

Aspect-Oriented Modeling of
Business Processes

 Masterarbeit

Daniel Colomer Collell

Matrikelnummer: 1827761

September 2012

Fachbereich Informatik

Examiner: Prof. Dr. M. Mezini

Supervisor: Dr.-Ing. Anis Charfi

Supervisor: Dipl.-Inf. Heiko Witterborg

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit ohne Hilfe Dritter und nur mit den angegebenen Quellen

und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den Quellen entnommen wurden, sind als solche

kenntlich gemacht worden. Diese Arbeit hat in dieser oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

Darmstadt, September 2012 Daniel Colomer Collell

Abstract

Concerns such as compliance, auditing, business activity monitoring or accounting need to be addressed in the

early stages of modeling and not only at the implementation or execution levels. Mostly, such concerns are

modeled as part of the normal flow in business process models. However, the crosscutting nature of such

concerns leads to scattered and tangled models. When we try to model business processes that require support

for some of these concerns they quickly become complex and cumbersome to understand and manage. The lack

of appropriate means to modularize crosscutting concerns in process modeling languages seriously affects

understandability, maintainability and reusability.

AO4BPMN 1.0 is an aspect-oriented extension of BPMN that facilitates the modularization of crosscutting

concepts in BPMN models such as separation of duties, billing or monitoring. However, there are several open

issues and decisions in AO4BPMN 1.0. First, there is no concrete pointcut language defined. Second, no weaving

mechanism is provided to compose aspects and processes. Third the language is based on an old BPMN version

and the respective editor is based on the STP BPMN editor, which is no longer developed.

In this thesis we refine AO4BPMN into its 2.0 version by defining a concrete OCL-based pointcut language.

Thereby we provide extension points to allow integrating other pointcut languages. In addition, we define and

implement a weaving mechanism to compose aspects and processes. In addition, we adapt AO4BPMN to the new

BPMN 2.0 standard and provide an Eclipse-based editor supporting our extension.

Acknowledgement

This master Thesis was carried out at the Faculty of Informatik at the Technische Universität Darmstadt (TUD).

Special thanks go to my supervisors Dr.-Ing. Anis Charfi and Dipl.-Inf. Heiko Witteborg from SAP Research. Their

dedication and guidance were crucial to the Thesis and they always had time to help.

Darmstadt, September 2012.

Daniel Colomer Collell

v

Table of Contents

1 Introduction 1

1.1 Motivation ... 1

1.2 Contributions .. 2

1.3 Structure of this thesis... 2

2 Background 3

2.1 BPMN .. 3

2.2 Aspect-oriented software development ... 4

2.2.1 Aspect-oriented programming .. 5

2.2.2 Aspect-oriented modeling .. 6

2.2.3 AO4BPMN 1.0 .. 6

2.3 Model Driven Software Development ... 9

2.4 The Eclipse project and tools ... 10

2.4.1 Plug-ins .. 10

2.4.2 The Eclipse Modeling Framework .. 10

2.4.3 GEF, GMF and Graphiti .. 10

2.4.4 BPMN 2 meta-model and modeler ... 11

2.4.5 Model-to-model project .. 11

3 Problem statement 12

3.1 Motivating example ... 12

3.2 Crosscutting concerns in BPMN .. 14

3.3 Limitations of AO4BPMN 1.0 .. 15

4 AO4BPMN 2.0: language overview 16

4.1 Join points ... 16

4.2 Pointcuts ... 17

4.3 Advices .. 19

4.4 Aspects .. 19

4.5 Graphical Representations .. 19

4.5.1 Light-weight notation ... 19

4.5.2 Heavy-weight notation ... 20

vi

4.6 Composition of aspects and processes: the weaving ... 21

4.6.1 A weaving example .. 22

4.6.2 Clone and merge .. 23

4.6.3 Special branching cases .. 23

4.6.4 Re-linking strategy ... 24

5 Implementation and tooling 27

5.1 Editor tool ... 27

5.1.1 Implementation technology ... 27

5.1.2 AO4BPMN runtime extension .. 29

5.1.3 Editor model extension .. 30

5.1.4 PropertyTab extensions .. 31

5.1.5 Proceed element as a CustomTask ... 32

5.1.6 Triggering the weaving action .. 33

5.2 Weaving .. 33

5.2.1 Implementation technology ... 33

5.2.2 Clone and merge .. 34

5.2.3 Input and output .. 36

5.2.4 Join point selection .. 36

5.2.5 Cloning cases and conditions ... 37

5.2.6 RealMaps .. 38

5.2.7 BoundaryEvents Branching .. 38

5.2.8 Data branching ... 39

5.2.9 Unique ids .. 41

5.2.10 Cost and termination .. 41

6 Case study 44

6.1 Modeling the processes ... 44

6.2 Modeling the aspects ... 47

6.3 Using the weaver ... 49

7 Conclusion 52

7.1 Summary ... 52

7.2 Limitations and future work .. 52

vii

A. Test Cases for the weaver 56

A.1. Simple cases .. 57

A.2. Complex cases ... 60

A.3. Branching cases ... 62

viii

List of Figures

Figure 1 BPMN 2.0 layer structure [2] ... 3

Figure 2 Model of the fire sensor example (cf. [23]) ... 6

Figure 3 Feature development process diagram ... 13

Figure 4 Bug fixing process diagram .. 13

Figure 5 Complete feature gevelopment process diagram .. 13

Figure 6 Complete bug fixing process diagram .. 14

Figure 7 Feature development process with candiadate join points underlined... 17

Figure 8 Bug fixing process with candidate join points underlined .. 17

Figure 9 Light-weight notation monitor aspect diagram .. 20

Figure 10 Heavy-weight notation timing aspect diagram ... 21

Figure 11 Bug fixing process .. 22

Figure 12 Light-weight notation compliance aspect ... 22

Figure 13 Bug fixing process after the weaving operation ... 22

Figure 14 Abstract structure with the elements and their distance to the central element 23

Figure 15 Generic join point structure with n incoming and outgoing connections ... 24

Figure 16 Generic Proceed structure with n incoming and outgoing connections .. 25

Figure 17 Equivalence between splitting structures according to the BPMN 2.0 specification 25

Figure 18 Equivalence between merging structures according to the BPMN 2.0 specification............................... 25

Figure 19 Generic case of our re-linking strategy ... 26

Figure 20 Plug-in structure in packages ... 28

Figure 21 XML fragment of the runtime extension point ... 29

Figure 22 Ecore structure showing our extension properties ... 30

Figure 23 XML fragment corresponding to the editor model extension ... 31

Figure 24 XML fragment that registers our ecore model to the extension org.eclipse.emf.ecore 31

Figure 25 XML fragment corresponding that extends the PropertyTab of the Participant element 32

Figure 26 XML fragment corresponding to a CustomTask .. 32

Figure 27 XML fragment correcponding to the weaving action ... 33

Figure 28 XML fragment that shows how tasks are related by means of a sequence flow 35

Figure 29 Pointcut query language extension point structure .. 37

Figure 30 XML fragment that illustrates how a boundaryEvent is represented by the editor 39

Figure 31 Example of a simple data association ... 40

Figure 32 Example of a data association targeting an edge ... 40

Figure 33 Example of a non clear modeling situation .. 41

Figure 34 Screenshots illustrating how to change the Target Runtime .. 44

ix

Figure 35 Screenshots illustrating how to create the project ... 45

Figure 36 Screenshots that illustrate the steps to open the BPMN2 diagram creation wizard 46

