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Abstract. The shallow water models describe water flow in rivers, lakes and shallow
seas. They are used to study many physical phenomena of interest, such as, modeling
environmental effects, commercial activities on fisheries and coastal wildlife, remediation
of contaminated bays and estuaries for the purposes of improving water quality. However,
without any simplifications are very difficult to solve. These assumptions, with respect
to several physical aspects are the general source of uncertainty within the modeling pro-
cess. In this work, we get the derivation of shallow water models for steady and transient
phenomena, required assumptions and resulting equations.

1 INTRODUCTION

In particular, the problem of the propagation of polluting agents in the coastal zones,
as in ports, zones of biological or tourist interest, needs to be studied with the objective
to determine which the best actions to be adopted, for the conservation of the natural
patrimony. In addition, the population could be preserved of the urban and industrial
polluting agents, of the natural disasters or maritime accidents.

The propagation of polluting agents is directly related with the propagation of waves.
The results known in this subject had been gotten experimentally or by means of numerical
simulations. The cost to make only measured experimental is considerably more raised
than the cost to simulate in real time the motion of the waves, being possible to calibrate
with few data. This second option provides a cost more cheap. On the other hand, to
make this simulation of efficient way in real time is necessary to obtain sophisticated
mathematical models that reflect the reality physical of the studied phenomena.
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2 MODELS

The effects of non-linearity, such as energy dissipation by friction or breaking, are not
taken into account. Here a short description of the mathematical formulations with the
phenomena refraction and diffraction.

The mathematical model used in this study, in the case steady state are obtained by
assuming hydrostatic pressure distribution, and in the case transient are all based on the
theory of simple harmonic linear water waves.

2.1 Basic Equations

The basic equations of the hydrodynamic used to describe the motion in fluid dynamics
are, mass balance or continuity equation and momentum equation, respectively:

dp
a‘i‘V'(pu) = 0

1
—+((u-V)ju = b+-V-.o
5 T(@-V) p
where p is the fluid density, u” = (u,v,w) is the velocity, b is the volume force per unit
mass, o is the stress tensor and V is gradient operator.

2.2 Case Steady

Assumptions: steady state; ideal, incompressibility and homogeneous fluid; action of
the pressure and gravity forces; hydrostatic approximation the momentum equation in z.
Thus, integrating the equations over the depth and then taking into account the boundary
conditions on the free and bottom surfaces, we obtain the two-dimensional shallow water
equations, of a compact conservative form can be formulate as:

Determine (h, U), such that:

V. (hU) = 0.

V. (hUU) = —%vm— ghVb

where U = (U, V) are the depth averaged velocity components in the 2 and y directions
respectively, related with vertical distribution function of the velocity; g is the gravity
acceleration; h = b + 7 is the depth, being b is the function bottom (know) and 7 the
surface elevation (unknow).

These equations are subject to certain conditions that can be very complicated. How-
ever, here we will only consider rather simple boundary conditions.
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2.2.1 Boundary Conditions

We consider several common types of boundary conditions relevant for flow problems:

e Land boundary: the horizontal velocities are zero (non-slip condition U = 0) and
water does not pass through boundary (0h/0n = 0).

e River boundary: Prescribed velocity (U = U) and depth (h = h).

e Open sea boundary: water is free to flow in and out (we can specify h = h and zero
normal derivative of the horizontal velocity components 0U/0n = 0).

e Radiation boundary: in numerical computations we often shorten the domain ar-
tificially, and in such instances we would want to impose radiation-type boundary
conditions (OU/0n = 0).

2.3 Case Transient

Assumptions: ideal fluid, non-viscous and homogeneous; non-turbulent and non-laminar
flow; only action of the pressure (shear stresses negligible) and gravity force.

Thus, supposing that the fluid is ideal and without energy dissipation, is assumed that
the flow is irrotational and the velocity derives of a potential function.

Therefore, taking into account the boundary conditions on coordinate z, called kine-
matics boundary conditions, enforce that the particles on the surface/bottom do not
leave it, but the boundary condition on the free surface involves the elevation (which is
unknown) and consequently an extra condition is required to obtain a consistent problem.
This extra condition is the so-called dynamic boundary condition, setting the pressure on
the free surface to be equal to the value of the atmospheric pressure.

Thus, linearized the problem, with the hypothesis of waves of small amplitude and
supposing monochrome waves (a only period), we seek for a solution harmonic in time.
Therefore, expressing the space part of the potential by separation of variables, we can
express the potential of the form:

O(z,y,2,t) = e ™p(z,y,z) = e ™ f(2)p(z,y)

where f(z) is the profile function. Assuming that the bottom is horizontal and progressive
waves (transmit energy), we obtain the profile function

cosh[k(z + h)]

/() cosh(kh)

where k is wave number and p constant.
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Now, even if the bottom is no horizontal, assuming moderate slopes of the bottom
(IVh| < 1, Ah < 1) the profile function can also be used and, integrating along depth,
a new equation is recovered

0 0
V-{(/_hﬁdz)Vgp]%—kQ(/_hf?dz)go = 0.
0
/ fidz = cc,
—h

and ¢ = w/k is phase velocity, ¢, = dw/dk is group velocity.
Thus, results the called 'mild slope’ of Berkhoff equation:

where

V- (cc,V) + kPccyp = 0 at Q.

where ¢ is the unknown. Thus, once the velocity determined, the free surface elevation
will be obtained by means of the equation

1 ¢
77(%.%%0 = —ERQG,Z (aa_t) B

2.3.1 Boundary Conditions

The equation mild slope is of elliptic type, needing a boundary condition along whole
boundary. Possible conditions are:

e Partial or full reflection/absorption:(0p/0n — ikap = 0, € [0, 1]).

e Periodic: (p|r, = ¢|r,,0¢/0n|r, = 0p/On|r,)

Natural Neumann homogeneous: (0p/dn = 0).

e Known incident wave field: (¢ = )

e Radiation condition of Sommerfeld: (lim,_, +/7(0p/0r —ik) = 0).

3 CONCLUSION

In this work had been carried through the definitions, assumptions and deductions
necessary to formulate the model for the shallow water problem for steady and transient
phenomena.
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