).166

If S ∈ C, then, S and Sc are constructible and C(S) = S\S is a difference of constructibles, so it is a constructible167

set. Thus, the map168

C : C → C

S �→ C(S) = S\S
169

is well defined. Note:170

(i) S = C(S) ⊎ S;171

(ii) S is closed if and only if C(S) = ∅;172

(iii) S is locally closed if and only if C(S) is closed.173

The set L(S) = S\C (where C = C(S)) is a difference of closed sets, so it is locally closed. Then,174

L : C → L

S �→ L(S) = S\C
175

is a well defined map. Clearly S = L(S) ⊎ C . Moreover, L(S) ⊆ S. Indeed,176

L(S) = S\C = S\
(

S\S
)

⊆ S\
(

S\S
)

= S.177

For a constructible set S, the set L(S) can be characterized as the largest locally closed set included in S.178

We give now a Proposition that determines an explicit expression of C as a union of locally closed sets in terms179

of the input expression of S.180

Proposition 3.3 Let S = S1 ∪· · ·∪ Sr be a constructible set with each Si locally closed. For i ∈ [r ] let Crep(Si ) =181

[ai , bi ], Vi = V(ai ) and Wi = V(bi ). Then,182

C = S\S =
⋃

T ⊂[r ]

⎛

⎝

⎛

⎝

⋂

j∈T

V c
j

⎞

⎠ ∩

⎛

⎝

⋂

j �∈T

W j

⎞

⎠

⎞

⎠

183

=
⋃

T ⊂[r ]

⎛

⎝

⎛

⎝

⋂

j �∈T

W j

⎞

⎠

∖

⎛

⎝

⋃

j∈T

V j

⎞

⎠

⎞

⎠ . (3.2)184

185
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Computing the Canonical Representation of Constructible Sets

Proof We have186

S = (V1\W1) ∪ · · · ∪ (Vr\Wr ) = (V1 ∩ W c
1 ) ∪ · · · ∪ (Vr ∩ W c

r )187

=
⋂

T ⊆[r ]

⎛

⎝

⎛

⎝

⋃

j∈T

V j

⎞

⎠ ∪

⎛

⎝

⋃

j �∈T

W c
j

⎞

⎠

⎞

⎠ ,188

189

and thus190

Sc =
⋃

T ⊆[r ]

⎛

⎝

⎛

⎝

⋂

j∈T

V c
j

⎞

⎠ ∩

⎛

⎝

⋂

j �∈T

W j

⎞

⎠

⎞

⎠ .191

For a subset T ⊆ [r ], let192

ZT =

⎛

⎝

⋂

j∈T

V c
j

⎞

⎠ ∩

⎛

⎝

⋂

j �∈T

W j

⎞

⎠ ,193

so that Sc =
⋃

T ⊆[r ] ZT . With this notation, the equality to prove is S\S =
⋃

T ⊂[r ] ZT . For a set T ⊆ [r ] and an194

index ℓ ∈ T we have195

Vℓ ∩ ZT ⊆ Vℓ ∩
⋂

j∈T

V c
j ⊆ Vℓ ∩ V c

ℓ = ∅,196

(in particular, Vℓ ∩ Z[r ] = ∅) and, if ℓ �∈T , then Wℓ ⊂ Vℓ and197

Vℓ ∩
⋂

j �∈T

W j =
⋂

j �∈T

W j ,198

and we have Vℓ ∩ ZT = ZT . Therefore, by using the distributive law,199

S\S = (V1 ∪ · · · ∪ Vr ) ∩ Sc = (V1 ∪ · · · ∪ Vr ) ∩
⋃

T ⊆[r ]

ZT200

=

r
⋃

ℓ=1

⋃

T ⊆[r ]

(Vℓ ∩ ZT ) =
⋃

T ⊂[r ]

ZT .201

202

⊓⊔203

Proposition 3.3 provides an explicit formula of C = S\S, as a union of locally closed sets. We can compute the204