Figure 37 Screenshots illustrating how to create a diagram .. 46

Figure 38 Screenshot illustrating the resulting diagram .. 47

Figure 39 Screenshot illustrating the resulting compliance aspect ... 48

Figure 40 Screenshot illustrating the property tab of the compliance advice ... 48

Figure 41 Screenshot illustrating the resulting monitoring aspect ... 49

Figure 42 Screenshot illustrating the property tab of the monitoring advice ... 49

Figure 43 Integration of the weaver in Eclipse ... 50

Figure 44 Screenshot illustrating how to trigger the weaving operation ... 50

Figure 45 Screenshot illustrating the result diagram after the weaving execution .. 51

x

List of Tables

Table 1 BPMN core modeling elements (cf. [37]) .. 4

Table 2 Template to show the test results. ... 56

Table 3 Simple cases test results. Number 1 .. 57

Table 4 Simple cases test results. Number 2 .. 58

Table 5 Simple cases test results. Number 3 .. 58

Table 6 Simple cases test results. Number 4 .. 59

Table 7 Complex cases test results. Number 1 ... 60

Table 8 Complex cases test results. Number 2 ... 61

Table 9 Complex cases test results. Number 3 ... 61

Table 10 Branching cases test results. Number 1 ... 62

Table 11 Branching cases test results. Number 2 ... 62

xi

Listings

Listing 1 AspectJ code fragment ... 5

Listing 2 EMF ModelQuery code fragment that selects the manuscripts with the title „BPMN Tutorial“ 18

Listing 3 EMF ModelQuery 2 code fragment that selects the manuscripts with the title „BPMN Tutorial“ 18

Listing 4 Code fragment of a model transformation in ATL that maps the class Author to Person 34

Listing 5 Code fragment of a model transformation in QVTo that maps the class Author to Person 34

Listing 6 Pseudocode fragment illustrating the iteration strategy used in the weaving algorithm 35

Listing 7 Pseudocode fragment that illustrates the main cloning condition used by the algorithm 37

Listing 8 Pseudocode fragment illustrating the treatment of boundary events .. 39

xii

1

1 Introduction

Several concerns cut across different levels of abstraction in a business process. Existing languages used to model

such processes, like BPMN, do not support the modeling of such concerns in a modular way. An aspect-oriented

extension of BPMN called AO4BPMN was defined in [1] that provides the necessary means to model these so

called crosscutting concerns [43]. That extension has several limitations, which will be addressed in this master

thesis.

1.1 Motivation

Concerns such as compliance, auditing, business activity monitoring or accounting are bound to be modeled as

part of the normal flow when we use languages such as the OMG’s Business Process Modeling Language (BPMN)

[2]. These concerns need to be addressed in the early stages of modeling and not only at the implementation or

execution levels. This concerns are called crosscutting concerns as they affect and apply to different parts of the

same entity or system. The first problem that we face when we try to model processes that require some of these

concerns is the fact that our diagrams rapidly scale to the point where it gets cumbersome to understand and

manage them. Business process models become complex and monolithic and this seriously diminishes their

understandability, maintainability and reusability.

Another problem appears when for example an accounting expert tries to understand how accounting is handled

in an organization to somehow improve it. The expert must understand how accounting is currently realized

across the different business processes and also must understand the whole organization model and how, when

and when not audition is necessary for example. This creates big problems of understandability and scalability

for the expert in our scenario: the size of the models and their complexity (which we already identified as a first

problem) hinder the expert. Another hindering factor is the fact that the modeling elements related to accounting

are scattered across all models. If these elements could be encapsulated in a separate module problems as the

ones explained above can be addressed better. In order to provide a solution to the problems of crosscutting

concern modularity, the authors of [3,4] introduce aspect-oriented workflow languages. These languages provide

concepts such as aspect or pointcut that come from the paradigm of aspect-oriented programming [5].

The aim of this thesis is to refine the language design of AO4BPMN based on BPMN 2 and to implement a weaver

and an editor for the AO4BPMN based on Eclipse. AO4BOPMN is an aspect-oriented extension of the BPMN

language supporting the modularization of crosscutting concerns. This graphical editor should support at least

one of the graphical notations of AO4BPMN and the weaver should allow the composition of aspects and

processes.

2

1.2 Contributions

The contributions of this thesis can be summarized as follows:

 Refining the language defined in [1] into AO4BPMN 2.0 by defining a concrete pointcut language, by

providing a weaving mechanism and by supporting the new BPMN 2.0 specification.

 Implementation of a graphical editor for AO4BPMN 2 based on Eclipse by extending the BPMN2 editor

tool [15] that is based on the BPMN2 meta-model [6] defined in the same project.

 Design and implementation of a weaving mechanism through model transformation using the objective

QVT (QVTo) language [7].

1.3 Structure of this thesis

This thesis is structured as follows: Chapter 2 briefly describes the background concepts and technologies needed

for understanding this thesis such as the Business Process Modeling Notation, aspect-orientation, model-to-model

transformations and the Eclipse project. Chapter 3 describes the problem statement and in particular the

problems related to crosscutting concerns in BPMN. In Chapter 4 we give a detailed description of the language

AO4BPMN 2.0 including the main constructs of this language the weaving of aspects and processes. In Chapter 5

we present the implementation details related to the editor of AO4BPMN and also to the weaver, which

implements the composition of aspects and processes. We present the challenges we faced during the

implementation and we discuss also the termination and cost of such an algorithm. In Chapter 6 we present a

case study illustrating the usage of the editor and the weaver. Chapter 7 concludes the thesis with a summary of

the work done and a discussion of some limitations and directions for future work.

3

2 Background

In this chapter we will give the needed background knowledge to accompany the rest of the document. First we

give an overview on the Business Process Modeling Notation, then we describe the aspect-oriented paradigm, we

introduce model to model transformations and we close the chapter with a description of the Eclipse Project and

those Eclipse subprojects that are relevant in the context of this work.

2.1 BPMN

The Business Process Model and Notation (BPMN) [2] is a standard defined by the Object Management Group

(OMG) as a graphical representation of business process models. It is targeted to business users.

The current version of the standard, BPMN 2.0, is a major step in the BPMN evolution. The aim of BPMN 2.0 is to

have one single specification for a notation, meta-model and interchange format. That is why BPMN no longer

stands for Business Process Modeling Notation but for Business Process Model and Notation. The Major technical

changes in comparison to versions 1 and 1.2 are:

 A formal meta-model

 Interchange formats

 XSLT transformations between the XMI and XSD formats

BPMN 2.0 defines the following layer structure:

Figure 1 BPMN 2.0 layer structure [2]

4

The language AO4BPMN 1.0 described in [1] and further introduced in Section 2.2.3 focuses on the common

core and process relevant elements, and does not cover the BPMN choreography and collaboration concepts.

BPMN core modeling elements are divided in four different categories. The following table summarizes them.

2.2 Aspect-oriented software development

The aspect-oriented paradigm is a programming paradigm that aims to break down a program in different parts.

Almost all programming paradigms offer some level of abstraction/encapsulation that allows a user to build a

program based on several more or less independent units. But some concerns defy these forms of abstractions

because they “cut across” several of these units. These concerns are therefore known as “crosscutting concerns”.

A simple example of a crosscutting concern is the concept of logging. A logging strategy affects all the units of a

system that are being logged thereby crosscuts all of them.

