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Abstract

We address ourselves to three types of com-
binatorial and projective problems, all of which
concern the patterns of faces, edges and
vertices of polyhedra. These patterns, as com-
binatorial structures, we call combinatorial
oriented polyhedra. Which patterns can be
realized in space with plane faces, bent along
every edge, and how can these patterns be
generated topologically? Which polyhedra are
constructed in space by a series of single or
double truncations on the smallest polyhedron
of the type (for example from the tetrahedron
for spherical polyhedra)? Which plane line
drawings portraying the edge graph of a com-
binatorial polyhedron are actually the projec-
tion of the edges of a plane-faced polyhedron
in space? Wherever possible known results
and specific conjectures are given.

A great deal of our work employs surfaces which
enclose sections of space (compact oriented 2-
manifolds), constructed by joining plane polygons
together in pairs across their edges. These finite
plane-faced coverings of the clqsed surface are the
basic cells of the work on juxtapositions or space-
fillings, and they also appear as the basic visual
guide in our analysis of structural dependence and
rigidity in plane frameworks. These polyhedra are
the essential building blocks of spatial geometry.
They have been scrutinized for centuries. In this
century the study has been generalized to a topolo-
gical theory of combinatorial polyhedra, but many of
the fundamental problems, both solved and unsol-
ved, involve the realizability in space of the abstract
patterns within particular geometric constraints.

Each generation of workers has chosen particular
properties which they find desirable and then asked
— which polyhedra can be realized within these
constraints? The constraints which we investigate
within our research group arise directly or indirectly
from our prior concerns with space-fillings and
rigidity. In addition, some constraints of obvious
architectural or engineering significance — such as
metric regularity of angles, edge-lengths or face
patterns — have been widely studied elsewhere and
will not be described here. Instead we will restrict our
attention to a series of questions of a combinatorial,
topological and projective nature which represent
less traditional topics of study,

The Pattern for Convex Polyhedra

In many ways a model for the overall type of theory
we are seeking is offered by the most widely studied
class of polyhedra, the convex polyhedra . These
polyhedra are formed in space by a series of plane
convex polygons, the faces, formed into a rough ball
so that along each edge of a: polygon the face joins
one other face, and the plane of each facial polygon
cuts the three -dimensional space into two half-
spaces, one of which contains the entire polyhedron.

Such a polyhedron will be topologically like a
sphere, and for a spherical polyhedron we have
Euler’s formula which gives a combinatorial rela-
tionship between the number of vertices V, edges E
and faces F: V— E + F= 2. When we have a set of
vertices, edges and faces (each edge joining two
vertices and separating two faces) which satisfies
this formula, and thus forms a topological sphere*,
the skeleton formed by the edges and vertices forms
a planar graph, a graph* which can be drawn in the
plane without any edges crosssing in their interior.
(Figure 1)

Combinatorial and Topological

Problems

An obvious question is: which planar graphs (with
the regions formed in the plane taken as the faces)
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can be topologically reproduced as the faces, edges
and vertices of a convex polyhedron with plane faces
and a real bend at each edge? Steinitz’ theorem
provides the answer — those planar graphs which
are 3-connected in a vertex sense and have more
than three vertices (Grunbaum 1967, p. 235). Here 3-
connected means that removing any two vertices
(and the adjacent edges) cannot separate the graph
into several components (Figure 1).

Closely related to this result, and used in some
proofs, is the fact that all 3-connected planar graphs
(combinatorial convex polyhedra) can be created
from the graph of the tetrahedron by successively
splitting faces in one of three natural ways (Figure 2)
(Lyusternik 1963, p.75). We also know, from their
definition, that any convex polyhedron can be sliced
out of an underlying tetrahedron by a series of
plane-cuts or truncations* — one for each face
beyond the original four faces of the tetrahedron.
One central theme for our further investigations will
be the connections between these three approaches
— the graphic characterization of a class of spatial
polyhedra, the topological evolution of these graphs,
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Figure 1. Both 3-connected planar graphs (C), and planar graphs
which are only 2-connected, create spherical polyhedra Iif the
regions of the plane are chosen as faces.

and the spatial construction by plane-truncations.

Projective Problems

We now want to study in more detail the projective
construction of convex spatial polyhedron by plane
slices on the tetrahedron. We have found that a
useful way to observe this slicing is in a single plane
projection where we record the projections of the
lines where each new face plane meets all of the
previous planes (Figure 3). We then attempt to
reverse the procedure and ask when a pattern
of lines drawn in the plane represents the
construction of a convex polyhedron in
space. Of course we must identify, among all these
lines, the 3-connected planar graph which we want
to be the projected edges of the proposed polyhe-
dron. In addition we must label each of the other
lines as the projected intersection of two faces of the
proposed polyhedron: We know that three planes in
space 1, 2 and 3 will have a point of intersection (or,
as a degenerate case, a line of intersection) so the
three lines 12, 23, 31 are concurrent in space. Thus
in our labeled diagram it is.necessary that the three

Figure 2. Face splitting by a new edge adds new faces to a
combinatorial polyhedron.

projected lines labeled 12, 23, 31 be concurrent in
the plane. Finally, to ensure the convexity of the
proposed polyhedron we have found that two faces
which share a vertex but not an edge must have a
line of intersection which intersects the face poly-
gons only at this vertex, and all the face polygons
must be convex (Figure 4). Is this enough to guaran-
tee the construction of a convex spatial polyhedron?
Yes. We have proven that all such consistent dia-
grams of lines in the plane can be lifted back to
produce convex polyhedra in space.

