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Abstract

A mathematical model for conjectures (including hypotheses, consequences
and speculations), was recently introduced, in the context of ortholattices,
by Trillas, Cubillo and Castifeira (Artificial Intelligence 117, 2000, 255-257).
The aim of the present paper is to further clarify the structure of this model
by studying its relationships with one of the most important ortholattices’
relation, the orthogonality relation. The particular case of orthomodular
lattices -the framework for both boolean and quantum logics- is specifically
taken into account.

1 Introduction

The importance of the classical categories of inference, namely deduction, induc-
tion and abduction, at least for common research and formal types of reasoning,
does not need to be stressed. Although deduction has traditionally deserved a good
deal of high quality research, mainly but not only in Mathematical Logic, induc-
tion and abduction have been comparatively less analyzed by means of clear-cut
mathematical models. Ever since in the field of Artificial Intelligence computer
systems either inducing or abducing appeared, clear mathematical models became
even more necessary for a better understanding of the involved objects. From this
point of view, the introduction of theoretical models of conjectures (general in-
duction) and hypotheses (abduction), as well as the links between them and with
consequences (deduction), is to be viewed as something valuable in itself.

A mathematical model for conjectures, hypotheses and consequences, in the
framework of ortholattices, was recently introduced and discussed in the papers
[5], [4] and [7], and its application to the case of fuzzy logic has also been studied
(see [3] and [6]). The aim of this paper is to provide a deeper insight on the
structure and properties of the afore-mentioned mathematical model, studying its
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relationships with one of the most important relations among those that may be
defined within the elements of an ortholattice, namely the orthogonality relation.
The importance of this relation relies on the fact that -as it will be recalled later-
it allows to distinguish, among the whole set of ortholattices, the special class of
orthomodular lattices -the algebraic counterpart of quantum logic-, and, among
them, the case of boolean algebras.

The paper is organized as follows. In order to be self-contained, the next sec-
tion presents a general account on both ortholattices and the mathematical model
for conjectures presented in [5]. The following section (section 3) studies the rela-
tionships between orthogonality and conjectures, taking into account the different
classes in which the later may be divided. Section 4 uses the results found in previ-
ous section in order to obtain a classification of conjectures based on orthogonality,
both for general ortholattices as well as for the particular case of orthomodular
lattices. Finally, the paper ends with some conclusions.

2 Preliminaries

This section is devoted to review the most important issues related to the two
main concepts that this paper deals with. First of all, the basic results concerning
ortholattices are briefly recalled, focussing on the orthogonality relations defined in
such structures and their ability to characterize orthomodular lattices. Secondly,
the mathematical model for conjectures in ortholattices that was introduced in [5]
is summarized.

2.1 Ortholattices and Orthogonality

The well-known orthocomplemented lattices, or, for short, ortholattices, are quite
general algebraic structures that encompass both classical and quantum logical
calculi. For detailed discussions on this topic or proofs of the results that are
presented below, see [1] and [2].

Definition 2.1 A structure (L,-,+,’,0,1) is called an ortholattice whenever it
satisfies the following properties:

1. (L,-,4) is a lattice where - and + represent, respectively, the infimum and
supremum operations, 0 is the least element of L and 1 is its greatest element.
The partial order of the lattice is defined, for any a,b € L, by

a<b difandonlyif a-b=a ifandonlyif a+b=">

2. ": L — L is a unary operation, called orthocomplementation, verifying, for
any a,b € L:

(a) 0/ =
(b) a-a’ =0
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(c) (@) =a
(d) If a < b, then b’ < a’

Recall in addition that, from the above definition, it follows that ortholattices
do also verify, for any a,b € L, the law a + ¢’ = 1 and the De Morgan laws
(a-b) =a" 4+ and (a+b) =d - b.