Crep of each one of these subsets of C and obtain an expression that allows us to handle C ⊂ S in the same way as205

we have done with S. This provides an iterative method to build the canonical representation of S. Next Proposition206

summarizes the basic properties of the first step in the recursive construction.207

Proposition 3.4 Let S �= ∅ be a constructible set, C = C(S), L = L(S), a = I(S) and b = I(C). Then,208

(i) C ⊂ S;209

(ii) C ⊂ S;210

(iii) S = L;211

(iv) [a, b] = [I(S), I(C)] = [I(S)], I(C)] is the C-representation of L.212

(v) dim C < dim S.213
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Proof (i) Let S = S1 ∪ · · · ∪ Sr with Si locally closed. For i ∈ [r ], let Crep(Si ) = [ai , bi ], Vi = V(ai ) and214

Wi = V(bi ). Then, S =
⋃r

i=1(Vi\Wi ) with Wi ⊂ Vi . By taking closures it results in S =
⋃r

i=1 Vi . Now, from215

formula (3.2) of Proposition 3.3 it results in216

C ⊆

r
⋃

i=1

Wi ⊂

r
⋃

i=1

Vi = S.217

(ii) Taking closures in the preceding expression, it results in218

C ⊆

r
⋃

i=1

Wi ⊂

r
⋃

i=1

Vi = S.219

(iii) From C ⊆
⋃r

j=1 W j we have220

L = S\C ⊇ S\

⎛

⎝

r
⋃

j=1

W j

⎞

⎠ =

(

r
⋃

i=1

Vi

) ∖

⎛

⎝

r
⋃

j=1

W j

⎞

⎠ =

r
⋃

i=1

ri
⋃

k=1

⎛

⎝Vik

∖

r
⋃

j=1

W j

⎞

⎠ ,221

where Vi =
⋃ri

k=1 Vik is the decomposition of Vi into irreducible varieties. If some irreducible variety Vik of Vi222

of the segment i is cancelled by some W j of a segment j , i.e. W j ⊇ Vik , then V j ⊃ W j ⊇ Vik , and in this case223

the variety Vik is included in V j . So, Vik does not cancel in the closure of L nor of S. Thus L ⊇
⋃r

i=1 Vi = S. As224

L ⊆ S we also have L ⊆ S, and the inclusion is proved.225

(iv) and (v) From (ii) and (iii) the expression L = S\C satisfies the conditions of Corollary 2.8, and thus (iv) and226

(v) follow. ⊓⊔227

We proceed now to describe the method for obtaining the canonical representation. Let S be a constructible set.228

Define the sequence (Ai ) by229

A1 = S, Ai+1 = C(Ai ).230

By Proposition 3.4 (ii) and (v), if Ai �= ∅, we have Ai ⊃ Ai+1 and dim Ai > dim Ai+1. Therefore, there exists231

an integer k ≥ 1 such that Ak+1 = ∅ and Ak is closed. Consider the finite sequences232

S = A1, A2, . . . , Ak, Ak+1 = ∅ (3.3)233

S = A1 ⊃ A2 ⊃ · · · ⊃ Ak+1 = ∅,234

dim(S) = dim(A1) > dim(A2) > · · · > dim(Ak).235
236

By construction A2 = C(A1) = S\S is disjoint with S = A1. But A3 = A2\A2 is disjoint with A2 and a subset237

of S. Thus, we have two decreasing and disjoint subsequences238

S = A1 ⊃ A3 ⊃ · · · ⊃ A2ℓ±1,239

C = A2 ⊃ A4 ⊃ · · · ⊃ A2ℓ.240
241

Applying L to sequence (3.3), i.e. L i = Ai\Ai+1, we get a new sequence of disjoint sets that fill the whole S,242

L1 = A1\A2, L2 = A2\A3, . . . , Lk = Ak\Ak+1 = Ak243

so that244

S = A1 = A1\Ak+1 = L1 ⊎ L2 ⊎ · · · ⊎ Lk .245

As the L i belong alternatively to S and to C the previous sequence is divided into246

