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Juxtapositions

by Janos Baracs

Structural Topology (1) 1979

Abstract

The paper begins with a short historical review

of juxtapositions and some arguments which
link morphological design in architecture to
spacefillings. Three new methods for genera-
ting juxtapositions are then described in some
detail: the “cube splittings”, the “compound
arrangements”, and the “concave parallelohe-
dra”.

Introduction

Spacefilling is the least understood and most
neglected among our three principal themes. Des-
pite its apparently simple and visually intuitive na-
ture, the problem received no attention during.
history and even today it hardly attracts any interest.

To our knowledge, the question was hardly raised by
the classical Egyptian and Greek schools. The first
valuable research on this type of problem dates from
the 17th century, when Kepler studied tessellations*
with regular polygons. Near the end of the 19th
century the Russian crystallographer Fedorov de-
monstrated that there are only five convex polyhedra
which fill the space by translation* (paralielohedra*).
At the beginning of this century Andreini published a
list of spacefillings with one, two or three kinds of
regular or semiregular polyhedra, but there is no
indication that his list is complete. The latest results
on the problem of plane fillings are due to Grun-
baum and Shephard who prepared the complete list
of tesselations of the plane with convex polygons
(Grunbaum 1977) and the list of 81 transitive tessela-
tions* (Grunbaum 1976). During the writing of this
article we have found references to M. Goldberg’s
recent work on space filling with convex polyhedra,
but we have not yet seen the published report. We
have also seen some information on the problem of
filling the plane or space with a subset of the square
or the cubic lattice (polyominos and polycubes) from
M. Gardner, D. Klarner and S. Golomb.

Certainly all these make up a very meagre list of
works on a very large subject, and the unanswered
questions still outnumber the known results.

Itis urgent, in a real and practical way, that architects
come to know more about the subject of spacefilling,
however little they may realize it. There is a strong
social and economic pressure for a return to higher
density living in our cities, but the dissatisfaction is
evident with our conventional and unique form of
higher density building: the skyscraping slab buil-
dings, or rectangular prisms. Juxtapositions also
have applications in industrialized space-frame
construction. Thus spacefilling should no longer
remain a mathematical recreation. Instead it has to
develop into a conscientious effort fo find more
skillful subdivisions of space to create stimulating
new environments.

The present approach by architects to morphologi-
cal design was best described by Steve Baer (Baer
1968, p. 7): “Most of today’s buildings have illegiti-
mate designs, the exterior form appears without a
history, owing nothing to any step by step process of
creation. Their form as a sum of components is a
forgery, worked in backwards by vertical and hori-
zontal partitions. This is like choosing a manufactu-
ring process for an article by deciding which by-
products it is to have, or like writing the last chapter
of a novel and then arranging five thousand senten-
ces chosen by someone else so that they lead up to
it. ... If we think of the cube as a servant to the



architect then its qualities are the ones which will first
endear it to its master, but ultimately he will see, that
although things have been daone quickly and efficien-
tly, nothing is in exactly the right place.”

We do not suggest that the cube is dead and that we
can solve our problems by moving tomorrow into
truncated octahedra, for instance. All we are saying
is that the next generation of architects should be
better informed and trained in how to manipulate
spacepackings beyond the cubic one. This larger
inventory, along with design skill, new attitudes and
new technology, will result in the correct, but pe-
rhaps unforseeable, choices of different morpholo-
gies. Thus our assignment is really to learn and not
to predict.
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Figure 1

Since any attempt to find general solutions and
complete answers was beyond our means, we have
concentrated our efforts since 1970 on a different
approach. Because of the synthetic nature or archi-
tectural design, it proved more useful and practical
to have a number of different methods to generate
juxtapositions with certain prescribed properties,
than to seek the complete enumeration of a given
class of juxtapositions. In the following we describe
three different methods to form spacepackings. This
work was carried out by Janos Baracs and his
students — Nabil Macarios, Michel Velly, Luong
Thien Tai, Bernard Leopold, Jean Maurice and
Jacques Couturier between 1971 and 1978.