On the other hand, the two following fundamental relations may be defined
among the elements of any ortholattice:

Definition 2.2 Let (L,-,+,,0,1) be an ortholattice. For any a,b € L, the follow-
ing relations are defined:

e The left-orthogonality relation, denoted by L;, and given by

alib ifandonlyif a=a-b+a-b

e The right-orthogonality relation, denoted by L., and given by

al.b ifandonlyif b=b-a+b-da

When it is al;b, it is said that the element a commutes with b. Clearly, the
relation L, is nothing else than the inverse of the relation L; (it is a_L,.b if and only
if bL;a for any a,b € L), and, in general, these two relations are not coincidental,
i.e., it is not always the case that 1; = | ,. If we define, for any a € L, the sets

Oi(a) ={b€ L;al;b} and Or(a) ={be L;al, b}

then it is b € O;(a) if and only if a € O, (b) for any a,b € L, O;(a) and O,(a) are,
in general, different sets, and the following properties may be easily proven:

Proposition 2.1 Let (L,-,+,,0,1) be an ortholattice. The following properties
are verified for any a,b € L:

1. {0,1,a,a’} C O(a) N Oy(a)
2. b€ 0i(a) &V €0i(a), beO.(a)=beO.(a)
8. Ifa <0, then:

3.1. be Oi(a), a € Oy(b)
32.b€0 (a) &b=a+b-0/, acO)eb=a+b-d

4. If a <V, then b € O)(a) N Or(a), a€ Oy(b)NO,(b)
An important subclass of ortholattices are the so-called orthomodular lattices:

Definition 2.3 An ortholattice (L,-,+,",0,1) is called an orthomodular lattice if
it verifies, for any a,b € L, the law:

a<b implies b=a+b-ad
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Figure 1: Some examples of non-orthomodular ortholattices

When a <band b=a+b-d (ie., b € Or(a)), the element b - a’ is called the
relative complement of a with respect to b, and it is usually written as b — a. Note
that, since in any ortholattice b = a + b - a’ implies a < b, orthomodular lattices
are those ortholattices where the ordering a < b is equivalent to b = a + b - d'.
In addition, boolean algebras, thanks to their distributivity property, are clearly
particular cases of orthomodular lattices: indeed, it isa+b-a’ = (a+b)-(a+a’) =
a+ b and, if a < b, since this is equivalent to a + b = b, the equality a +b-a’ = b
follows.

Figure 1 shows some examples of ortholattices which are not orthomodular
(these will be called in the sequel proper ortholattices), and figure 2 includes two
non-boolean orthomodular lattices.
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Figure 2: Some examples of non-boolean orthomodular lattices

An interesting feature of the orthogonality relations 1; and L, is that they allow
to distinguish, among the whole set of ortholattices, both orthomodular lattices and
boolean algebras. Indeed, the following result is available:

Theorem 2.1 Let (L,-,+,',0,1) be an ortholattice and L;, L, the relations given
in definition 2.2. Then:

e L is an orthomodular lattice if and only if 1, = L1, (in these cases the symbol
L will be used to denote the relation 1, = 1, ).

e L is a boolean algebra if and only if 1, = 1, =L x L.

Note that, as a consequence of the above theorem, in the context of orthomod-
ular lattices, the sets O;(a) and O,(a) coincide for any a € L, and will be denoted

by O(a).

2.2 Conjectures in Ortholattices

As it has been recalled in the introduction, an algebraic model for conjectures,
hypotheses and consequences, within the framework of ortholattices, was proposed
in [5]. In the sequel the main ingredients of this model, that has been further
studied in [4] and [7], are reviewed. Given a complete ortholattice (L, -, +,",0,1)
and a set of premises P C L such that P # () and InfP = p, # 0, the following
sets were defined in [5]:

e The set of strict conjectures of P: Conj(P)={q € L; pa % ¢'}.
o The set of consequences of P: Cons(P) ={q€ L; pa <q}.
e The set of hypotheses of P: Hyp(P) ={q€ L —{0}; q<pn}

e The set of speculations of P (or speculative conjectures, as they were called
in [5]): Spec(P)={q € L; gNCpnr,pr % ¢’} (given a,b € L, aNCb will be
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used to indicate that a and b are non-comparable with respect to the lattice
order, i.e., it is neither @ < b nor b < a).