To fix this spatial polyhedron, we need to specify our
point of projection and the position of the projection
plane. For convenience we will think of orthogonal
projection along the direction of the z-axis (from the
point at infinity on the end of this axis) onto the xy-
plane. With this frame of reference specified, if a
plane diagram lifts to one convex polyhedron in
space, then it lifts to a four parameter family of
polyhedra — three parameters for the location of an
initial face-plane, and the fourth for a factor which
represents stretching along the z-axis, towards the
point of projection. If one polyhedron of this four-
parameter family is convex, then all of these equiva-
lent realizations will also be convex.

If we simplify the initial information in the plane and
begin only with a drawing, with straight lines, of a 3-
connected planar graph, we have the obvious ques-
tion — what possible complete diagrams of intersec-
tion lines for constructing a convex polyhedron can

Figure 3. A convex polyhedron Is shown In projection, and all lines
of Intersection of pairs of faces are drawn. The Intersection of face
1 and face 2 Is labeled 12.



be produced as extensions of this Initial drawing?
Equivalently what convex polyhedra exist in space
which project to the initial plane drawing? We will
return to this basic problem shortly, but we note that
in many cases (E<2V-2) this question can be answe-
red by a series of direct geometric constructions
from projective* (or descriptive) geometry. Consider
the examples illustrated in Figure 5. Figure SA
shows the completion of a projected triangular prism
by a sequence of steps, where points 013 and 024
are shown to confirm the consistency of the diagram.
If one of these points of concurrence of three lines
exists, then the other point must also exist, as a
result of Desargues’ theorem on perspective trian-
gles. Figure 5B shows the completion of a second
figure, with point 025 drawn as a check of consis-
tency- Figure 5C shows an identical graph, where
the point 025 has broken up, and thus no consistent
completion (or spatial polyhedron) is possible.

We also recall that a thorough understanding of the
statics of frameworks in the plane would provide a
solution to the problem of polyhedral completions,
since a convex polyhedron projects, via Maxwell's
theorem, into a static stress on the plane framework
which is in compression of all members which form
the boundary of the plane drawing, and in tension on
all other members. (See the article on rigidity in this
issue of the Bulletin.) This is true because the sign of
the stress (+ for compression and - for tension) is a
measure of whether the interior angle between the
faces at that edge is increasing (+) or decreasing (-)
as we lift the plane diagram with its flat edges back to

Figure 4. A non-convex polyhedron Is shown In projection with bad
intersection lines at vertex 0123. Line 13 splits face 3 and line 02
splits face 0. Bad intersections also occur at 1245.

the bent edges of the spatial polyhedron. (Whiteley
1978).

General Concepts

Combinatorial Polyhedra

We want to use a similar approach to analyze other
plane-faced space enclosures. A first step is to
abstract a basic pattern of faces, edges and vertices
which is found in the convex examples.

An orlented combinatorial polyhedron is a set of
vertices v,,....v, and a set of faces F,,...,F, such
that

(1) each face is assigned a polygonal cycle of distinct
vertices Uj,...,u, (at least 3).

(2) the edges are identified as unordered pairs of
vertices which are adjacent in the polygon of some
face (including the last and first vertices of the cycle).

(3) each edge (u;,ui) occurs in exactly two faces,
once in the order u;,u; and once in the reverse order
u.,u;

]

(4) for each vertex v, the set of edges which include
this vertex form a single cycle without repetition
(Vo,u1), (Vo,u) ... (Vo,Un) such that u;;\vou; are
adjacent vertices, in the polygon of some face for
each i (including u\vou, when i = n)

(5) the structure is connected — each vertex is
connected to every other vertex by a path of vertices
and edges.

Among people who concentrate only on convex
polyhedra (Grunbaum 1967) it is traditional to add
an additional condition:

(6) two faces never have more than two vertices in
common, and if they share two vertices then the
edge between these vertices occurs in each of the
faces.