First Method: “Cube Splitting”

A juxtaposition is called regular* if its congruent
cells are regular and its regular vertices are con-
gruent. In 3-space the only regular packing is the
cubic grid. This fact gave rise to the suspicion that all
the non-regular spacefillings with convex cells can
be derived by some simple operation(s) from the

cubic lattice. We found that, with one exception
(Figure 8) , this is true for all known examples.

The operation we used is plane cutting of the
metrically regular cube into 2n congruent parts. The
convex subsets of this subdivided cubic lattice are
space filling polyhedra*. Figure 1 illustrates cuts into
2,4,6,8 and 12 congruent parts, the most important
among them being a particular truncated tetrahe-
dron shown in detail in Figure 2 . This polyhedron
has an important property: all combinatorial types of
convex spacefilling polyhedra (with the same excep-
tion, which we come back to later) can be realized as
finite packings of this special polyhedron (allowing
translations, rotations and reflections). The preten-
tious name universal brick has been given to this
polyhedron.

Figure 3 shows combinations of the basic cuts into
other spacefilling polyhedra. They can also be inter-
preted as multiple simuitaneous plane cuts of the
cube.
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in Figure 4 the polyhedra of Figure 1 are further
combined by making a new choice of subsets in the
divided cubic lattice. We were surprised to notice
that three well known combinatorial types of polyhe-
dra (the rhombicdodecahedron, the elongated do-
decahedron and the truncated octahedron), which
fill space by translation when realized with central
symmetry, are also space fillers without the central
symmetry.

A list of the Schlegel diagrams* of convex spacefil-
lers is given in Figure 5 . We do not know if anyone
has a complete list, but it seems that a finite list
should exist with a surprisingly small number of
entries. A reasonable question to ask is whether the

Figure 3

3-connected planar graph (the 1-skeleton of a con-
vex polyhedron) contains some combinatorial pro-
perties which indicate that the polyhedron can be (or
cannot be) realized as a spacefilier.

This list of Schlegel diagrams suggests that a space-
filling convex polyhedron has at most 14 faces, with
the same exception mentioned above, the 16 faced
produced truncated tetrahedron. This is a semiregu-
lar truncated tetrahedron with tetrahedra attached to
its triangular faces as illustrated in Figure 6.

This first method has enumerated (hopefully) all
single convex polyhedra which fill in space with

copies congruent under rigid motions. It should be
noted that in many instances the metric cubic lattice
cannot be replaced by an affine parallelopiped
lattice which permits the given space-filling. Due to
the metric restrictions of this method, the probable
applications lie in the fields of industrial design
(packaging) and generating spaceframes.

Second Method: Compound
Arrangements

The following method will demonstrate how a given
juxtaposition can lead to five other different, but
closely related spacefillings by certain geometric
and topological operations.

The operations are based on a generalization of the
following construction in 3-space. Let P be a convex
polyhedron and P’ be another convex polyhedron
which is its topological dual. If we can install P and P’
in space so that corresponding edges of P and P’ are
concurrent, the arrangement is called the compound
of P. The convex hull of all the vertices of P and P’
defines the convex union-polyhedron PUP’, and the
common solid of P and P’, defines the convex
intersection-polyhedron PNP’. Simple considera-
tions (easily verified on the Schlegel diagram) lead to
the conclusion that PUP’ is the topological dual of
PNP’. The vertices of the union-polyhedron are the
vertices of P and P’, and its faces are quadrilaterals
whose diagonals are the corresponding edges of P
and P'. The vertices of the intersection-polyhedron
are the common points of corresponding edges of P
and P’ and its facial planes are those of P and P'.

Note that there is a more general projective con-
struction. If the polyhedra P and P’ are realized with
corresponding edge lines intersecting beyond the
edge segments, then the new faces of PUP' defined
by the two corresponding edges will be concave, as
will be some faces of PNP’, and the new polyhedra
will be concave as well.

If the compound arrangement of P and P’ is formed,
the the polyhedron PUP’ may also be obtained from
P by a special stellation: every n-gonal face is
replaced by an n-gonal pyramid with an n-valent
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vertex such that the two new triangular faces adja-
cent to any edge of P are coplanar (thus forming a
quadrilateral). Dualizing this stellation, the polyhe-
dron PNP’ may also be obtained from P by a special
truncation: every n-valent vertex is replaced by an n-
gonal face such that the two new 3-valent vertices
situated on any edge of P are coincident (thus
forming a 4-valent vertex).