S = L1 ⊎ L3 ⊎ · · · ⊎ L2ℓ±1, (3.4)247

C = L2 ⊎ L4 ⊎ · · · ⊎ L2ℓ. (3.5)248
249
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Computing the Canonical Representation of Constructible Sets

[a, C] ← FirstLevel(A)

Input:

A = {[a1, b1], . . . , [ar , br ]}

a set of Crep’s of the segments defining a constructible set A

Output:

a: the closure of A and

C : a set of Crep’s of the segments defining C(A)

begin

a =
⋂r

i=1 ai

p = 〈0〉; q = 〈1〉; C = ∅;

top C = 〈1〉

for all T ⊂ [r ] do

for j ∈ [r ] do

if j ∈ T then p = p+ bj else q = q∩ aj end if

end for

[a, b] = Crep(p, q)

C = append([a, b] to C)

end do

C = SimplifyUnion(C) # facility for reducing terms

return ([a, C])

end

Algorithm 2: FirstLevel

The odd disjoint locally closed subsets L1, L3 . . . L2ℓ±1 in which S is decomposed by the above procedure form250

the canonical structure of the constructible set S and is independent of the initially given locally closed sets defining251

S. We also obtain the canonical structure of the complement C = S\S as the union of the even locally closed subsets252

L2 ⊎ L4 ⊎ · · · ⊎ L2ℓ. From them it is obvious how to obtain the canonical representation of S and C whose levels253

are already given by their Crep’s.254

For i ∈ [k], define the ideals ai = I(Ai ). By using Proposition 3.4 (iv) and (v) it results255

L i = V(ai )\V(ai+1),256

Crep(L i ) = [ai , ai+1],257

dim V(ai ) > dim V(ai+1),258

I(S) = a1 ⊂ a2 ⊂ · · · ⊂ ak+1 = 〈1〉,259

S = V(a1) ⊃ V(a2) ⊃ V(a3) ⊃ · · · ⊃ V(ak+1) = ∅260
261

Remark 3.5 In Q[x1, . . . , xn], taking into account the decreasing dimensions of the levels of a constructible set we262

have263

(i) The maximum number of levels of S and C is n + 1, that will occur when264

dim(L1) = n, dim(L2) = n − 1, dim(L3) = n − 2, . . . , dim(Ln+1) = 0.265

(ii) The maximum number of levels of S is ⌊ n
2
⌋ + 1.266

(iii) dim(L2i−1) ≥ dim(L2i+1) + 2.267

4 Algorithms for Obtaining the Canonical Representation of a Constructible Set268

The algorithms work with ideals, whereas the definitions of C and L as well as the formulas given in the previous269

sections are given in varieties. To set down the algorithms we must consider the one-to-one correspondence between270

ideals of varieties and varieties.271
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J. M. Brunat, A. Montes

L ← ConsLevels(A)

Input:

A = {[a1, b1], . . . , [ar , br ]}

a set of Crep’s of the segments of a constructible set

S =
⋃r

i=1 (V(ai )\V(bi ))

Output:

L =
[

L1, L3, L2ℓ±1

]

the set of Crep’s of the canonical levels of S.

begin

L = ∅; ℓ = 0; A′ = A; # ℓ = level

while A′ �= ∅ do

ℓ = ℓ + 1

[b, C] = FirstLevel(A′)

A′ = C

if ℓ mod 2 = 1 then a = b

else

L = Append([a, b] to L)

end if

end while

return(L)

end

Algorithm 3: ConsLevels

To flexibilize the language, if S = S1 ∪ · · · ∪ Sr is a constructible set with each Si locally closed, we call the sets272

Si the segments of S in the expression S = S1 ∪ · · · ∪ Sr .273

Algorithm 2 FirstLevel corresponds to Proposition 3.3. Given a constructible set S, we apply the algorithm274

Crep to its segments; the resulting set of pairs of ideals is the input of FirstLevel.275

FirstLevel applied to Ai returns [a, Ai+1], following Proposition 3.3, where Ai+1 = C(Ai ) is given by the set276

of Crep’s of its segments, and a is the ideal corresponding to the top of Ai .277