013 234-23A34
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Figure 5. Lines of Intersection of pairs of faces are constructed
from the projections of the original edges In the indicated sequen-
ces (A, B). Figure C lllustrates the fallure of a construction when
three lines fail to converge to a point.
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This restriction would exclude some traditional poly-
hedra, and seems unnecessary in either an architec-
tural or geometric context (Coxeter 1973, p.4). In
fact, in a general geometric context it is reasonable
to modify condition (3) to drop the reference to the
order of the vertices, and thus include unoriented
polyhedra, polyhedra which form unoriented mani-
folds such as the Klein bottle (Hilbert 1952, p.309).
Each combinatorial polyhedron corresponds to a
unique compact topological two-manifold, if each
face is taken as a topological disc. While unoriented
surfaces with boundaries can be built in space,
simply by hinging together flat panels, whenever we
build an unoriented manifold without boundary (that
is, an unoriented polyhedron) there will always be a
self-intersection (faces crossing without an edge of
the polyhedron at the intersection). For this reason
unorientable polyhedra cannot be used to enclose
space in a form which is useful in architecture. We
will restrict our discussion to oriented polyhedra, the
dissections of oriented compact two-manifolds.

Having chosen our definition of oriented polyhedra,
we are aware that there are other broader possibili-
ties — we could drop the assumption that an edge is
identified by its vertices, and then permit more than
one edge between a pair of vertices. There are also
many possible restrictions, such as that two faces
share at most one edge, or two faces share at most
two vertices. The final choice of restrictions will be
dictated by the requirements of the areas being
studied, and we will outline below some possible

Figure 6. The topological dual (dotted lines) of a portion of a
polyhedron (black lines).

choices, along with supporting reasons for such
choices.

Projective Polyhedra

We begin with the idea that a projective polyhedron
(or realization ) is any assignment of points in space
to the vertices, and planes in space to the faces,
such that the plane of any face passes through the
points of all its vertices. However this permits the
singular, and absurd, examples of all faces having
the same plane (with all vertices assigned points in
this plane) or the dual form of all vertices assigned
the same point). We will normally rule out such
degenerate cases, which are of little practical and
architectural interest, by insisting on “proper” reali-
zations, this word “proper” to be defined as circums-
tances require. As a next step we insist that adjacent
faces have different planes and the two ends of any
edge are different points (all edges are proper).
This still permits the degenerate realizations where
all vertices are on a single line and all faces are
assigned planes through this line. It is clear that
every abstract polyhedron has such degenerate

Figure 7. A polar palr of polyhedra.

realizations. This involves every face and every
vertex being collinear, and it is unlikely that any
architectural construction will have any face or
vertex collinear. We will examine other possible
restrictions to “proper” realizations later in the
article.

We can work directly with the combinatorial polyhe-
dra (and their generalizations or restrictions) and try
to find out how they are generated combinatorially
(such as by face splittings) from a few small patterns
(such as the tetrahedron) and then see whether all
the abstract patterns can be realized as projective
polyhedra.

Alternatively we can begin by extending the type of
spatial constructions we allow (generalizing the
single plane cuts on the underlying tetrahedron),
and then ask for a combinatorial characterization of
the types of combinatorial polyhedra which are
created.

Finally, given a labeled set of lines in the plane, we
can ask when these lines are the projections of the
corresponding edges of a projective polyhedron in
space.

Duality

In our approach, a basic mathematical concept
is duality — the process, either topologically
or projectively, of turning vertices (points) into
dual faces (planes), faces into dual vertices,
and edges joining two vertices into edges separating
the dual faces (Figure 8). In projective space this
operation is achieved by a polarity — a linear
tiansformation taking coordinates of points to coor-
dinates of planes, which takes any four coplanar
points to four concurrent planes, and thus reverses
all the projective incidences, taking a plane faced
polyhedron into a new plane faced polyhedron
realizing the topological dual (Figure 7). If we pola-
rize a convex polyhedron so that an interior point of
the polyhedron becomes the new plane at infinity, we
find that the dual polyhedron is also convex. This
confirms that the convex polyhedra (and 3-
connected planar graphs) are closed under duality.
The dual of our starting tetrahedron is a tetrahedron



but the types of construction we used dualize to new
constructions. The projective dual to truncation* by
a plane is stellation * Dual to the topological face
splittings are the topological vertex splittings illustra-
ted in Figure 8. For the same reasons that we do not
face split along an existing edge of any face (creating
multiple edges) we do not attempt the dual cons-
truction, which is a vertex split creating a 2-
valent vertex.