It is easy to construct this compound arrangement of
P and P’ in the case of regular and semi-regular
polyhedra. We begin with the intersphere of the
polyhedron P and for each edge we draw a second
perpendicular tangent to the intersphere at the point
of contact, forming an edge of P’. These edges will
meet in appropriate vertices and faces to form a
convex realization of P’, and of the true compound.
We conjecture that it is always possible to create an
appropriate projective arrangement, with the faces
of P and P’ formed as planes and corresponding
edges concurrent, for each convex polyhedron. If
this is true, we ask how to construct P’ to fit a given P
and form the compound?

Figure 7 shows an example of a compound arrange-
ment of the cube: P is the cube, P’ is an octahedron,
PUP’ is a rhombidodecahedron and PNP’ is a cuboc-
tahedron.

Since a tesselation of the plane can be viewed as an
infinite polyhedron, this method of compound arran-
gements leads from a given tesselation to three new
tesselations. An example is given in Figure 8.

The relationships among the compound arrange-
ments for plane tesselations and polyhedra are
summarized in Figure 9 , with double arrows indica-
ting topological duality.

We will now make use of 4-dimensional space to
generalize the process of compound arrangements.
Just as we viewed a tesselation as an infinite polyhe-
dron (3-polytope), we now consider spacefillings as
infinite 4-polytopes.* However when we apply the
idea of a compound arrangement to 4-space, we find
two distinct union-polytopes and two distinct
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intersection-polytopes. Together with P and P’ these
will form a family of six related juxtapositions.

We must first describe duality in 4-space: polyhedra
(3-dimensional faces or cells) of P correspond to
vertices of P’, faces of P correspond to edges of P’,
and vice versa. Two vertices u and v of P’ are joined
by an edge of P’ if the two polyhedra corresponding
to u and v share a face in P. Evidently if P is a
juxtaposition, then P’ has the topology to be a
juxtaposition, and we conjecture that it can always
be realized as one.

The next step is to visualize the compound arrange-
ment in 4-space. Edges of P’ must be cospatial (lie in
the same 3-space) with the corresponding faces of
P, while faces of P’ must be cospatial with the
corresponding edges of P. To arrive at a convex
compound, P must be convex and the piercing
points of corresponding edges and faces must be
inside the facial polygon and between the vertices of
the corresponding edge.

Figure 6

If the two polytopes are infinite polytopes realized as
spacefillings, then the conditicn about cospatial
facets is trivial, but the condition for convexity
remains unchanged.

Having formed a compound arrangement of the 4-
polytopes and its dual, we can now look for the
union-polytope and the intersection-polytope.

In 3-space a polyhedron has a unique type of union-
polyhedron: the quadrilateral faces are defined by
corresponding concurrent edges. In 4-space we find
two distinct types of union — the lineal union-
polytope P UP'r and the faclal unlon-polytope
PgUP’L. In both cases the 3-dimensional facets of
the polytope — or the component polyhedra of the
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new juxtaposition — are n-gonal bipyramids. In the
case of the lineal union a component polyhedron is
defined by the two end vertices of an n-valent edge
of P and the corresponding 2-dimensional n-gonal
face of P’. (The valency of an edge in a polytope is
the number of 2-faces incident in the edge.)

In the case of the facial union PEUP |_the component
polyhedra are defined by n-gonal faces of P and the
two end vertices of the corresponding edges of P’.

Since the faces of P are dual to the edges of P, it is
clear that the lineal union of P and P’ is the facial
union of P’ and P:

PLU P'F = P'FU PL
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The lineal intersection-polytope can be constructed
topologically by using the concept of a generalized
line-graph: replace every edge of P by a vertex, and
join two new vertices if the corresponding edges are

incident in a vertex and share a face of a cell in P. For"

each 3-cell or polyhedron of P this forms a polyhe-
dron L(C) which is the line-graph of that cell — a
vertex for each edge and an edge drawn when the
corresponding edges were incident in a vertex of the
cell. This polyhedron is the intersection-polyhedron
of the 3-dimensional cell and its 3-dual. Each vertex
is replaced by a polyhedron called the vertex figure
L(V): each edge to the vertex is replaced by a vertex
and two new vertices are joined by a new edge if the
corresponding edges shared a face in P. Since this
vertex figure is a spherical polyhedron, it follows that

the incidence structure of any vertex in the juxtapo-
sition satisfies the 3-dimensional Euler formula: the
number of incident edges less the number of inci-
dent faces plus the number of incident cells is equal
to 2.