The main concepts of the aspect oriented paradigm are:

 An aspect can modify the behavior of a normal unit. This construct encapsulates a general crosscutting

concern – a concern that applies to different parts of a system. An example of an aspect would be the

concept of logging. Logging encapsulates different tasks or behaviors that can be applied along the

system, for example the behavior of logging user input and the behavior of logging the system’s output.

 Description Constructs Example

Flow Objects

These are the core elements that a

business user needs to model a
process

Event, Activity, Gateway

Connecting

Objects

These are the core elements that a

business user needs to model a

process

Sequence Flow, Message

Flow, Association

Swimlanes

Mainly used to organize Flow

Elements into separate visual

categories

Pool, Lane

Artifacts

These elements are designed to

help extending the core notation.

Their aim is to provide additional

context to specific modeling

situations

Data Object, Group,

Annotation

Table 1 BPMN core modeling elements (cf. [37])

5

 An aspect encapsulates advices (additional behavior). Pieces of advice are behavioral units that are

related under the same crosscutting concern. Following with the previously introduced logging example,

we could consider logging the input of the user at several points of a system to be an advice.

 A join point is the place where several advices might apply. Following again with the example we could

consider the point right after a user fills in a certain form a join point.

 Join points are specified as quantifications or queries called pointcuts that detect whether a given join

point matches or not. A pointcut therefore defines at which join points one or more pieces of advice

should apply. Pointcuts can be independent from the rest of presented concepts. Moreover, a pointcut

could be reused by several advices the which apply to the same join points.

2.2.1 Aspect-oriented programming

There exist several language-specific implementations of the aspect-oriented paradigm applied to programming

languages. A key differentiating factor of these implementations is the definition of their join point model. Join

point models define when an advice-related component can run, that is, what elements can be broken up and

interrupted by an advice. A join point model also defines how the join points are quantified. Most of the

implementations such as AspectJ (Aspect-oriented java) [20] use the same base syntax. They provide ways to

specify the actual code to be executed as an aspect. Join point models are of relevant importance when

comparing different implementations of the paradigm (operations permitted in advices, etc.).

AspectJ, for instance, provides the following possible join points: method execution, class initialization, exception

handlers, etc. Other implementations such as AspectR (Aspect Oriented Ruby)[21] does notsupport exception

handlers and other join points.

As an example the following AspectJ code snippet shown in Listing 1 adds the method acceptVisitor to the class

Point.

Another remarkable characteristic is the provided way of combining aspects with the normal code and also when

to apply this combinations. An aspect-weaver reads the aspect-oriented code and generates the appropriate code

Aspect DisplayUpdate {

 Void Point.acceptVisitor(Visitor v) {

 v.visit(this);

 }

 //other crosscutting code

}

Listing 1 AspectJ code fragment

http://en.wikipedia.org/wiki/Advice_in_aspect-oriented_programming
http://en.wikipedia.org/wiki/Pointcut

6

with the aspects integrated. Applying this combination during deployment provides a different approach than for

instance applying it during run-time (deploy-time weaving implies post-processing the code for example).

2.2.2 Aspect-oriented modeling

The aspect-oriented paradigm has also been applied to modeling languages (AOM). Model Driven Engineering

(MDE) utilizes models as base artifacts in the development process and the application of the aspect-oriented

paradigm to this level also has its advantages such as a noticeable increase of reusability of models thanks to the

modularization of crosscutting concerns found in them. A comparison of several AOM approaches is realized in

[22].

An example of the advantages of AOM can be illustrated by means of the firesensor example presented in [23].

Figure 2 shows how to model the crosscutting concern of sensoring (in concrete FireSensoring).

In this example the join points are all the rooms in a house and they are defined by the pointcut allRooms(House

this): floors.rooms and the applied behavior or advice is the possession of a FireSensor.

2.2.3 AO4BPMN 1.0

In this section we offer an overview of the AO4BPMN 1.0 language based on the description given in [1].

AO4BPMN 1.0 aims to be an aspect-oriented extension of BPMN that facilitates the modularization of

crosscutting concepts in BPMN models such as separation of duties, billing, monitoring, etc.

In the following, we present the language in more detail starting with the definition of the main constructs, i.e.,

the aspects containing advices and pointcuts. Based on AO4BPMN’s join point model we discuss different

possibilities to define pointcuts, that is, to select the join points for a specific advice. Afterwards, we introduce the

concepts of aspect and advice as they are defined in AO4BPMN 1.0 and we describe the need of a composition

algorithm. Next, we describe two graphical representations: a light-weight syntax that uses only standard BPMN

elements thus allowing us to use it with any standard BPMN editor and a heavy-weight syntax that uses new

graphical representations. Finally, we list and discuss which are the limitations and open points from the

AO4BPMN 1.0 specification that will be addressed in this thesis.

Figure 2 Model of the fire sensor example (cf. [23])

7

2.2.3.1 Main concepts

In this section we introduce the 4 main concepts defined by AO4BPMN 1.0 as described in [1]. We describe how

join points, pointcuts, advices and aspects are defined in AO4BPMN 1.0.

Join points are steps in a process where crosscutting concerns can be integrated. In Section 2.2.1 we introduced

the fact that an aspect-oriented language defines the set of available join points by means of a join point model.

In AO4BPMN, flow objects are supported as join points. Flow objects, as we introduced in Section 2.1, are core

elements within BPMN allowing the user to define events, activities and gateways. AO4BPMN’s join point model

defines joint points in an implicit and this means that the base processes are standard and can be used still by

any BPMN2.0 tool with or without aspect-oriented support and we also gain more flexibility for the modeler of

the base process does not need to foresee the potential extensions. An explicit approach would force the modeler

of the base process to define the join points manually therefore hampering flexibility and creating non standard

and less reusable models. Because of this, there is no special construct for join points for they are implicitly

defined by the pointcut that selects them. Examples of join points would be all the activities that require billing.

A pointcut allows us to select join points over which we want to apply a certain crosscutting concern. A pointcut

has a query attribute that is used to select the join points.

There exist several approaches on how to select join points and some of them are described in [1]. One

possibility is to let the modeler define explicit associations between the pointcuts and the join points but the main

drawback of this approach is the lack of scalability. In real-scale processes this option might not be feasible.

Another possibility is by means of join point annotation. This approach has a similar problem as the previous one

and this is that our models would rapidly scale and would become difficult to manage with normal tools.

Nevertheless this approach is more comfortable for business users.A third approach is base on the use of query

languages. In this case we must deal with the choice of powerful versus simple languages and what is best for

business users from the point of view of complexity and intuitiveness. The authors of [1] list several possibilities

such as OCL [9], QVT [7] or ATL [10] query languages but this point is left open in the AO4BPMN 1.0

specification.

An advice is an AO4BPMN construct that implements some crosscutting concerns and may also include a special

activity Proceed. The semantics of the advice is to apply the defined crosscutting concepts before, after or around

the selected join points. These crosscutting concerns are merged along the different processes keeping always

previous possible associations between the affected join points and other elements in the model.

The special activity Proceed can be used to determine how the crosscutting concerns must be applied. This

Proceed activity conceptually replaces the selected join point therefore everything implemented before the Proceed

activity will also be applied before the join point and the same happens with everything implemented after it. If

the Proceed activity is not used the type of the advice must be defined (i.e. before, after or around).

8

An advice is self-contained, which means that no sequence or message flows are allowed between advices and

other elements in the model.

Aspects are elements used to modularize the modeling of crosscutting concerns. An aspect contains one or more

pointcuts and associated advices. The aim of this construct is to group crosscutting behavior under a single

concern such as monitoring, compliance or security.