The above definitions allow for the following partition of the set Conj(P) ([5]):
Conj(P) = Cons(P) U Hyp(P) U Spec(P)

Moreover, a further partitioning of the set Spec(P), which will be of special interest
for this paper, can be established. Indeed, since pn £ ¢’ means that it is either
q' < pa or, else, ¢ NCpn, we can define the disjoint sets

Specl(P)={q € L; qNCpn,q <pn}
Spec2(P) ={q € L; qNCpn,¢ NCpp}

in such a way that Spec(P) may be written as Specl(P)USpec2(P), and, therefore
(see figure 3) it is

Conj(P) = Cons(P) U Hyp(P) U Specl(P) U Spec2(P)
Finally, the following properties are easily proven:

Proposition 2.2 Let (L,-,+,’,0,1) be a complete ortholattice, P C L a set such
that P # 0, InfP = pn # 0 and Conj(P),Cons(P), Hyp(P), Specl(P) and
Spec2(P) the sets defined above. Then, for any q € L:

1. PU{1l,pr} € Cons(P)
. g € Cons(P) < ¢ € Conj(P)°
. If pn # 1, then q € Hyp(P) < ¢' € Specl(P)

. If ¢ # pa, then q € Cons(P) < pa € Hyp({q})

2

3

4. q € Spec2(P) < ¢ € Spec2(P)

5

6. q € Specl(P) < pp € Specl({q})
7.

. q € Spec2(P) < pa € Spec2({q})

Note that item (1) in the above proposition shows that the sets Cons(P) and,
therefore, Conj(P), are never empty, and the combination of (1) and (2) entails
that the same happens with Conj(P)° (the complement of Conj(P)), since P’ U
{0,p} € Conj(P)°, where P’ = {p’ : p € P}.

3 Conjectures and Orthogonality
As it was stated in the introduction, the main goal of this paper is to study,

within the framework that has been described in section 2, the relationships be-
tween conjectures and orthogonality. Unless something else is explicitly indicated,
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Figure 3: Partition of conjectures in ortholattices

in the remaining of this paper P C L will be a subset of a complete ortholat-
tice (L,-,+,',0,1) such that P # @ and InfP = ppn # 0; 1;, L,,0/(a) and
Or(a) will be as defined in 2.1, and Conj(P),Cons(P), Hyp(P), Specl(P) and
Spec2(P) will represent the sets given in 2.2. Our goal is therefore to analyze
which elements in Conj(P) appear to have a left/right orthogonality relation-
ship with the infimum pa, i.e., to find out which elements of Conj(P) do belong
to O;(pa) and/or to Op(pr). The centrality of the element pn comes from the
obvious equality Conj(P) = Conj({pr}) (analogous equalities hold for the sets
Cons(P), Hyp(P), Specl(P) and Spec2(P)).

Before entering into details concerning conjectures, let us note that the elements
which, according to the definition of the set Conj(P), may not be considered as
conjectures of P, are always both left and right orthogonal to ps. Indeed, the
following result can be established:

Proposition 3.1 Conj(P)¢ C Oi(pa) N Or(pa)

Proof. 1If ¢ € Conj(P), it is pn < ¢', and then, by proposition 2.1, property
number (4), it is ¢ € O;(pa) N Or(pa). 1

Note that the above result is obviously equivalent to O;(pa)¢ U Op(pa)°¢ C
Conj(P), that is, any element of the lattice that is not orthogonal to pa, either
left or right, is necessarily a conjecture. In addition, if L is an orthomodular lat-
tice, according to theorem 2.1, it is simply Conj(P)¢ C O(pa) or, equivalently,
O(pa)© € Conj(P).