The faclal Intersection-polytope can be constructed
topologically by using the idea of a generalized face-
graph: each face of P is replaced by a new vertex
and two new vertices are connected by an edge if the
corresponding faces are incident in an edge and ina
3-cell (polyhedron) of P. We can describe the com-
ponent polyhedra as follows: each 3-cell of P is
replaced by its 3-space dual, and each vertex of P is

8.b

Figure 8

replaced by the intersection polyhedron of its vertex
figure.

If we call the 3-space dual of a cell the face-graph
polyhedron of the cell, F(C), and bring in the dual
polytope P’, with cells C’, then these constructions
can be rewritten in several ways. The lineal
intersection-polytope has the line-graph polyhedron
for each cell of P and the face-graph polyhedron for
each cell of P’ (the vertex figure of the corresponding
vertex of P): L(C) + F(C’). The facial intersection-
polytope has the face-graph polyhedron for each
cell of P and the line-graph polyhedron for each cell
of P’: F(C) + L(C’). This description also emphasizes
the fact, implicit in the correspondence of faces in P
and edges in P’, that the facial intersection of P and
P’ is the lineal intersection of P’ and P:

PENPL = PLNPE

While we gave sufficient conditions for the existence
of convex union-polytopes (since the bipyramids can
always be constructed from cospatial edges and
faces) it is an unsolved problem what the sufficient
conditions are for the existence of one, or both of the
intersection-polytopes.

N
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Figure 9



It is always a pleasure to observe a geometric
phenomenon in a certain dimension which can be
generalized to n dimensions. We mentioned earlier
the duality between FUP’' and PNP’ in 3-space. This
duality also exists in 4-space, taking the lineal union
to the lineal intersection, and the facial union to the
facial intersection. We conjecture that such a duality
holds for n-space, and in n-space it appears that the
number of distinct types of unions (or of intersec-
tions) is n-2.

If these constructions can all be carried out, we have
in 4-space the polytope, its dual, their two intersec-
tions and dual union-polytopes, forming a family of
six distinct polytopes (or six juxtapositions in 3-
space if the polytope is infinite and the constructions
produce juxtapositions) whose relationships are
shown in Figure 10 . in Figure 11, we present the six
related spacefillings of the hexagonal prism.
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For every given spacefilling the five related infinite
polytopes can always be defined topologically. In
most cases of juxtaposition we do not know of affine
or metric realizations of the other five polytopes as
juxtapositions, but we conjecture that it is always
possible to create the other five as juxtapositions.

We are just beginning the geometric exploration of
these constructions and have not yet had time to
question the possible applications of this method.

Third Method: “Concave
Parallelohedra”

Among the three methods presented here, the
method of concave parallelohedra has proven to be
the most useful for architectural applications, and it
has been tested in several student projects. It is
quite unfortunate that mathematicians are preoccu-
pied with convex domains, since most of our well
functioning spaces built for any use are concave.

The method used by (Fejes-Toth, 1964) to demons-
trate the existence of the five convex parallelohedra
can be extended to generate an infinite number of
concave parallelohedra. We demonstrate the me-
thod by an example.

As a first step (Figure 12) we generate concave
parallelogons which cover the plane by parallel
displacement (translation). This operation begins
with a square (or parallelogram) tesselation (Figure
12A), which is then split by parallel lines in Figure
12B . The strips are then translated by a chosen
vector Figure 12C, and parallel edges of equal
length are inserted between corresponding vertices
in Figure 12D. This well known hexagonal tesselation
is subjected to the same operation in Figure 12F
resulting in a semiregular tesselation (Figure 12H).
Using the same process from here on becomes
more interesting: in Figure 12M and Figure 12R we
arrive at new tesselations of the plane, with the
shaded concave polygon as the fundamental region*
of the tesselation.
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The second step is to superimpose a chosen tesse-
lation (Figure 13A) on a translated version of the
same tesselation (Figure 13D). The intersection of
the two congruent grids produces a new subdivision
of the fundamental region into faces which we want
to all be zonagons*. Accordingly, the motions illus-
trated in Figure 13B and Figure 13C are not allowed,
since the shaded polygons are not zonagons.