Spherical Polyhedra

Combinatorial Development

A spherical polyhedron is any combinatorial polyhe-
dron whose underlying topological surface is a
sphere, and it it is characterized by Euler’s formula
V-E+F=2 We also know that the edges must form a
2-connected planar graph (a graph which cannot be
disconnected by removing a single vertex). Every
such graph belongs to a combinatorial spherical
polyhedron, if we take a plane drawing and identify
the regions formed in the plane as the faces (Figure
9). However some such polyhedra can only be
realized in space with collinear faces or improper
edges (for example the polyhedron formed from the
graph of a triangle). However we conjecture that any
combinatorial spherical polyhedra with a planar
graph which is 2-connected In a vertex sense and
has every vertex at least 3-valent, will have spatial
realizations with all edges proper and no face
or vertex collinear. Those graphs which are 2-

Figure 8. The combinatorlal duals of face splits are three types of
vertex splits: face-face vertex splits (A), face-edge vertex splits
(B), and edge-edge vertex splits (C).

connected but not 3-connected in a vertex sense will
have several different ways of assigning faces for a
combinatorial spherical polyhedron (of drawing the
graphs without self intersection on the unit sphere
(Figure 9) ), but any two such spherical polyhedra on
the same graph are equally realizable in space. This
fact follows from the converse of Maxwell’s theorem
in plane statics!

This class of 3-valent, 2-connected planar graphs is
closed under topological verte:: and face splittings.
We conjecture that the entire class ic generated by
face splitting and hinging of pairs of pieces (Figure
10) , beginning with one tetrahedron.

When we try to dualize these polyhedra we notice
that, since two faces may meet along more than one
edge’ the new dual vertices may be joined by more
than one edge (Figure 11). Therefore the vertex-
edge structure is a multi-graph — a graph with
possible multiple edges between some vertices.
These abstract structures are equally realizable in
space, but any pair of edges on the same two
vertices, which do not surround a digonal face, will
produce a pinch which breaks up the space enclo-
sed by the polyhedron in a way which is quite
useless in architecture. We note that the dual of all
vertices being at least 3-valent is that all faces are at
least triangular, but this assumption followed from
our original assumption that the vertices and edges
formed a simple graph. As a final mathematical
conjecture of this type we propose that all abstract

Figure 9. Two polyhedra can have the same 2-connected planar
graph of edges, but different face structures (different plane
reglons).

spherical polyhedra (planar muitigraphs) with all
faces at least triangular and all vertices at least 3-
valent can be realized in space with every edge
proper and no face or vertex collinear.

We define a proper projective realization as having
no coplanar adjacent faces, no copunctual adjacent
vertices, no faces collinear and no vertices collinear.
We have not spoken of more subtle questions of
realizability such as whether an edge should lie in
the plane of a non-adjacent face. In our experience,
we have found that spherical polyhedra with 2-vertex
connected, 3-valent planar graphs and no faces
sharing more than two vertices have realizations
with every face a topological disc, and no self-
intersection (i.e. an embedding of the sphere).

Q
Figure 10. Topological hinging Joins two polyhedra into one by

Identifying two pairs of vertices, two pairs of faces, and dropping
two edges.

Figure 11. The dual of a polyhedron with two faces sharing several
edges Is a polyhedron with multiple edges between two vertices.
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Constructing Projective Polyhedra.

From the point of view of spatial architectural struc-
tures it seems more useful to begin with a geometric
mode of construction in space and then seek the
underlying combinatorial pattern of the graphs
which are created. In the context of non-convex
polyhedra we allow projective cuts where the new
plane may cut other planes in the exterior of the
original face polygon, but this cut is then used to add
a section to the face, as well as to remove sections
when it meets the interior of the face polygon,
(Figure 12). If we allow a sequence of these projec-
tive plane cuts on a tetrahedron, we will produce
non-convex (and possibly self-intersecting) realiza-
tions of the same 3-connected planar graphs we
studied as convex polyhedra. These are all the
spherical polyhedra which satisfy the restrictive
condition (6) given after our original definition.

An obvious generalization of this type of
construction in space is the idea of double-
plane cuts on an edge (Figure 13). The pro-
cess of full-edge double-plane cut is self-dual,
since it introduces two vertices and two faces, while
removing an edge. However when a full-edge double
cut is followed by one or several single-plane cuts,
the sequence of cuts produces the pattern which is
the dual of half-edge double-cuts (and even the dual
of partial edge double-cuts, if we allow truncations to
produce multi-graphs) (Figure 14). If we begin with
the tetrahedron and close up under single cuts, and

full or half-edge double-cuts, observing the restric-
tion that the structure keeps a simple graph of edges
(no multiple edges), then we create a self-dual class
of generalized spherical polyhedra. We conjecture
that this class Is characterized by planar graphs
which are 2-connected In a vertex sense and are 3-
connected In an edge sense (removing 2 edges
never disconnects the graph). Such a combinatorial
class seems to be closed under face-splitting (if we
forbid face splits which produce multiple edges) and
is closed under topological hinging. However they
are not closed under face-face vertex splits, since
such a vertex split can turn a half-edge double-cut
into a partial-edge double-cut (and a 3-edge-
connected graph into a graph which is only 2-edge-
connected). If we now close up under the partial—
edge double-cuts, we create a class which is not
self-dual. We conjecture that this class consists of
all spherical polyhedra which can be realized In
space without self-Intersection, and that It is cha-
racterized combinatorially by planar graphs which
are 2-connected in a vertex sense and each vertex Is
at least 3-valent. This is the same class we reached
in our previous topological analysis.