Regarding conjectures, since, as it was recalled before, these can be classified
into several disjoint subsets representing the so-called consequences, hypotheses
and speculations, next sub-sections deal with the orthogonal behavior of each of
these conjectures’ subclasses.
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3.1 Consequences and Orthogonality

The relationships between the set of consequences and the sets of orthogonal ele-
ments may be summarized as follows:

Theorem 3.1
1. Cons(P) C Oy(pn)
2. ¥qg e Cons(P): q€Op(pr) ©q=pr+q- D

Proof. If g € Cons(P), it is, by definition, pn < ¢, and then property number
(3) of proposition 2.1 entails both (1) and (2). 1

In addition, the following results are obtained as a corollary:

Corollary 3.1
1. Vg € Cons(P):  q € Oi(pa) N Or(pr) € ¢ =pa+q- P,
2. If L is an orthomodular lattice, then Cons(P) C O(pn)

It therefore appears that, when dealing with orthomodular lattices, conse-
quences are always orthogonal to pa, whereas in the case of proper ortholattices,
consequences are left-orthogonal but not necessarily right-orthogonal to ps. This
last result naturally entails the following question regarding proper ortholattices:
does any set of premises have consequences which are right-orthogonal to p,, and,
hence, both left and right-orthogonal? The next proposition shows that this ques-
tion has a positive answer:

Proposition 3.2 For any complete ortholattice (L,-,+,',0,1) and for any P C L
such that P # 0 and InfP =px # 0, it is Cons(P) N Or(pa) # 0.

Proof. The elements 1 and ps belong both to Cons(P) (property number (1) of
proposition 2.1) and to O, (pa) (proposition 2.2.(1)). I

Therefore, for any pa, there are at least two consequences of ps, namely the
elements 1 and pn, which are right-orthogonal to ps, and then it is Cons(P) N
Or(pp) # 0. But 1 and ps are very special elements, so a new question arises: is
it possible to affirm that there are always right-orthogonal consequences, different
from 1 and pp? The answer to this last question is, in general, negative: indeed, it
suffices to think of a set with a unique premise, P = {p}, where p is an immediate
predecessor of 1 in the lattice partial order. In this case it is pn = p and Cons(P) =
{1,pnr}, i.e., there are no right-orthogonal consequences other than 1 and pa.

This last example also shows that it is possible to have sets of premises such
that all their consequences are right-orthogonal to p,, and this means that, in
general, sets P do not always verify Cons(P) N O,(pa) # Cons(P). Nevertheless,
for any proper ortholattice, it is always possible to find sets P having at least one
non-right-orthogonal consequence. Indeed, by definition, any non-orthomodular
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lattice contains elements a, b such that a < b and b # a + b - a’, and then, taking
P ={a}, it is b € Cons(P) and b ¢ O,(pn).

In general, proper ortholattices do exist where it is possible to find sets of
premises some of whose consequences are right-orthogonal and some are not:

Example 3.1 Let us consider the non-orthomodular lattice (A) given in Figure 1
and the set of premises P = {b,a’}. It is pn = ¢, Cons(P) = {q € L;c < q} =
{¢,b,d,d’,1} and:

o decOyc), sincec+d-¢ =c+a=d.
e b¢ Or(c), sincec+b-d =c+0=c#b

3.2 Hypotheses and Orthogonality

The orthogonality properties of hypotheses are symmetric to those of consequences,
in the sense that hypotheses are always right-orthogonal to p,, but not necessarily
left-orthogonal:

Theorem 3.2
1. Hyp(P) € Or(pa)
2. Yqge Hyp(P): q€ Oipr) ©pr=q+pr-¢

Proof. If ¢ € Hyp(P), it is, by definition, ¢ < pa, and then proposition 2.1.(3)
provides both (1) and (2). 1