FirstLevel does not return the true level L(Ai ) defined by Ai but only its closure. The reason is that the hole278

will be computed in the next call to FirstLevel when applied to Ai+1.279

Algorithm 3 ConsLevels iterates calls to FirstLevel(Ai ), obtaining [b, C], separating the top b and repeating280

the call with the next Ai+1 = C . But in order to complete the even levels, (i.e. the levels of the constructible), for281

the odd calls, b is reserved setting a = b, whereas for the even calls, the previous level is L i−1 = [a, b]. The odd282

levels L i−1 are incorporated to the list L of levels of S.283

Moreover, the algorithms can be accelerated. Formula (3.2) of Proposition 3.3 for computing the complement284

C = C(S) = S\S can contain many terms as Crep’s of locally closed sets, as it considers all the subsets of [r ].285

Observe that if there are two different segments of C such that Crep(Si ) = [ai , bi ] and Crep(S j ) = [a j , b j ] are286

such that bi = a j , then287

Si ∪ S j = (V(ai )\V(bi )) ∪ (V(bi )\V(b j )) = V(ai )\V(b j ),288

so that Crep(Si ∪ S j ) = [ai , b j ]. This can be tested for every (i, j). After this process it can appear more than289

one segment that has become closed. All of them can be summarized into a single one taking the intersection of290

the corresponding ideals of varieties. Doing so we can reduce the number of segments in C which will results in291

an acceleration of the algorithm ConsLevels. The acceleration Algorithm 4 SimplifyUnion is to be used inside292

FirstLevel after obtaining C . Example 3 shows the effectivity of doing so.293

In all the algorithms for computing the canonical form of constructible sets we use the Crep of locally closed294

sets. The reason is that the procedure FirstLevel uses formulas (3.1) and (3.2) that use Crep, and the iterative295

procedure ConsLevels call it at each step. We remember that in [16], we used Prep for adding together locally296

closed segments in the algorithm LCUnion, because in this context we know that the considered unions are locally297
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Computing the Canonical Representation of Constructible Sets

closed by Wibmer’s Theorem, and so a simpler algorithm can be used. But this is no more applicable for general298

constructible sets. It is not difficult to transform one representation into the other if we want to compare results.299

Note: If A is a list and J a set of indices, Delete(A, J ) means delete from A all the elements in

positions j ∈ J .

A′ ← SimplifyUnion(A) # implementation facility for reducing terms

Input:

A = {[a1, b1], . . . , [ar , br ]}

a set of Crep’s of the locally closed sets defining T =
⋃r

i=1 (V(ai )\V(bi ))

Output:

A′: a simpler set of Crep’s of the T

begin

A′ = A

i = 1

while i ∈ [#A′] do

j = 1

while j ∈ [#A′] do

if j �= i and A′
i,2 = A′

j,1 do

A′
i = [A′

i,1, A′
j,2]

A′ = Delete(A′, { j})

if j < i then i = i − 1

end if

else j = j + 1

end if

end while

i = i + 1

end while

J = { j ∈ #A′ : A′
j,2 = 1}

a =
⋂

j∈J A′
j,1

A′ = Delete(A′, J )

A′ = Append([a, 〈1〉] to A′ )

return(A′)

end

Algorithm 4: SimplifyUnion

5 Examples300

We have implemented algorithms FirstLevel and ConsLevels (as well as the acceleration routine SimplifyU-301

nion) in Singular. They will be next included in the reformed grobcov library. We show here some examples of302

adding locally closed sets to obtain the canonical representation of the constructible.303

Example 1 The first example is a simple geometric problem in 3-dimensional space with a nice geometrical inter-304

pretation. Consider the constructible set S = S1 ∪ S2 ∪ S3, where305

S1 = V(x2 + y2 + z2 − 1)\V(z, x2 + y2 − 1),306

S2 = V(y, x2 + z2 − 1)\V(z(z + 1), y, x + z + 1),307

S3 = V(x)\V(5z − 4, 5y − 3, x).308
309

The set S1 is a sphere minus a maximum circle, S2 is a maximum circle minus two points and S3 is a plane minus310

one point. Applying ConsLevels to them the result is:311
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L1 = V(x(x2 + y2 + z2 − 1))\V(z, x2 + y2 − 1),312