Projective Dlagrams

We also want to study configurations of lines in the
plane to see when they describe the construction of
a combinatorial spherical polyhedron in space. In
general, given any combinatorial polyhedron we call
a set of lines in the plane a polyhedral completion of
the combinatorial polyhedron if there is a line for

Figure 12. Projective truncation of a face by a new plane produces several choices of a new truncated face.

Figure 13. An edge of a polyhedron (A) can be truncated by

double-plane cuts In three ways: full-edge cuts (B), half-edge cuts
(C), and partial-edge cuts (D).

Figure 14. The dual of a double plane half-edge cut (B’ to B) Is also
created by a full-edge cut followed by a single-plane truncation (A
to B).



every pair of faces, all of the edges at a vertex form
concurrent lines and for any three faces the lines 12,
23 and 31 are concurrent. For spherical polyhedra
the set of original edges will at least form a 2-
connected planar graph, and we have proven that
every polyhedral completion of a spherical polyhe-
dron is the description of a spherical polyhedron in
space, possibly with some improper edges. For
combinatorial spherical polyhedra, existence of a
spatial realization over the plane diagram can be
checked by a simpler diagram: the proposed edges
of the polyhedron (with the appropriate incidences at
the vertices) and the lines of intersection of all faces
with a single plane zero (possibly one of the faces)
(Figure 15). The consistency condition remains the
same: for every edge 12 the three lines 12, 01 and 02
must be concurrent. For a general sectioning plane 0
the lines 01 and 02 will be collinear iff the faces 1 and
2 are coplanar in the spatial polyhedron. As we
noted for convex polyhedra, each configuration of
the proposed edges and cross-section in the projec-
tion plane will correspond to an at least four parame-
ter family of spatial polyhedra. In certain cases of a
degenerate choice for the cross-section plane, this
family will be larger.

Figure 15. One cross-section of a projected polyhedron can be
easlly extended to show any other Intersection line of two faces.

Counting the Number of Spatial
Reconstructions

The key question for projective realizations is: given
a diagram in the plane of the edges for a proposed
projected spherical polyhedron, when can a consis-
tent cross-section be constructed around these
edges (or equivalently when is there a spatial poly-
hedron over these edges) and how many choices are
there for this polyhedron? The problem of spatial
reconstruction can be attacked in several ways. For
each face F; of the proposed polyhedron, we must
choose a plane: ax+ by +c;z + d;=0. If we assume
that no faces are vertical to the projection plane
placed at.z =0, then we can assume that Ci =1, so
each face introduces 3 variables. For each vertex
(u;,v,0) in the projection plane, we must choose a
height z;. Thus we have a total of 3F + V variables.
The solutions for the polyhedron must satisfy a linear
equation each time a vertex lies on a face: aju;+ bvj+
zj + d;i = 0. A vertex with n entering edges will lie on
n faces, and each edge enters 2 vertices, so the total
number of equations is 2E. As we mentioned above
each non-trivial solution for a spatial polyhedron
belongs to a four-parameter class of equivalent
solutions (3 for the first plane, a fourth for a point on
the adjacent face which records the scale of the z
axis, or equivalently, a dihedral angle). For conve-
nience we will specify in advance one face which
remains in the projection plane, so that the expected
number of solutions becomes N =3F +V - 2E - 3. If
the equations are independent, and this is a positive
number then this will describe the dimension of the
family of possible polyhedra over the plane diagram.
If the equations are independent and N = 0 then
there is only the trivial solution and the polyhedron
cannot leave the projection plane. Consider the
example of a tetrahedron (Figure 16) F =4, V = 4,
and E = 6, so the expected number is 1. Every such
diagram which is not all collinear has a 1-dim space
of realizations with face abc fixed in the plane and

vertex a at a variable height over the projection plane.

If we multiply Euler’s equation by 3: 3V-3E+ 3F =6,
and subtract this from the previous equation for N,
we find that the expected space of polyhedra has
dimension N = E - (2V-3). This number is familiar to
us from the article in this bulletin on rigidity, where it
predicts the dimension of the space of stresses in

the plane, if the bars yield independent linear equa-
tions. Maxwell’s theorem and its .converses tell us
directly that for a spherical polyhedron this space of
stresses is always a record of the space of possible
polyhedral realizations, with one face fixed in the
projection plane. This result assumes, as above, that
no face is vertical, and we usually think of the
multiples of a stress as corresponding to the choice
of a scale for the z axis, or equivalently the choice of
one dihedral angle.

Results Drawn from Plane Statics.