Again, the following results can be obtained as a corollary:
Corollary 3.2

1. Vg€ Hyp(P): q € Oi(pr) NOr(pn) & pr=q+pn-q
2. If L is an orthomodular lattice, then Hyp(P) C O(pa)

Therefore, hypotheses in orthomodular lattices are always orthogonal to pa.
When dealing with proper ortholattices, and contrary to the consequences’ case,
the existence of hypotheses which are left-orthogonal cannot be, in the general case,
taken for granted, since, in fact, the set Hyp(P) may even be, in some situations,
empty (in particular, when p, is an immediate successor, in the lattice partial order,
of the least element 0). Notwithstanding, the existence of sets of premises having
left-orthogonal hypotheses is closely related to the existence of right-orthogonal
consequences. Indeed:

Proposition 3.3 For any q € L, q # pa:

q € Cons(P) N Or(pp) < pa € Hyp({q}) N Oi({q})



80 E. Trillas & A. Pradera

Proof. It suffices to remember that 1; are L, are inverse relations and to apply
proposition 2.2.(5). 1

This last result entails that, for any proper ortholattice, it is always possible to
find a set P having at least one left-orthogonal hypothesis, since, as it was proven
in the last section, any set P has always at least a right-orthogonal consequence.
In addition, proposition 3.3 allows to easily find left and non-left-orthogonal hy-
potheses in proper ortholattices:

Example 3.2 Applying the last proposition to the example 3.1: in the lattice given
in figure 1 (A), ¢ is an hypothesis of both b and d, c is left-orthogonal to d (c €
Hyp({d})NO;({d})) but it is not left-orthogonal to b (c ¢ Hyp({b})NOi({b})). Note
also that the set of premises P = {d}, in addition to the left-orthogonal hypothesis
¢, has also a non-left-orthogonal hypothesis, b (indeed, it is b+d-b' =b+0 =0 # d).
3.3 Speculations and Orthogonality

Section 2.2 has shown that the set of speculations, Spec(P), may be further di-
vided into two disjoint subsets, namely Specl(P) = {q € L;qgNCpa,q < pa}
and Spec2(P) = {q € L;qNCpn,¢' NCpp}. The two following subsections deal
with the orthogonality properties of both classes of speculations, that we will call,
respectively, typel-speculations and type2-speculations.

3.3.1 Typel-speculations

In general, speculations of this class are not necessarily orthogonal, neither left nor
right, to the infimum of the premises. Indeed, the following result can be stated:

Theorem 3.3 For any g € Specl(P):
1. q€ Oilpa) @ pr=pr-q+d
2. 4 € Op(pr) © q=q pr+ D)

Proof. It suffices to apply the definition of 1; and L, (definition 2.2), taking
into account that, due to the fact that ¢’ < pa, it is ¢ -pr = ¢  and p), - g =p/. 1

As a corollary, we can characterize those typel-speculations which are both
left and right-orthogonal, and establish their behavior in the particular case of
orthomodular lattices:

Corollary 3.3

1. Vq € Specl(P):

7 € O1(prA) N Or(pn) & (pA =pr-q+4q and ¢ =q-pr+P))

2. If L is an orthomodular lattice, then Specl(P) C O(pa)
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Proof. (1) is obvious, and (2) follows from the definition of orthomodular lattice
(definition 2.3), since, according to it, the ordering ¢’ < p, implies pr = pa-q+ ¢/,
e, ¢ € Oi(pr), and from theorem 2.1, which establishes that, in orthomodular
lattices, O;(a) = Or(a) = O(a). I

In summary, within the class of orthomodular lattices, typel-speculations are
always orthogonal to the infimum of the premises, whereas in the case of proper or-
tholattices, this is not generally the case, neither for left nor for right-orthogonality.
As a consequence, the question of the existence of typel-speculations being either
left-orthogonal, right-orthogonal, both or none of them arises. In general, the exis-
tence of any of these typel-speculations cannot be ensured, since the set Specl(P)
may be empty. Indeed, proposition 2.2 shows that this kind of conjectures are
deeply related to hypotheses, since, if pp # 1, it is ¢ € Hyp(P) < ¢' € Specl(P),
and, therefore, the fact that Hyp(P) may be empty -see previous section- implies
that the set Specl(P) may also be empty. On the other hand, the next proposition
shows that the existence of typel-speculations which are left or right-orthogonal
relies on the existence of left-orthogonal hypotheses (or, equivalently -due to propo-
sition 3.3-, on the existence of right-orthogonal consequences):