2.2.3.2 Composition of aspects and processes: the weaving

AO4BPMN 1.0 describes the need of an appropriate mechanism to compose the crosscutting concerns defined by

aspects and the different business processes. A process transformation is a feasible approach for weaving

AO4BPMN aspects with BPMN process models for BPMN is only a modeling notation and cannot be directly

executed. As opposite, another approach is presented in [4] that uses an aspect-aware engine.

A model weaver matches the join points by evaluating the different pointcut queries and then the crosscutting

concerns defined by the aspects are inserted according to their own definition.

The application of such a composition results in standard BPMN models that can be manipulated by any other

standard BPMN tools. It also allows the user to have different views of a process, some of them hiding for

example not relevant crosscutting concepts.

The weaving operation is another open point in the AO4BPMN 1.0 specification that will be addressed in this

thesis.

2.2.3.3 Graphical representation

In order to use the previously defined constructs of the AO4BPMN 1.0 language, two different graphical

notations are defined: a light-weight notation that uses standard BPMN elements and a heavy-weight notation

that defines its own graphical syntax.

The light-weight graphical syntax uses standard BPMN elements. Models that use this notation will always be

compatible with any other standard BPMN tool. Join points do not have an explicit graphical representation for

they are by definition flow elements selected by a pointcut query. Pointcuts are represented as a data objects that

have a text annotation containing the text “Pointcut”. The query is stored in the document property of the data

object. Advices are represented as subprocesses that have a text annotation containing the text “Advice”. A

further optional annotation can be used to indicate the advice’s type. Finally, aspects are represented as a

standard BPMN Pools that have a text annotation containing the text “Aspect”.

The heavy-weight notation Deviates from the BPMN 2.0 standard, the heavy-weight graphical syntax introduces

new notational elements for the AO4BPMN concepts. The models that use this notation thus will not be

9

displayable with other standard BPMN tools. Join points, as we stated before, do not have explicit graphical

representation for they are by definition flow elements selected by a pointcut query. Pointcuts are represented as

ovals. In the heavy-weight representation advices are represented as rectangles with two parts. The upper part

contains the name and optionally the type of the advice and the other part contains the subprocess activities that

implement the desired crosscutting concern. Aspects are represented as pools with rounded corners.

2.2.3.4 Problems and limitations

In the AO4BPMN 1.0 specification there exist several open issues and decisions. These issues will be addressed in

this Thesis.

 AO4BPMN 1.0 does not define a concrete pointcut language.

 The concept of a composition of aspects and processes is mentioned but not specified. No concrete

algorithm is defines although some suggestions on possible implementation methologies are stated.

 AO4BPMN 1.0 is not based on the BPMN 2.0 specification and the existing editor is based on STPBPMN

[24] which is no longer being developed.

In Section 3.3 we describe these problems in more details and Chapter 4 describes AO4BPMN 2.0 which

addresses these issues.

2.3 Model Driven Software Development

Model Driven Software Development (MDSD) [40] is a software development approach that understands models

as more abstract units than for example the code but at the same time models are consider to be artifacts of the

system itself rather than simply documentation. MDSD has the goal to create models that accurately describe the

system structure and behavior. These models will then be automatically or semi-automatically transformed into

executable code that might or not need some manual refinement.

A key concept in MDSD is meta-modeling [41]. A meta-model is a collection of concepts within a certain domain

that represent an abstraction of the abstraction defined by a model. A meta-model expresses the properties and

structure of a model itself.

Model transformations [36] are the pillar of MDSD. A model transformation can be understood as a program that

takes one or more models as input and produces and output. A model transformation usually specifies which

models are acceptable as input and what kind of models it produces as output by means of defining a meta-

model to which they must conform. Model transformations have been classified in several ways, for instance

depending on the nature of their inputs and outputs or depending on the relation between the meta-models that

define the input space and the ones that define the output space. Model transformations can be written in normal

generic purpose programming languages but there are also specialized Model transformation languages such as

10

the OMG’s standardized model transformation languages that are collected under the name of QVT

(Query/View/Transformation) languages.

2.4 The Eclipse project and tools

The Eclipse project was created in 2001 by IBM [25, 39]. It is a development platform that apart from being open

it is built of several frameworks which can at the same time be extended by means of plugins.

2.4.1 Plug-ins

A crucial part of the Eclipse environment is the possibility to extend it with plugins [42] that add or modify

functionality to the entire platform. The Eclipse it is just an empty carcass and it was built to guarantee and easy

and fast plugin development process.

Eclipse allows plugin developers to test their own plugins in a separate Eclipse instance. The packaging and

deployment of plugins is almost immediately.

Extension points are the main part of the plugin mechanism defined in Eclipse. Extension points can be used to

define a point in a plugin to which another plugin can contribute. The first step to start developing a plugin is to

define which extension points must be extended.

2.4.2 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a framework for Java code generation using models as a base [26].

The framework brings together three different technologies: XMI [27], UML [28] and Java [29]. The main idea

behind the framework is that a user can define a model in any of these formats and then automatically transform

it to another.

EMF provides Ecore [30], an EMF model that is a metamodel itself. The main aim of this metamodel is to offer

the possibility for developers to define their own domain metamodels and to add runtime support that includes a

reflective Application Programming Interface (API) to manipulate EMF Objects.

2.4.3 GEF, GMF and Graphiti

The Graphical editing framework (GEF) is a generic Eclipse framework which allows developers to create

graphical editors for diagrams in a relatively fast and simple way [31].

The Graphical modeling framework (GMF) is an Eclipse project that is built on top of EMF and GEF to provide a

runtime infrastructure that significantly improves the way developers can create graphical editors for diagram by

means of defining a tooling model that encapsulates the underline properties of the model elements, a graphical

model that defines how the elements are rendered and a mapping model that relates the two previous ones [32].

11

Graphiti is an alternative solution to the one provided by GMF. Graphiti is an Eclipse-based graphics framework

that enables rapid development of diagram editors for domain models. Graphiti can use EMF-based domain

models very easily but can deal with any Java-based objects on the domain side as well.

Graphiti hides dependent technologies such as GEF and Draw2D [33]. The user of the framework only needs to

deal with Graphiti objects and a single Java API. [16]

2.4.4 BPMN 2 meta-model and modeler

BPMN2 is an open source component of the Model Development Tools (MDT) subproject [14]. BPMN2 Meta-

model [6] aims at providing a meta-model implementation of the Business Process Model and Notation (BPMN)

2.0 OMG specification. Relevant goals of the BPMN2 component are to provide an open-source implementation

of BPMN 2.0 and a basis for the integration and interchange of artifacts between different tools.

The BPMN2 modeler component is an open-source editor tool created with Graphiti that uses the BPMN2 Meta-

model. The BPMN2 modeler tool is still work in progress but a stable version can be already downloaded and

used [6].

2.4.5 Model-to-model project

Model-To-Model (M2M) [34] is a subproject of the Eclipse Modeling Project (EMP) [35]. It basically provides

three transformations engines for model-to-model transformations. The M2M project currently offers three

different transformation engines and a corresponding development environment:

 Declarative QVT is based on the OMG’s QVT core and relations languages [7], but it is still work in

progress.

 Operational QVT is based on the OMG’s QVT operational package mappings and provides a procedural

language. This package is used in the implementation of this thesis and it is explained in more detail in

Section 5.3.2.