If the planar graph has exactly 2V-2 edges, then the
framework will contain at least one stress and at
least one projected polyhedron. The known results
from the statics of plane frameworks now give us
additional information about possibilities for inde-
pendent and dependent equations — facts which are
not evident in the original analysis in terms of faces
and vertices. For example, we know that if E'<2V’-3
on all subgraphs with V' vertices and the diagram is
in “general position” in the plane, then this stress will

d
h
a_A1 b C'
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C

Figure 16. The projection of a tetrahedron permits reconstruction
by the free choice of height h (or one angle 1) shown In a side view.
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be unique, and will involve all of the edges. In this
case the spatial polyhedron will have a bend at every
edge of the graph. The cross-section will then be
unique and every face will give a different line in a
general crosssection.

However if this same graph is drawn in a special
position, the situation can change. The cross-section
may remain unique, but certain faces may become
coplanar so that the polyhedron really involves a
special subgraph of proper edges. If thissubgraphhas
V' vertices and 2V'-2-k edges, the special position is
forcing k edges to be flat (to separate coplanar
faces) and this will appear in a general cross-section
as the projective condition that 02 and 03 are
collinear for each flat edge 23 or that the three points
012, 023 and 034 are collinear for each flat edge 23
(Figure 17). This appearance of a polyhedron with E’
=2V'-2-k edges can therefore be traced to k projec-
tive conditions in a general cross-saction, each
involving three points which must be, unexpectedly,
collinear.

Figure 17. An edge 23 Is shown In two cross-sections: flat (A) and
bent(B).

We conjecture that every polyhedron with E =2V-2-
k(k>0) edges can be constructed as a polyhedron
with E=2V -2 and E’'<2V’-2 for all subgraphs, and k
flat edges. Whether this proves true or not, this
analysis provides the form of the special conditions
for any small (E<2V-3) polyhedron which occurs in a
graph. For example, in Figure 18A we see a projec-
ted polyhedron with E = 2V-2 and no fiat edges. In
Figure 18B we have added one projective condition,
points 012, 034 and 013 are collinear, so faces 2 and
3 become coplanar and the polyhedron is formed
with E = 2V -3 bent edges.

One type of face which always requires one projec-
tive condition to be realized is the three valent face,
(Figure 19). For a triangular, 3-valent face we
recognize that planes 1, 2 and 3 are copunctual, so
lines 12, 13 and 23 must be concurrent, (or equiva-
lently, 12 A 23, 12 A 13, and 23 A 13 must be
collinear!) For a trivalent quadrilateral face (Figure
19B), this calotte condition (see the article on rigidity
in this bulletin) states that the points 123, 134 and
135 are collinear (along the line 13). This analysis
can be generalized into an induction to show that

012= 013

02-03

023

Figure 18. An entire polyhedron is shown In projection and cross-
section with edge 23 bent (A) and flat (B).

such trivalent faces always introduce one projective
condition. Of course if this face is the base of a
pyramid, (E = 2V0-2), all the exterior lines are
concurrent at the peak, and the condition is trivially
satisfied. Otherwise this result traces new projective
conditions of a type which let us test any diagrams
with lots of 3-valent faces, as well as letting us
construct the cross-section. However, as the number
of vertices grows, we obtain diagrams with E<2V-2
but no 3-valent faces, and it becomes more chal-
lenging to find the projective conditions, and the
cross-sections.

IfE'= 2V-2+Kk, k =1, then there will be a number of
different stresses, and thus there will be a number of
different subgraphs which each represent a projec-
ted polyhedron, and a corresponding cross-
sectional completion. This family of possible polyhe-
dra is represented by the vector space of stresses, a
space of dim k+1 if the picture is in general position.
We can visualize this vector space as a reading off of
a set of dihedral angles in space (appropriately
digested through trigonometric formulas). When the
stress has a coefficient 0 on an edge, then the edge

Figure 19. Trivalent polygons require one projective condition to
represent faces of a polyhedron.



becomes flat. The space of all polyhedral realiza-
tions can be generated by a series of k+1 choices for
dihedral angles, with all other angles determined by
these choices (Figure 20).

If a number of appropriate projective conditions
occur, then an initial edge diagram may have more
polyhedral realizations than the count predicts. The
space of realizations is still coordinatized by the
stresses, and is algebraically recorded in the nullity
of the coordinatizing matrix of the structure, as
discussed in the article on rigidity.

Toroidal Polyhedra

When we move beyond the spherical polyhedra but
stay with the oriented polyhedra, we are describing
surfaces which can be formed, at least topologically
into spheres with a number of handles H (Figure 21)

Euler's formula has a modified form for these
surfaces: V - E + F = 2(1-H). For each number of
handles (each topological type), we can ask all the
types of questions we asked for the sphere, but there
are very few answers. Even when we limit ourselves
to polyhedra satisfying restrictive condition (6), we
do not know whether they can all be realized in
space with plane faces and a bend at every edge.
The combinatorial class is closed under face-
splitting and vertex-splitting, but is the class of
realizable toroidal polyhedra (1 handled polyhedra)
closed under these operations? Can all of the
realizable combinatorial toroidal polyhedra be for-
med by simple topological constructions from a
single original example such as the complete graph
on 7 points, (which forms a small toroidal polyhe-
dron when we select 14 triangles for the faces in an
appropriate way)? Can all such toroidal polyhedra
be developed by a series of single-plane projective
cuts and single-point stellations from the realizations
of the complete graph on 7 points and its dual (a
polyhedron with 7 hexagonal faces, 21 edges and 14
vertices)? Which toroidal polyhedra can be realized
without self-intersection? Do we accept toroidal
polyhedra for which every realization has some face
cut by an edge of other faces (as happens with any
combinatorial toroidal polyhedron smaller than the
complete graph on seven points)?