Proposition 3.4 For any q € L:
1. q € Specl(P)N Oy(pa) < ¢' € Hyp(P) N Oy(pa)
2. q € Specl(P)N Oi(pa) N Or(pa) © pa € Specl({q}) N O-({q}) N O1({q})

Proof. (1) is immediate taking into account proposition 2.1.(2) and proposition
2.2.(2). The result given in (2) is proven by the the fact that L;' = 1, and by
proposition 2.2.(6). 1

To end with this section, let us show examples with different classes of typel-
speculations:

Example 3.3

e g€ Specl(P), qe< Oi(pr), q€Or(pp)

According to the last proposition, if an element is a left-orthogonal hypoth-
esis, then its complement is a left-orthogonal typel-speculation. Therefore,
following the example 3.2, the element ¢ in the lattice given in figure 1 (A)
is such that ¢’ € Specl({d}) N Oi(d). In addition, following theorem 8.3.(2)
asitisc -d+d =a+d =¢, it is also ¢ € O,.({d}).

e g€ Specl(P), qe< Oi(pr), q¢ Or(pn)

An example of a typel-speculation which is left-orthogonal but mot right-
orthogonal may be found in the lattice (C) from figure 1. Indeed, taking
P = {a}, since bNCa and b’ < a, it appears that b € Specl({a}). In addi-
tion, it isa-b+b =d+V =a andb-a+a’ =d+a’ = c#b, and this means,
by theorem 8.8, that b € Oj(a) and b ¢ O,(a).

2
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e g€ Specl(P), qe€Or(pn), q¢ Oi(pa)

An example of this kind can be immediately found from the last one and
proposition 3.4.(2). Indeed, as we have just seen, in the lattice (C) of figure
1 it is b € Specl({a}),b € Oi(a) and b ¢ O,(a), which is equivalent to a €
Specl({b}),a € O(b) and a ¢ Oy(b).

* ¢ € Specl(P), q ¢ Oulpn), a¢ Or(pa)
Finally, a typel-speculation which is neither left nor right-orthogonal may be
found in lattice (B) from figure 1. Indeed, since bNCc and V' < ¢, it is
b € Specl({c'}. In addition, it is easy to check that db+b =0+b =b # ¢
and b-c +c=04+c=c#b, that is, b ¢ O;(c') and b ¢ O,(c'), respectively.
3.3.2 Type2-speculations

Similarly to the case of typel-speculations, the elements belonging to this second
class are not necessarily orthogonal to pa. Indeed:

Theorem 3.4 For any q € Spec2(P):
1. € Oulpa) & pa=pr-a+pr-q
2. € Or(pr) © a=q Pr+q-P)

Proof. Obvious from the definition of O; and O,.. 1
Again, next corollary is immediate:

Corollary 3.4 For any q € Spec2(P):

1. ¢ € O1(pA) N Or(PA) & (PA =DPA-q+ DA ¢ and g =q-pr +q- D))

2. If L is an orthomodular lattice, then:
q€O0(pr) & pa=pr-qa+pr-q (S a=q-pr+aq-py)

Therefore, the main difference between typel and type2-speculations appears in
the case of orthomodular lattices, where the formers are always orthogonal whilst
the laters are not.