 The ATL Transformation Language (ATL) is a transformation language [10] with a complete IDE and

debugger built on top of the Eclipse platform.

http://www.omg.org/cgi-bin/doc?bmi/2007-6-5
http://www.omg.org/cgi-bin/doc?bmi/2007-6-5

12

3 Problem statement

As we discussed in Section 2.2 there are some concerns that defy the typical forms of modularization because

they “cut across” several dimensions. These concerns are known as “crosscutting concerns”. A simple example of

a crosscutting concern in a software system is logging.

The concept of “crosscutting concern” is not restricted to programming and it can be also extrapolated to the

domain of business processes. For example business activity monitoring can also be considered a crosscutting

concern. Activities realizing this concern will be scattered across all the processes that need to be monitored.

With state of the art process modeling language there is no module that encapsulates all functionality related to

business activity monitoring.

In this chapter we explain the problems related to crosscutting concerns in the domain of business process

modeling with the help of an example. Then, we discuss several open issues in AO4BPMN 1.0 [1], which

introduces aspect-oriented concepts to BPMN.

3.1 Motivating example

To better motivate things, we introduce in this section a simplified version of two business processes in a web

application development company. This example will be used all along this thesis for illustration purposes.

In our example we will assume that the company has its developers structured in three teams. Among all the

processes of the company we will focus on two specific business processes: feature development and bug fixing.

Team 1 and Team 2 are responsible for feature development while another team focuses only on bug fixing. The

company uses an A/B testing methodology [8]. The aim of this methodology applied to web application

development is to guarantee the most satisfactory implementation of a feature by means of developing two

alternatives and comparing the reaction of the users afterwards. In Figure 3 we can see the feature development

process. After a feature request is received, Team 1 and Team 2 start working on alternative implementations

and afterwards their implementations are evaluated in the sub-process activity evaluate A/B and finally delivered.

The bug fixing process follows a simpler structure. The team responsible for bug fixing solves a bug request by

means of the sub-process activity fix bug and afterwards the patch is commited to the company intermediate

servers by means of the activity commit patch and the process finishes with the patch delivery to the client.

13

In order to improve performance and control the process of A/B testing implemented in the feature development

process the company is interested in monitoring the time each team takes to implement their alternative feature.

The company also wants to guarantee that the developers follow the internal coding guidelines. To achieve these

two goals the company applies start and stop timer tasks around the implementation feature tasks and before the

feature delivery and solution delivery the company applies a check guidelines task. Figures 5 and 6 show the

modified business processes in BPMN.

Figure 3 Feature development process diagram

Figure 4 Bug fixing process diagram

Figure 5 Complete feature gevelopment process diagram

14

Figures 5 and 6 show that the complexity of the process models increase considerably after the integration of the

concerns monitoring and compliance. The lack of a way to properly modularize these concerns leads to several

problems. The process morels get more complex, less maintainable and less reusable. A part from these

disadvantages the concepts of monitoring and compliance are not much related to the core functionality of the

processes of feature development and bug fixing in our example therefore understandability is also affected.

3.2 Crosscutting concerns in BPMN

The example presented in the previous section allowed us to see several problems due to the crosscutting nature

of the concerns monitoring and compliance. The first two problems that we observe when crosscutting concerns

are modeled in the business process are scattering (activities realizing business activity monitoring are spread in

two processes) and tangling (activities realizing different concerns are mixed).

If we compare the number of elements shown in Figure 3 and those in Figure 5 we see how this number

increased considerably after introducing the activities related to the crosscutting concerns monitoring and

compliance. This scattering makes the models difficult to manage. Every time we would like to add a new feature

implementation team to implement for example an A/B testing approach that would consider more than two

alternatives our process would get much more complex. For example, if we want to add an implement feature

task for a new team, two more monitoring tasks would have to be added to the process.

Another problem is that the more the models grow, the less separation of concerns we have. The crosscutting

concerns are scattered through all the processes and this blurs the main purpose of them. In the case of the

feature development process we can distinguish that the tasks related to implementation and A/B testing are the

ones semantically significant for the purpose of the process and the concepts of monitoring and compliance do

not do anything else than tangling our model.

From these problems mentioned above several non-functional properties are hampered. The more our processes

grow, the less understandable they become. Due to the tangling our processes become less understandable by

experts who would like, for instance to improve them. In this same direction maintainability is also affected. If

Figure 6 Complete bug fixing process diagram

15

the company wants to review the monitoring approach that is already implemented, it will be a difficult task to

search through all the process models to understand where monitoring was applied and where it has to be

applied later. The reuse of the base processes (that is the processes without the crosscutting concerns) also

becomes a cumbersome task because the concerns of monitoring and compliance are not properly modularized.

3.3 Limitations of AO4BPMN 1.0

As we described in Section 2.2.3, the language AO4BPMN 1.0 is introduced in [1]. Some concepts in that

language are still open and need to be defined. In this section we will describe in more details the open issues in

AO4BPMN 1.0 and we will explain how these problems are approached in this thesis.

The authors of [1] presented the main concepts of AO4BPMN 1.0 including the join point model, pointcut

language, and advice language. In addition, the authors proposed two different graphical notations. However, in

[1] the authors only discussed several alternatives for the pointcut language such as OCL [9], QVT [7] or ATL

[10]. They did not go further by presenting a concrete pointcut language for AO4BPMN. In this Thesis we

address this problem by providing an OCL-based pointcut language and also giving the possibility for other

developers to add support for their own pointcut languages. More details on this topic are given in Section 4.2

from a conceptual point of view and in Section 5.2.4 from an implementation point of view.

The authors also identified in [1] the need for a weaving mechanism to compose aspects and processes.

However, there was no concrete mechanism for that. In this thesis we address this problem by defining a

weaving algorithm and providing an implementation of such an algorithm following the suggestions stated in [1]

for using a model to model transformation to produce the output models of such a composition. More details on

the design and implementation of the weaver are given in Section 4.6 and Section 5.2.

Furthermore, AO4BPMN 1.0 was not based on the BPMN 2.0 specification and the existing editor is based on

STPBPMN [24], which is no longer developed. In this thesis we address this third problem by implementing an

editor for AO4BPMN 2.0, which is an extension of an existing Eclipse based and BPMN 2.0 compliant editor.

More technical-related details on the editor implementation are given in Chapter 5.

16

4 AO4BPMN 2.0: language overview

In this chapter we offer an overview of the AO4BPMN 2.0 language. AO4BPMN 2.0 aims to be an aspect-oriented

extension of BPMN that facilitates the modularization of crosscutting concepts in BPMN models such as

separation of duties, billing, monitoring, etc. AO4BPMN 2.0 also aims to cover the open issues left in the

specification of AO4BPMN 1.0 presented in Section 2.2.3.

In the following sections we present the language in more detail starting for the definition of the main constructs

and a description of the different graphical representations that the language offers: A light-weight and a heavy-

weight approach. We close this chapter explaining the theoretical details behind the design of the weaving

algorithm.

4.1 Join points

As we already introduced in Section 2.2.3.1 join points are steps in a process where crosscutting concerns can be

integrated. As introduced in Section 2.2.1 an aspect-oriented language defines the set of available join points by

means of a join point model. In AO4BPMN, flow objects are supported as join points. Flow objects, as we

introduced in Section 2.1, are the main describing elements within BPMN allowing the user to define events,

activities and gateways. AO4BPMN’s join point model defines joint points in an implicit way; this means that the

base processes are standard BPMN constructs and can be used still by any BPMN 2.0 tool with or without aspect-

oriented support. We also gain more flexibility for the modeler of the base process does not need to foresee the

potential extensions. An explicit approach would force the modeler of the base process to define the join points

manually therefore hampering flexibility and creating non standard and less reusable models. Because of this,

there is no special construct for join points for they are implicitly defined by the pointcut that selects them.