Next, the fundamental region, subdivided into zona-
gons, (shaded region in Figure 13E ) is interpreted
as a projected polyhedron and lifted into space in
Figures 13F and 13G . The union of the two convex
zonahedra produced here is called the concave
parallelohedron, which forms the fundamental re-
gion of this spacefilling. Figures 13H, 13M and 13R
indicate different compound grids obtained by diffe-
rent translations of the tesselation. These result in
three combinatorially different concave parallelohe-
dra for spacefilling (Figure 13L, 13P and 13V).
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The photograph (Figure 14) shows a practical
application of the method of concave parallelohedra
in a student project on medium density housing by
T.T. Luong in 1974.

The concave parallelohedron which we generate by
this method is a fusion of a finite number of convex
zonahedra*. We have not been explicit about the
process of recognizing this fusion in the plane
drawing, but by practising on examples the reader
will find that the task is not difficult. A convex
zonahedron is uniquely defined by its star — a sheaf
of n lines, each parallel to one of the n different
directions in which the edges of the zonahedron
occur (Coxeter 1973). Based on visual evidence from
a number of examples, we conjecture that any given
star of n lines defines one, or more, concave paralle-
lohedra. If this is true, we would also like to know, as
an alternative to the method described here, how to
construct the concave parallelohedron directly from
a given star.

In conclusion we mention further conjectures related
to this third method. First, we suspect that any
zonahedron fills in space with a combination of a few
other zonahedra. Second, it appears that any space-
filling generated by more than one type of zonahe-
dron has a fundamental region which can be deri-
ved, by a series of geometric operations, from the
five convex parallelohedra.

Figure 14




Terms and Definitions

Tesselatlon: a periodical covering of the plane with
polygons, without gaps or overlaps. The mutual
relation of any two polygons is one of three possibili-
ties:

(1) they are disjoint;

(2) they have precisely one common point which is a
vertex of each of the two polygons;

(3) they share a segment which is an edge of each of
the two polygons.

Transitive tesselation: the group of isometries which
leaves the tesselation invariant is transitive on the
polygons. (All polygons of such a tesselation must be
congruent).

Parallelohedron: convex polyhedron whose transla-
ted replicas juxtapose.

Convex polyhedron: a polyhedron which lies
entirely in a halfspace defined by any of its facial
planes.

Translation: parallel displacement.

Spherical polyhedron: a covering of the topological
sphere with plane polygons, without any gaps or
overlaps. The mutual relation of any two polygons is
one of three possibilities:

(1) they are disjoint;

(2) they have precisely one common point which is a
vertex of each of the two polygons

(3) they share a segment that is an edge of each of
the two polygons.

Juxtaposition: periodical filling of space with spheri-
cal polyhedra, without gaps and overlaps. The mu-
tual relation of any two polyhedra is one of four
possibilities:

(1) they are disjoint;

(2) they have precisely one common point which is a
vertex of each of the polyhedra;

(3) they share a segment which is an edge of each
of the two polyhedra;

(4) they share a polygon which is a face of each of
the two polyhedra.

Affine properties: geometric properties which re-
main invariant in parallel projections.

Intersphere: sphere tangent to all edges of a spheri-
cal polyhedron.

Schlegel diagrams: plane graph representation of a
spherical polyhedron.

Plane graph: a graph of edges and vertices drawn in
the plane such that the common points of edges are
vertices of the graph.

Polytope: a generalization of a polyhedron to RN,
dimension n=4. Every pair of incident faces of
dimensions k-l and k+l are jointly incident with
exactly two faces of dimension k.

Fundamental reglon: subset of a tesselation or
juxtaposition whose translated replicas fill the plane
or space in the given arrangement.

Zonagon: convex polygon, pairs of opposite edges
are parallel and equal in length.

Zonahedron: convex polyhedron, all of whose faces
are zonagons.
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