Regarding the existence of orthogonal or non-orthogonal type2-speculations,
now, contrary to the previous cases, this existence is not related to any of the
other types of conjectures. Nevertheless, the following equivalences among type2-
speculations can be established:

Proposition 3.5 For any g € L:
1. q € Spec2(P) N Oy(pa) < ¢ € Spec2(P) N O;(pa)

2. q € Spec2(P) N Oy(pa) N Or(pa) < pa € Spec2({q}) N O-({q}) N O1({q})
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Proof. (1) is given by propositions 2.2.(4) and 2.1.(2). Result (2) is easily proven
by the the fact that J_fl = 1, and by proposition 2.2.(7). 1

In the sequel it is shown, by means of some examples, that it is possible to find
non-orthomodular lattices containing type2-speculations of different classes:

Example 3.4

e g€ Spec2(P), q€Oi(pr), q€ Or(pa)
Lattice (D) of figure 1 provides a speculation of this type. Indeed, taking
P = {b}, it is clearly a € Spec2({b}), since it is aNCb and a’NCb. In
addition it is a € Oy(b), because b-a+b-a’' = e+d =0, and a € O,(b) because
a-b+a-b =e+c=a. Note that, thanks to proposition 3.5, it is easy to
find another example of this kind: b is a type2-speculation of a which is both
left and right-orthogonal.

e g€ Spec2(P), qe€Oi(pr), q¢ Or(pn)

An example of this kind can be found in the lattice (A) from figure 1. Indeed,
taking P = {a'} and ¢ = b, it is b € Spec2({a'}), since neither b nor b’
are comparable to o'. In addition, it isa’ -b+ad b = c+d = d and
b-a'+b-a=c+0=c#b, and this, according to theorem 3.4, means that
be O)la) and b ¢ O.(a’).

® g€ Spec2(P), q€Or(pn), a¢ Oulpn)
The last example, in combination with proposition 3.5, allows to find out that,
in the lattice (A) from figure 1, it is o’ € Spec2({b}),a’ € O,(b) and a’ ¢
O, (b).

* q € Spec2(P), q ¢ Oilpn),  q ¢ Orpn)
Finally, a type2-speculation that is neither left nor right-orthogonal may be
found in lattice (B) from figure 1. Indeed, since bNCa and b'NCa, it is
b € Spec2({a}). In addition, it is easy to check that ab+a-b'=c+0=c#a
andb-a+b-a’ =c+0=c#b, that is, b ¢ Oy(a) and b ¢ O,(a), respectively.

In the particular case of orthomodular lattices, let us recall that it is O;(a) =
Or(a) = Ofa) for any a € L (theorem 2.1), and, contrary to typel-speculations,
type2-speculations do not appear to be necessarily orthogonal (corollary 3.4). Of
course, if L is a boolean algebra, any type2-speculation will be orthogonal to pa
(theorem 2.1), but, what happens if L is a non-boolean orthomodular lattice?
Next example shows that it is possible to find lattices of this kind holding both
orthogonal and non-orthogonal type2-speculations.

Example 3.5

e Lattice (A) from figure 2, which is a well-known example of non-boolean or-
thomodular lattice, holds type2-speculations which are not orthogonal to the
premises’ infimum. For example, it is easy to check that b € Spec2({a})
whereas b ¢ O(a), sincea-b+a-b'=0+0=0#a.
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e On the other hand, lattice (B) in figure 2 provides an example where both
orthogonal and non-orthogonal type2-speculations may be found:

— First, a (the same happens with a') is clearly a type2-speculation of any
element b in the 2* boolean algebra, since it is aNCb and a’ NCb. In
addition, a ¢ O(b), sinceb-a+b-a’' =0+0=0#b.

— Secondly, in order to find an orthogonal type2-speculation, let us sup-
pose, without loss of generality, that the 2* boolean algebra belonging to
L corresponds to P(E), where E = {e1,ea,e3,e4}. Now, let us choose
g ={e1,e2} and P C L such that px = {ea,es}. Clearly, ¢ € Spec2(P),
since neither g nor ¢ = {es, e4} are comparable to pn. In addition, g and
pa are orthogonal, since they both belong to the same boolean algebra,
where, according to theorem 2.1, any pair of elements is orthogonal.

4 Classifying conjectures with respect to orthog-
onality

This section uses all the results obtained in previous section in order to classify
conjectures with respect to orthogonality, focussing first of all on the case of proper
ortholattices and secondly on orthomodular lattices.