L2 = V(z, x2 + y2 − 1)\V(z, x + y2 − 1, xy, x2 − x),313

L3 = V(z, x + y2 − 1, xy, x2 − x).314
315

The canonical representations of S and C are316

S = L1 ⊎ L3, C = S\S = L2.317

As expected from the geometrical interpretation, S2 is completely included in S1 except for the point P1 =318

V(z, y, x − 1) = {(1, 0, 0)}. Point P1 is not in S1 because it is in the circle retrieved from the sphere, and cannot be319

included in L1 because it does not form a locally closed set with L1. Thus S1 ∪ S2 = S1 ∪ {(1, 0, 0)}. Now, adding320

S3 will add the plane x = 0 minus point (0, 3/5, 4/5) already contained in S1. This implies the addition of the321

component V(x), that in order to be included in the first level, from which the maximum circle V(z, x2 + y2 − 1) is322

excluded, will left to be added to the next level the intersection points P2 = (0, 1, 0) and P3 = (−0,−1, 0). Thus323

the second level will be L3 = P1 ∪ P2 ∪ P3 = {(1, 0, 0), (0, 1, 0), (0,−1, 0)}.324

Example 2 We consider now the following system of equations in the context of the computation of its Gröbner325

Cover [16], in which we can verify the interest of the canonical representation of constructible sets. Consider the326

ring R = Q(a0, b0, c0, a1, b1, c1)[x, y], and the system327

S = {a0x2 + b0x + c0, a1x2 + b1x + c1}.328

The first step is to compute a CGS (Comprehensive Gröbner System). Using Kapur–Sun–Wang algorithm [11],329

the parameter space is divided into 11 disjoint segments S1, . . . , S11, and for each segment Si a basis Bi specializing330

Table 1 Segments and bases of Example 2

S1 = V(0)\V(a2
0c2

1 − a0b0b1c1 − 2a0c0a1c1 + a0c0b2
1 + b2

0a1c1 − b0c0a1b1 + c2
0a2

1)

B1 = {1}

S2 = V(a2
0c2

1 − a0b0b1c1 − 2a0c0a1c1 + a0c0b2
1 + b2

0a1c1 − b0c0a1b1 + c2
0a2

1)\V(b0a1c1 − c0a1b1, a0a1c1 − c0a2
1 , a0c0a1b1 −

b0c0a2
1 , a2

0c2
1 − a0b0b1c1 + a0c0b2

1 − c2
0a2

1)

B2 = {(b0a1c1 − c0a1b1)x + (−a0c2
1 + b0b1c1 + c0a1c1 − c0b2

1)}

S3 = V(a1, a0)\V(a1, b0b1c1 − c0b2
1, a0)

B3 = {1}

S4 = V(a1, a0c2
1 − b0b1c1 + c0b2

1)\V(b1, a1, a0c1)

B4 = {b1x − c1}

S5 = V(b1, a1, a0)\V(c1, b1, a1, a0)

B5 = {1}

S6 = V(c1, b1, a1)\V(c1, b1, a1, a0)

B6 = {a0x2 + b0x + c0}

S7 = V(c1, b1, a1, a0)\V(c1, b1, a1, b0, a0)

B7 = {b0x + c0}

S8 = V(c1, b1, a1, b0, a0)\V(c1, b1, a1, c0, b0, a0)

B8 = {1}

S9 = V(c1, b1, a1, c0, b0, a0)\V(1)

B9 = {0}

S10 = V(c1, c0)\V(c1, c0, a0b1 − b0a1)

B10 = {(a0b1 − b0a1)x}

S11 = V(b0c1 − c0b1, a0c1 − c0b1, a0b1 − b0, a1)\V(a1, b0c1 − c0b1, a0c1, a0b1)

B11 = {a1x2 + b1x + c1}
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Computing the Canonical Representation of Constructible Sets