Examples of join points would be all the activities that require billing.

Figures 7 and 8 show the processes of our web application development company example described in Section

3. The underlined elements are join point candidates according to the join point model defined by AO4BPMN.

17

4.2 Pointcuts

As we previously introduced in Section 2.2.3.1 a point cut allows us to select join points over which we want to

apply a certain crosscutting concern. A pointcut has a query attribute that is used to select the join points.

There exist several approaches on how to select join points and some of them are described in [1]. One

possibility is to let the modeler define explicit associations between the pointcuts and the join points. The main

drawback of this approach is the lack of scalability. In real-scale processes this option might not be feasible.

Another possibility is by means of join point annotation. This approach has a similar problem as the previous

one: our models would rapidly scale and would become difficult to manage with normal tools. Nevertheless this

approach is more comfortable for business users.

A third approach is based on the use of query languages. In this case we must deal with the choice of powerful

versus simple languages and what is best for business users from the point of view of complexity and

Figure 7 Feature development process with candiadate join points underlined

Figure 8 Bug fixing process with candidate join points underlined

18

intuitiveness. Possible candidate languages could be OCL [9] or more concrete implementations of Model Query

languages such us EMF ModelQuery [17] or EMF IncQuery [18]. The problem with these implementations is that

we cannot assume the business user has knowledge about them or is willing to learn it. Nevertheless EMF

ModelQuery2 offers the possibility to execute queries in a SQL-like syntax. Listing 2 exemplarily shows the syntax

needed to formulate a query that selects the Manuscripts with the title “BPMN tutorial” using EMF ModelQuery

meanwhile Listing 3 shows exactly the same with EMF ModelQuery2 [19].

In the first case we observe a certain degree of complexity related to the syntax and probably a business user

would not be familiar with such a language even if it has a syntax close to SQL. The query shown in Listing 3 is

closer to what a business user might be able to use. The use of selection constructs defined in languages such as

QVT [7] or ATL [10] is closely related to the use of OCL [9] for these languages offer their own extended version

of OCL.

In our implementation of AO4BPMN, a query-based pointcut language is used. In Chapter 5 we discuss how we

overcame this problem of choosing a language to give support to by offering a built-in OCL implementation and

allowing at the same time for expert users to extend our implementation and define their own query-based

pointcut Languages. As part of future work in this direction we could also offer a wizard-based query creation

process that would allow non expert users to define queries without writing actual code.

new SELECT(

 new FROM(selectedObjects),

 new WHERE(new EobjectAttributeValueCondition(

 EXTLibraryPackage.eInstance().getTitle(),

 new StringCondition.stringValue(„BPMN Tutorial“)

)

)

Listing 2 EMF ModelQuery code fragment that selects the manuscripts with the title „BPMN Tutorial“

From Manuscript as m

 Select m.title

 Where m.title = „BPMN Tutorial“

Listing 3 EMF ModelQuery 2 code fragment that selects the manuscripts with the title „BPMN Tutorial“

19

4.3 Advices

As introduced in Section 2.2.3.1 an advice is an AO4BPMN construct that implements some crosscutting concerns

and may also include a special activity Proceed. The semantics of the advice is to apply the defined crosscutting

concepts before, after or around the selected join points. These crosscutting concerns are merged along the

different processes keeping always previous possible associations between the affected join points and other

elements in the model.

The special activity Proceed can be used to determine how the crosscutting concerns must be applied. This

Proceed activity conceptually replaces the selected join point therefore everything implemented before the Proceed

activity will also be applied before the join point and the same happens with everything implemented after it. If

the Proceed activity is not used the type of the advice must be defined (i.e. before, after or around).

An advice is self-contained, which means that no sequence or message flows are allowed between advices and

other elements in the model.

4.4 Aspects

Aspects, as described in Section 2.2.3.1, are elements used to modularize the modeling of crosscutting concerns.

An aspect contains one or more pointcuts and associated advices. The aim of this construct is to group

crosscutting behavior under a single concern such as monitoring, compliance or security.

4.5 Graphical Representations

In order to model using the previously defined constructs of the AO4BPMN 2.0 language we offer the same

notations introduced in Section 2.2.3.3 and first defined in [1]. The two different graphical notations are: a light-

weight notation that uses standard BPMN elements and a heavy-weight notation that defines its own graphical

syntax. Figures 9 and 10 show an example of the respective graphical notation using the motivation example

introduced in Chapter 3.

4.5.1 Light-weight notation

The light-weight graphical syntax uses standard BPMN elements. Models that use this notation will always be

compatible with any other standard BPMN tool. Figure 9 shows an example of this lightweight notation.

 Join point: They do not have explicit graphical representation for join points are by definition flow

elements selected by a point cut query.

 Pointcut: This construct is represented as a data object that has a text annotation containing the text

“Pointcut”. The query is stored in the document property of the data object.

 Advice: This construct is represented as a sub-process that has a text annotation containing the text

“Advice”. A further optional annotation can be used to indicate the advice’s type.

20

 Aspect: This construct is represented as a standard BPMN Pool that has a text annotation containing the

text “Aspect”.

4.5.2 Heavy-weight notation

Deviating from the BPMN2.0 standard, the heavy-weight graphical syntax introduces new notational elements for

the AO4BPMN concepts. The models that use this notation thus will not be displayable with other standard

BPMN tools.

 Join Point: As we stated before these elements do not have explicit graphical representation for join

points are by definition flow elements selected by a pointcut query.

 Pointcut: This construct is represented as an oval.

 Advice: This construct is represented as a rectangle with two parts. The upper part contains the name

and optionally the type of the advice and the other part contains the sub-process activities that

implement the desired crosscutting concern.

 Aspect: This construct is represented as a pool with rounded corners.

Figure 9 Light-weight notation monitor aspect diagram

21

4.6 Composition of aspects and processes: the weaving

AO4BPMN needs an appropriate mechanism to compose the crosscutting concerns defined by aspects and the

different business processes. A process transformation is a feasible approach for weaving AO4BPMN aspects with

BPMN process models for BPMN is only a modeling notation and cannot be directly executed. As opposite,

another approach is presented in [4] that uses an aspect-aware engine.

A model weaver matches the join points by evaluating the different pointcut queries and then the crosscutting

concerns defined by the aspects are inserted according to their own definition.

The application of such a composition results in standard BPMN models that can be manipulated by any other

standard BPMN tools. It also allows the user to have different views of a process, some of them hiding for

example not relevant crosscutting concepts.

General graph transformation techniques [38] can help us understand the problem. This composition method in

particular can be implemented using model transformations. In Chapter 5 we describe the details of the

implementation of such an algorithm.

Figure 10 Heavy-weight notation timing aspect diagram

22

In this section we describe an example of such a composition and the main conceptual issues related to the

design of such an algorithm. Section 4.6.2 describes how the algorithm must deal with the process structure.

Section 4.6.3 defines special branching cases that need to be considered. Section 4.6.4 closes the section with

comments about the need of a re-linking strategy.

4.6.1 A weaving example

Taking part of the example about the web application development company Figures from 11 to 13 illustrate the

different states involved in the composition method. Figure 11 shows the base process of bug fixing; Figure 12

shows the aspect that encapsulates the crosscutting concern of guidelines compliance and Figure 13 shows the

result of composing the previous models. In this example we use the light-weight notation introduced in Section

4.5.1.