4.1 Conjectures in proper ortholattices

When dealing with proper ortholattices, the set O;(pa ), taking into account all the
results given in previous section, may be written, in the general case, as follows:

Oilpn) = Cons(P) U [Hyp(P)N{qe L; pr=q+pr-q'}]
U [Specl(P)N{q€ L; pr=pr-q+q}]
U [Spec2(P)N{qe€ L; pr=pr-q+Dpr-q}]
U Conj(P)°

This provides the following classification of the set of conjectures, Conj(P), with
respect to Op(pa):

Conj(P) = Cons(P) U [Hyp(P) N Oy(pa)] U [Spec(P) N Ou(pa)] U Or(pa)*
Similarly, the set O,(pa) is given by:

Or(pr) = [Cons(P)N{qgeL; q=pr+q-pi} U Hyp(P)
U [Specl(P)N{qe L; q=q-pr+pr}]
U [Spec2(P)N{qe L; q=q-pr+q-ph}]
U Conj(P)°

and the corresponding classification of Conj(P) with respect to O,(p,) is:

Conj(P) = [Cons(P) N O (pn)] U Hyp(P) U [Spec(P) N Or(pa)] U Or(pa)°©
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The structure of O;(pa), Or(pa) and Conj(P) in proper ortholattices is depicted
in Figure 4. Their intersection (i.e., the elements of the lattice which are both left
and right-orthogonal to pr) and their union (i.e., the elements of the lattice that
are left or right-orthogonal to p,) are shown in Figure 5.

0 0

0 0

Figure 5: The sets O;(pa) N Or(pa), Oi(pa) U Or(pa) and Conj(P) in proper
ortholattices

The main results regarding the relationships between orthogonality and conjec-
tures in proper ortholattices may then be summarized as follows:

1. The only conjectures which are always left-orthogonal to p, are consequences,
whereas hypotheses are the only ones which are always right-orthogonal.

2. In general, it is possible to find conjectures of any kind (consequences, hy-
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potheses or speculations of the two types) that are both left and right-
orthogonal to pa.

3. Conjectures being neither left nor right-orthogonal to ps have to be looked
for among the set of speculations, i.e., if a conjecture is not orthogonal at all
to pa, then it is necessarily a speculation.

4.2 Conjectures in orthomodular lattices

In the case of orthomodular lattices, the set O(pa) = Oi(pa) = Or(pa) is given by:

O(pp) = Cons(P) U Hyp(P) U Specl(P)
U [Spec2(P)n{qg€ L pr=pr-q+pr-q}]
U Conj(P)°

and this allows for the following classification of conjectures:
Conj(P) = Cons(P) U Hyp(P) U Specl(P) U [Spec2(P) N O(pa)] U O(pa)©

The later results are illustrated in figure 6, which shows that if a conjecture is
not orthogonal to pa, then it is necessarily a type2-speculation. Of course, when
dealing with boolean algebras, the above classification of Conj(P) reduces to the
already known equality (see section 2.2):

Conj(P) = Cons(P) U Hyp(P) U Specl(P) U Spec2(P)

since it is O(pp) = L and O(pp)¢ = 0.

O(px)

0

Figure 6: The sets O(pa) and Conj(P) in non-boolean orthomodular lattices
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5 Conclusions

This paper has shown that the mathematical model for conjectures in ortholattices
that was presented in [5] can be significantly clarified by studying its relation-
ships with the ortholattices’ orthogonality relations. Indeed, a finer classification
of conjectures has been obtained, showing that the basic concepts for understand-
ing conjectures, both in proper ortholattices and in orthomodular ones, are those
of consequence, hypothesis, speculation (which includes non-comparability in the
lattice’s order) and orthogonality. In the particular case of proper orthomodular
lattices, this new classification reveals that the so-called type2-speculations consti-
tute a distinguished class of speculations, namely the only ones which may not be
orthogonal to the infimum of the premises. Finally, it appears that in the limit case
of boolean algebras, the classification of conjectures is not affected by orthogonality.
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