Figure 20. An ambiguous polyhedral projection has a 2-
dimensional space of different realizations: (A) with edge 23 flat,
(B) with bends at all edges (proper), and (C) with edges 34 and 14
flat.

At the level of projective geometry we have the
corresponding problem of polyhedral completions in
the plane. We conjecture that any polyhedral com-
pletion for an oriented polyhedron can be lifted up to
the construction of a plane-faced polyhedron in
space, but we are uncertain whether this completion
can be simplified to a single cross-section, or
perhaps two consistent cross-sections which would
still guarantee the spatial construction.

The counting arguments for the number of spatial
polyhedra to expect over the drawing in the plane of
the graph of a combinatorial polyhedron with H
handles can also be given. The expected number of
solutions if the equations are independent, is still
recorded by the number N = 3F + V-2E-3. Using the
revised form of Euler’s formula we obtain N=E-(2V-
3) + 6H. Thus for the torus, with 1 handle, we expect
N = E - (2V+3) spatial polyhedra. A careful analysis
of the plane statics provides the additional condition
on a stress for there to be a corresponding spatial
polyhedron: the net force across any closed path on
the surface of the polyhedron is 0. For the projection
of an H handled sphere, this condition gives 6H
equations, as we would expect. The analysis of these
conditions for non-spherical polyhedra is just begin-
ning.

Concluding Comments

Overarching all of our analysis of realizability in
general and projective drawings of the graphs in
particular, is the question of algorithms — how can
we decide when a diagram represents a projected
polyhedron? By Maxwell’s theorem and its conver-
ses we have an algebraic method based on the linear
algebra used to determine the rank (and nullity) of
the rigidity matrix. However, we have found thatin all
examples where there is a unique polyhedron pre-
sent, there is a series of straight lines and derived
points which can be drawn constructively from the
diagram to recreate the cross-section (and even the
polyhedral completion). As the number of vertices
and edges has grown larger, we have employed
procedures which still appear ad hoc but we wonder
whether there is a practical algorithm in projective
(or descriptive) geometry which will analyze the
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drawing to determine whether there is any polyhe-
dron present, and if there is, will create the cross-
section of at least one of those present.

This decision problem for plane diagrams which
claim to be the projection of spatial polyhedra also
has direct application in computer graphics, where it
is called scene analysis. In scene analysis the
problem can be altered by omitting any hidden
edges (edges which would lie behind some plane
when projected) and permitting any form of hidden
edges which will match a polyhedral image on the
visible portion (Figure 22). In this field the recent
work of Huffman has reproduced some of the
techniques which we have found in Maxwell’s theory
of graphical statics (Huffman, 1977, a,b,c). The
reappearance of the technique of reciprocal dia-
grams, without any reference to statics, highlights
the intrinsic geometric character of these methods
which may have seemed artificial to the reader when
they appeared in the plane statics. However we
believe that the cross-sectional diagram and its
projective constructions will emerge as a more direct
approach than reciprocal figures of Maxwell and
Cremona and the dual figures of Huffman for solving
problems of spatial reconstructions from projected
images.

In this article we have summarized several trends
which have evolved within our group. Like so many
of our results, the seeds come from examples and
questions generated by Janos Baracs and his stu-
dents over a number of years. These ideas have
been further refined in our regular seminars, to the
point where this presentation has become possible.
We hope that a number of these problems will be
solved in the near future, so that we can all proceed
to the other, equally exciting problems which will
follow in the wake of any solutions.

Explanation of Terms

Topological. Properties of rubber sheet geometry,
unaffected by continuous deformations of the space.

Compact 2-manlfold. A set of points in space (RS, or
RN) which is topologically closed and bounded, such
that the set of points in a neighbourhood of each
point is a topological disc (equivalent to the interior
of the unit circle in the plane). Also included are
images (immersions) of such surfaces in R3.

Topological sphere. Closed surface or manifold
which is topologically equivalent to the unit sphere in
R2. Characterized as a compact surface, without
boundary such that every closed path (image of the
unit circle) separates’ the surface into at least two
components, both topological discs.

Figure 21. Orlented topological manifoids can be visualized as
spheres with 0, 1, 2, etc., handles.

Graph. Set of vertices, and unordered pairs of
vertices (edges). Technically, an undirected graph
without loops.