Figure 11 Bug fixing process

Figure 12 Light-weight notation compliance aspect

Figure 13 Bug fixing process after the weaving operation

23

4.6.2 Clone and merge

The weaving defined in [1] can be reduced to a clone and merge algorithm. The main idea behind the algorithm

is that the structure defined in the different aspects has to be cloned and merged with the selected Join points.

The cloning algorithm is responsible of cloning the needed information from the aspect-oriented model to the

process model. Given a join point and a Proceed element as input our knowledge is limited to whatever is directly

attached to these elements. Taking advantage of this situation we will design an algorithm that clones by level.

We define level as a set of all the elements that are at the same distance of the proceed element and we define

distance between two elements as the number of associations in the shortest path that links the two elements.

Figure 14 represents an abstract structure with elements and their distance to the central element (element with

distance 0). Our algorithm will clone first all the elements at distance 1, then at distance 2, and so on and so

forth until the last level is reached.

4.6.3 Special branching cases

a In a BPMN process diagram the different flow objects and other elements such as data objects are related by

means of different kinds of connecting elements. As we introduced in Section 2.1 these are sequence flow,

message flow and association. Because of these three different constructs, we find in a process diagram three

different flow levels:

 Everything that is linked by means of a sequence flow connection belongs semantically to the process

itself as part of its sequence of steps. It is essential then that the algorithm supports this flow level for it

is the level that contains the semantic part of the process.

Figure 14 Abstract structure with the elements and their distance to the central element

24

 Everything related by means of an association connection is used to express relevant information that is

found along the steps of the process but it does not belong to the normal flow. This information must

also be considered by the algorithm for it contains relevant objects that contribute to the semantics of the

process.

 Message flows are used to express communication between processes or organizations. The definition of

aspect as it is stated in [1] does not allow the use of message flows for an advice is a self-contained unit

that cannot receive any kind of external communication. That is why message flows should be ignored by

the algorithm.

Because of these three flow levels several branching issues arise at the implementation level. Section 5.2

describes these issues and the applied solution as well as other technical issues that are found in the

implementation of such an algorithm. In concrete, Sections 5.2.7 and 5.2.8 deal with branching-related

problems.

4.6.4 Re-linking strategy

As we stated in Section 4.6.2 this algorithm is by nature a clone & merge algorithm. The merging part of the

algorithm also presents some problems that need to be solved. It is important not to lose whatever was connected

to the join point before executing the weaving therefore these elements need to be re-linked to or from the newly

cloned elements.

First of all after the cloning is performed we need to distinguish what elements are candidates to be targets or

sources of the so called re-linking phase. One of the main characteristics that we observe is that these candidates

must have either only incoming or outgoing edges. This condition is still not strong enough as we will see later

on this Section there some special branching cases to take into account.

A problem appears when observing the most generic case. Taking into account only tasks and sequence flows our

target process model might look like the model depicted in Figure 15.

Figure 15 Generic join point structure with n incoming and outgoing connections

25

In the same conditions our aspect-oriented model might look like the model depicted in Figure 16.

We need to define a re-linking strategy that merges the cloning structure with the original keeping the semantics

and trying not to overload the model with edges. We cannot afford on generating 2n
2
 edges, therefore, unless n

equals 1 we must define a clearer way to merge these models.

According to the BPMN 2.0 specification the following structures depicted in Figure 17 are equivalent as well as

in Figure 18.

Figure 16 Generic Proceed structure with n incoming and outgoing connections

Figure 17 Equivalence between splitting structures according to the BPMN 2.0 specification

Figure 18 Equivalence between merging structures according to the BPMN 2.0 specification

26

Taking into account the equivalence of these structures we define the following generic re-linking strategy. All

the cloned elements that are candidates for this re-linking will be connected to the originally steaming out

elements through the use of a parallel gateway connected to an exclusive gateway as depicted in Figure 19.

In the case of n = 1 we can avoid the creation of the intermediate gateways and simplify the re-linking using a

direct connection via a sequence flow link. This structure is generated in both sites of the selected join point. We

need to generate it for both the incoming and the outgoing elements.

Figure 19 Generic case of our re-linking strategy

27

5 Implementation and tooling

In this section we document the implementation and the functionality of the AO4BPMN editor tool and the

details of the weaving algorithm. This section realizes the concepts introduced in Chapter 4.

5.1 Editor tool

The editor tool described in this section is the part of the implementation that realizes de modeling concepts

presented in Sections from 4.1 to 4.4. The main goal of the editor tool is to enable the creation and modeling of

BPMN diagrams using the aspect-oriented constructs described in Chapter 4.

Section 5.1.1 describes the implementation technology used to implement the editor tool. The sections from

5.1.2 to 5.1.6 describe the realized extensions as the key points of the implementation.

5.1.1 Implementation technology

There exist already several running implementations of editors focused on the BPMN modeling language. The

main purpose of the thesis was the AO4BPMN language. That is why we decided to extend an existing editor

rather than implementing one from scratch. This decision was partly taken to avoid the complexity of

implementing a full editor. Regarding the selection of an adequate editor the following requirements were

established:

 The Editor shall be compliant to the BPMN 2.0 specification.

 The Editor shall provide clear mechanisms for its extension.

Eclipse and the BPMN2 editor that comes with the Eclipse Model Development Tools (MDT) project [14] fits

these requirements and its components are open source which adds value to the decision.

The BPMN2 Modeler [15] is a graphical modeling tool which allows creation and editing of BPMN diagrams. The

tool is built on Eclipse Graphiti [16] and uses the BPMN 2.0 EMF meta-model [6] currently being developed

within the Eclipse Model Development Tools (MDT) project [14]. This meta-model is compatible with the BPMN

2.0 specification [2] proposed by the Object Management Group.

http://www.eclipse.org/graphiti
http://www.eclipse.org/modeling/mdt/?project=bpmn2
http://www.eclipse.org/modeling/mdt/
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.osoa.org/display/Main/Home

28

Figure 20 shows what are the main dependencies of the implemented project ao4bpmn. The ao4bpmn

implementation aims at extending the BPMN2 modeler therefore it depends on both the BPMN2 meta-model and

modeler packages. As we descrive later in Section 5.2.1, the QVTo Language [7] is used to implement

theweaving algorithm and we also offer built-in support for OCL [9] as a point cut query language. The ao4bpmn

package also makes use of some Graphitti [16] concepts and that is why a dependency appears in the figure. The

BPMN2 modeler tool defines a single extension point that allows us to define our own runtime variation of the

tool. This extension point has the following identifier: org.eclipse.bpmn2.modeler.runtime

The extension point offers the following possibilities:

 To extend the property tabs of any modeling element defined in the BPMN2 meta-model (the actual

eclipse implementation).

 To define your own custom tasks.

 To define your own model extension. That is, to extend the meta-model with your own properties.

 To enable/disable the availability of one or more modeling elements.

 To provide your own feature containers for available modeling element. That is, to override part of the

behavior such as the rendering or linking restrictions of user tasks for instance.

 To define your own style sheet. That is, to define background colors and styles for the tool.

Figure 20 Plug-in structure in packages

29

5.1.2 AO4BPMN runtime extension

The first step of our implementation is to define the root of our extension. We need to define our own runtime

rxtension to which the rest of functionality will be linked. Figure 21 shows the XML structure of the runtime

extension point. It is used to define the name and description of our extension as well as to point to the plugin

class.

