


CONSIDERACIONES GENERALES

La estructura propuesta consta de tres partes:

La estructura perimetral tipo jaula, funciona como sustento y encorsetamiento de las fachadas originales. También une la fachada a la nueva estructura por medio de colisos e uniones no rígidas. De esta manera la carga de la fachada llega a la nueva cimentación.

Estructura interior estándard, formada por perfiles metálicos que van cosiendo el interior. Una serie de pilares HEB y jácenas en la mayoría de los casos IPE 140. Éstos se van uniendo según las necesidades espaciales y formales como si de un "Mecano" se tratara.

Estructuras interiores singulares, debido a la complejidad de los espacios en el edificio, son necesarias una serie de estructuras muy distintas a los pilares y jácenas comunes. Me refiero a las cerchas y estructuras colgadas. Para conseguir varias alturas y liberar al máximo las plantas de pilares, se opta por resolver estos espacios con sistemas tipo cercha en el auditorio y en las salas de exposición, y por un sistema de forjados colgados por cables en la parte del atrio, consiguiendo así un efecto de grandes volúmenes.

RESOLUCIÓN Y DIMENSIONADO

Siendo una estructura bastante compleja, y teniendo en cuenta que las uniones no son rigidas, se considera la estructura isostática. De esta manera conseguimos unos cálculos apróximados cercanos a la realidad con un método de cálculo controlable.

En el esquema aquí reresentado se resaltan los pórticos, cerchas y pilares más desfavorables. Luego, estos datos se extrapolan al resto del sistema consiguiendo así el dimensionado completo.

-PILAR PERIMETRAL A	2 UPN200
σ = NA / A = 261.55kN / 0.0108m ² = 24'271.59kN/m ² σ adm = M /Wx = 85.1 / 0.000788 = 107'994.9kN/m ² σ < σ adm <i>CUMPLE</i>	A =108cm ² W _x =85.1cm ³ M =788kg/m
comprobación de la estructura perimetral + peso de la fa	chada
Nfachada: $20.3 \cdot 4.9 \cdot 0.5 = 49.73 \text{m}^3 \cdot 15 \text{kN/m}^3 = \text{NA}$: 261.55kN	= <u>746kN</u>
σ = N / A =(746+261.55) / 0.01084 = 93'291.67kN/r σ < σ adm <i>CUMPLE</i>	m²
-PILAR INTERIOR B	HEB200
$\sigma = N_B / A = 540kN / 0.00781m^2 = 69'170kN/m^2$ σ adm = M /Wx = 107'543kN/m ² $\sigma < \sigma$ adm <i>CUMPLE</i>	A =78.1cm ² W _x =570cm ³ M =61.3kg/m
-PILAR CERCHA/INTERIOR F	HEB600
$\sigma = NF / A = 54'379.6kN/m^2$ $\sigma = M / Wx = 37'192.98kN/m^2$ $\sigma < \sigma = M CUMPLE$	A = 270cm ² W _x = 5700cm ³ M = 3210kg/m
-PILAR ATRIO P	2 UPN100
$\sigma = NP / A = 138'103.14kN/m^2$ $\sigma = M / Wx = 218'750kN/m^2$ $\sigma < \sigma = M CUMPLE$	A =44.6cm ² $W_x = 160 \text{cm}^3$ M =35kg/m
-CABLES Y PILARES A TRACCIÓN Q (insertar CABLE DE DIAM 20MM Y 4L100) σ = NQ / A = 1'933'439.5kN/m² σadmCABLE = M /Wx = 3'146'496.8kN/m²	Ø20 y 4 L100 A =3.14cm ² W _x =0.785cm ³ M =2.47kg/m
$\sigma = NQ / A = 97`919.355kN/m^2$ $\sigma = MQ / A = 97`919.355kN/m^2$ $\sigma = MQ / A = 97`919.355kN/m^2$ $\sigma = MQ / A = 97`919.355kN/m^2$	A =19.2cm ² W _x =3.77cm ³ M =3.05kg/m
-JÁCENA AB	IPE140
(insertar IPE140) M ^{max} = q · I² / 8 = 11kN fmax = L / 250 =12mm f = (5 / 384)·(ql^4/EI) → I≥410.156cm^4 IPE140 (I = 541cm^4)	A =16.4cm ² $W_x = 77.3$ cm ³ M = 44.2kg/m
-JÁCENA RS	HEB240
(insertarHEB240) fmax = L / 250 = 72mm f = (5 / 384)·(ql^4/EI) → I≥10902.46cm^4 IPE330 IPE240 (I = 541cm^4) *Para conseguir menor canto	A = $106cm^2$ W _x = $938cm^3$ M = $527kg/m$
i ara conseguii inchoi canto	