Valence. The number of edges in a graph entering a
vertex.

Drawing of a graph. A choice of points in the plane
(or space) for the vertices of the graph and of arcs
for the edges, such that two vertices joined by an
edae are assigned different points.

Projective construction. A construction in the plane,
or in space, which is preserved by any central
projection. In the plane, this means constructions by
pencil and straight edge (including points and a line
at infinity), without reference to lengths, angles or
parallels.

124 - 24 A2
124 14 - 1241134
146 - 14 A16
46 - 146 v 346
45 - 14 A5
45 - 145v 245

146 456 - 45 A 46

Figure 22. The hidden vertex of a projected cube Is located by a
direct projective construction.



Truncation. Slicing a polyhedron with a plane in
projective space, to introduce a new face in the
plane and remove a section of the polyhedron. As a
general projective construction, this consists of
choosing a plane P and a closed path of faces and
edges on the polyhedron F1E1F2Es...FREnF1
where E;j will be vertex between F; F; 1 if the plane P
passes through such a vertex and the chosen path
separates the polyhedron into two pieces, one of
which is a topological disc which is to be cut off. The
new truncated polyhedron is then formed from the
original polyhedron by

(1) splitting the edge E;j by a new vertex V; where the
line pierces the truncating plane, dropping the
section of the edge which goes to the truncated disc.

(2) splitting any vertex on the original cycle, drop-
ping all edges connected to the truncated disc.

(3) splitting the faces Fj by new edges V;.V;,
dropping the part of the facé'ttached to the truncated
dis'c.

(4) adding a new face V,V,..V, in the truncating
plane P.

(5) dropping all vertices, faces and edges in the
truncated disc.

Stellation. The projective dual of truncation and
therefore the introduction of a new vertex and the
removal of a section of the polyhedron. As a projec-
tive construction, this requires the choice of a point
V for the new vertex, and of a cycle of vertices and
edges on the polyhedron

V1E1V2Es...VKEV1

where Ej will be replaced by a face Fj if the new
vertex V lies on the plane of a face between Vj and
Vi+1, and the chosen cycle separates the polyhe-
dron into two components, one of which is the
topological disc which is to be eliminated. The
stellated polyhedron is formed by:

(1) adding the new vertex V,

(2) splitting each vertex Vj of the cycle by dropping
all edges connected to the eliminated topological
disc and adding a new edge from Vj to the new
vertex V,

(3) adding a triangular face VV;Vis1 to each edge E;
of the cycle, dropping the old face at that edge which
connects to the eliminated topological disc,

(4) modifying each face Fj in the cycle by adding the
vertex V (and edges V;V,VV;,1) and dropping the
portion attached to the eliminated disc

(5) dropping all edges, vertices and faces in the disc
cut off by the cycle.

A

Figure 23. Some 3-valent 2-connected planar graphs will have a
collinear vertex (A) or a collinear face (B) in every proper
realization.

References

(Grunbaum 1967) provides an exhaustive (someti-
mes exhausting) exposition and bibliography on
convex polytopes, while (Lyusternik 1963) provides a
simpler, more readable, but sometimes erroneous
survey of convex polyhedra. (Coxeter 1973) provides
an exposition of regular polytopes, while (Hilbert
1952) provides the other extreme — a brief introduc-
tion to the combinatorial topology of polyhedra and
surfaces. The construction of spherical polyhedra by
inductive methods (truncations, stellations, etc.) is
examined in recent writing for non-mathematicians
(Loeb 1976). The only literature we have seen on
recognizing projections of polyhedra is the very old
work on graphical statics (Maxwell 1864) (Cremona
1890) and recent work on scene analysis (Duda
1973) (Huffman 1977, a,b,c). The construction of a
polyhedral completion from a single projection origi-
nates with Janos Baracs, and is described in visual
form in his course notes (Baracs 1978). The work of
our group on the problem of projected polyhedra,
Maxwell’'s theorem ‘and related work on rigidity is
available in preprint (Crapo 1978)(Whiteley 1978).

Added in Proof

Branko Grunbaum sent us a counterexample to the
conjecture on page 50, column 1. In a simplified
version (Figure 23A), we see a graph which will have
a collinear vertex a in every proper realization. The
dual graph (Figure 23B) will have a collinear face in
every proper realisation. These examples also show
that three constructions: topological hinging, face-
splitting and vertex-splitting will all be required in
order to construct the family of all 3-valent 2-
connected planar graphs. This affects the conjecture
on page 50, column 2.

We point out that the creation of convex polyhedra
by truncation of a tetrahedron is, in general, a
projective construction. While affine truncation of a
tetrahedron in affine space can create a convex
polyhedron projectively equivalent to any given
convex polyhedron, it is impossible thus to create an
affine equivalent of the regular cube. Throughout the
above article, constructions described are projective
unless otherwise specified.
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