Table 2 Levels of the canonical representation of Example 2

S{1} = S1 ∪ S3 ∪ S5 ∪ S8 = L1 ∪ L3 ∪ L5

L1 = V(0)\V(a2
0c2

1 − a0b0b1c1 − 2a0c0a1c1 + a0c0b2
1 + b2

0a1c1 − b0c0a1b1 + c2
0a2

1)

L3 = V(a1, a0)\V(a1, a0,−b0c1 + c0b1)

L5 = V(b1, a1, b0, a0)\V(c1, b1, a1, c0, b0, a0)

S{x} = S2 ∪ S4 ∪ S7 ∪ S10 = L1 ∪ L3

L1 = V(a2
0c2

1 −a0b0b1c1 −2a0c0a1c1 +a0c0b2
1 +b2

0a1c1 −b0c0a1b1 +c2
0a2

1)\V(−a0c1 +c0a1,−a0b1 +b0a1,−a0b0c1 +a0c0b1)

L3 = V(a1, a0,−b0c1 + c0b1)\V(b1, a1, b0, a0)

S{x2} = S6 ∪ S11 = L1

L1 = V(−b0c1 + c0b1,−a0c1 + c0a1,−a0b1 + b0a1)\V(a1, a0,−b0c1 + c0b1)

S{0} = S9

L1 = V(c1, b1, a1, c0, b0, a0)\V(1)

to the reduced Gröbner basis on the whole segment is given. Table 1 gives the sets Si and Bi . The segments in the331

CGS are algorithm depending, and can change if we use another algorithm for computing the CGS.332

Lets now add together the segments with the same set of lpp’s, using ConsLevels algorithm. There are four333

different sets of lpp’s (leading power products) in the 11 cases, namely {1}, {x}, {x2} and {0}. We obtain the levels334

of the canonical representation of the constructible sets formed by the union of the corresponding segments shown335

in Table 2.336

The canonical levels of the constructible sets so obtained do not depend any more on the CGS algorithm used,337

as each of these segments correspond to a canonical level of all the points of the parameter space with fixed value338

of the lpp’s. We observe that the locally closed segments with fixed lpp’s obtained using ConsLevel algorithm are339

identical to the canonical segments of the Gröbner Cover given in Crep representation. Wibmer’s Theorem [17],340

stays that given an homogeneous parametric ideal, the set of points of the parameter space for which the reduced341

Gröbner basis has a given set of lpp’s is parametric (i.e. it accepts a unique reduced Gröbner basis using I -regular342

functions), and is locally closed. So, in general, for the Computation of the Gröbner Cover of non-homogeneous343

ideals, it is necessary to homogenize the input ideal, then compute its Gröbner Cover and dehomogenize the result.344

The dehomogenized bases can contain segments with the same sets of lpp. In this example we start with a non-345

homogeneous ideal, and instead of homogenizing and using Wibmer’s Theorem, we add together the segments of346

the CGS with fixed lpp of the non-homogeneous ideal using ConsLevels (for which Wibmer’s Theorem cannot347

be applied). There is no contradiction in the fact that for this non-homogeneous ideal the sets of points with fixed348

lpp are not locally closed.349

The interesting point that we observe in this example, is that, proceeding in this alternative way, we also recover350

the canonical segments of the Gröbner Cover. This property will be developed in a next research.351

Example 3 To test the effectivity of using the acceleration Algorithm SimplifyUnion, we have applied Con-352

sLevels to the output of a CGS containing 26 segments. These segments were grouped into 9 constructible sets353

by their lpp’s. The lpp-sets contained respectively 7, 6, 4, 1, 1, 1, 1, 2, 3 segments. Applying ConsLevels to each354

lpp-segment, each one was reduced to a single segment for each of the 9 constructible sets (i.e. in this example355

the lpp-segments resulted to be locally closed). We tested times with and without using SimplifyUnion algorithm356

inside FirstLevel. The total timing was 7.61 s using it and 22.07 s without using it, that justifies the utility of357

SimplifyUnion.358
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