The runtime extension point does not allow us to define our own modeling elements therefore the possibility to

extend the meta-model and define the different aspect-oriented elements that we need is not feasible. In [1], the

different aspect-oriented modeling elements are described and mapped to actual BPMN modeling elements.

Taking this into account we decided to implement the extension using the following approach:

 Aspect: We extend the pool element (participant class in the tool meta-model) with a boolean property

named isAspect that will allow the user to use this element as a normal pool or as an aspect.

 Advice: We use the same technique described above. A property named isAdvice is defined for the sub-

process that will allow the user to use this element normally or as an advice.

 Pointcut: In this case we considered two possibilities. On the one hand, we can implement the Pointcut

element as a text annotation steaming out of an advice. This text annotation would then contain the

query information and it might also be linked by more advices in case the query needs to be reused. On

the other hand, we also considered the possibility of having our own modeling element for a Pointcut. To

achieve this we could only define a CustomTask that would also contain the query and could also be

linked to several advices independently. Both options were implemented but only the light-weight

notation was kept active. Part of the future work could be to allow the user to switch between these

representations.

 Join point: The join point element does not need to be defined in an explicit way. A join point according

to our initial definition would be any element that could be selected by the user-defined pointcuts.

 Proceed element: In this case we opted for the opted for the option of defining our own CustomTask

that would appear in the user palette as a proceed element for the user to use.

Figure 21 XML fragment of the runtime extension point

30

The following sections describe in more detail how the above described approach was implemented. All the

different extensions we define from now on must point to our runtime. In order to achieve this all these elements

will have their runtimeId property set to ao4bpmn.AO4BPMNRuntimeextension.

5.1.3 Editor model extension

In order to inform the tool about how our properties must be serialized we have to define our editor model

extension. We do this by defining our own Ecore model and registering it to our runtime extension. The main

purpose of this Ecore model is to inform the tool about how our properties must be serialized.

Figure 22 shows how the DocumentRoot element from the BPMN2 meta-model is extended. This element is the

root element and contains all the definitions and available modeling elements and properties of the BPMN2

meta-model. Each of the properties must have its own ExtendedMetaData element that holds the necessary

information for the tool to handle the generation of these properties.

Figure 22 Ecore structure showing our extension properties

31

After defining our editor model extension we must map the properties that we defined to the actual modeling

elements. To achieve this we must define our own modelExtension elements in the plugin file as shown in

Figure 23.

To finish we must ensure that our model has a valid URI therefore we need to register the model package to the

extension org.eclipse.emf.ecore.generated_package as shown in Figure 24.

5.1.4 PropertyTab extensions

Once we have our properties defined we need to make them available to the end user so he can set their values

whenever aspect-oriented modeling elements would be required. The properties of the different modeling

elements are always available through the property tabs. In order to make our properties available we must

therefore extend these property tabs as shown in Figure 25.

Figure 23 XML fragment corresponding to the editor model extension

Figure 24 XML fragment that registers our ecore model to the extension org.eclipse.emf.ecore

32

A part from this we need to define the corresponding PropertySection classes. That means that we need to create

our AspectPropertySection as well as our AdvicePropertySection class. This class extends the DefaultPropertySection

class and we only need to override two methods:

 appliesTo(p:IWorkbench, s:ISelection):Boolean. The aim of this function is for the platform to know wether

a property tab must be rendered or not when certain element is selected in the canvas.

 createSectionRoot():AbstractBpmn2Composite. The aim of this function is to create the Composite element

that contains the real elements of the property tab.

To have our PropertyTabs ready to use we need therefore one more thing: The Composite classes. That means we

must also define an AspectPropertiesComposite and an AdvicePropertiesComposite class that hold the real

implementation of these properties. These classes are responsible for the rendering of the properties as well as of

the logic behind setting and unsetting them.

5.1.5 Proceed element as a CustomTask

In order to define our Proceed model element we decided to directly define our own CustomTask. The advantage

of this method is that this element will appear in the palette for the user to use it directly. This is a much more

comfortable approach and also it gives user friendlier result. The only restriction is that you can only define

custom tasks, not any other modeling element.

To do so we need first of all to add the following to our plugin file:

Figure 25 XML fragment corresponding that extends the PropertyTab of the Participant element

Figure 26 XML fragment corresponding to a CustomTask

33

In order to define the behavior of this Proceed element we have to provide the tool with our own

FeatureContainer. Our ProceedTaskFeatureContainer class will only make sure that the name of this task is always

set to “proceed”. We do not define any decorator or any other specific functionality.

5.1.6 Triggering the weaving action

In order to allow the end user to trigger the weaving we must also extend the extension point

org.eclipse.ui.actionSets with our own action as shown in Figure 27.

This will create an action button and menu entry that will allow the user to trigger the weaving action as

described in the next section.

5.2 Weaving

Aspect models are semantically separated from the process models therefore an appropriate composition method

is needed. We are dealing with several models as input containing both aspect related information and the

different BPMN processes.

Section 5.2.1 describes the technologies used in the implementation of the weaving algorithm. Sections 5.2.2,

5.2.3 and 5.2.4 talk about the steps previous to the algorithm itself. In Sections 5.2.5 and 5.2.6 we present the

algorithm itself and the data structures used. Sections from 5.2.7 to 5.2.9 present special cases and problems

related to the algorithm as well as the approach adopted to solve them. We conclude this section by presenting a

discussion about the termination and cost of the implemented algorithm in Section 5.2.10.

5.2.1 Implementation technology

The main goal of the weaving algorithm, as we described in Section 4.6, is to compose aspects and processes.

Such an algorithm needs one or more models as an output taking also one or more models as input. Model to

Model transformations, introduced in Section 2.3, deal with this sort of inputs and outputs.

QVTo [7] as well as BPMN [2] is based on an OMG standard, which makes it a good candidate, even though it is

not as mature as ATL [10]. ATL is not based on official OMG standards therefore by using QVTo we ensure that

Figure 27 XML fragment correcponding to the weaving action

34

future reuse of this implementation for other tools and contexts that are also based on OMG standards is

possible. The reason we choose QVTo and not other members of the QVT language family is because of its

operational nature. ATL and declarative QVT are declarative languages based on rule matching or mapping

definitions. Due to the nature of our problem, which will be discussed in detail in the next section, it is more

convenient for us the use of an operational language. As we mentioned in Section 4.6.2 the weaving can be

reduced to a clone & merge algorithm. Using a declarative language to implement such an algorithm is not the

most appropriate solution. Listing 4 shows a code fragment of an ATL transformation that maps Authors to

People. A ruled-based language like ATL will not satisfy our needs. Listing 5 shows a code fragment of a QVTo

mapping function that also maps Authors to People. The procedural nature of QVTo will help us better in the

implementation of a clone & merge algorithm. MMAuthor and MMPerson in Listings 4 and 5 refer to the different

meta-models to which the models A and P, that contain the classes Author and Person, are conform to.

5.2.2 Clone and merge

As we stated in Section 4.6.2 the weaving can be reduced to a clone and merge algorithm. The main idea behind

the algorithm is that the structure defined in the different aspects has to be cloned and merged with the selected

join points.

Rule Author {

 From

 A:MMAuthor!Author

 To

 P:MMPerson!Person (

 name <- a.name,

 surname <- a.surname

)

}

Listing 4 Code fragment of a model transformation in ATL that maps the class Author to Person

Mapping MMAuthor:Author::toPerson() MMPerson:Person {

 name = self.name;

 surname = self.surname;

}

Listing 5 Code fragment of a model transformation in QVTo that maps the class Author to Person

35

The fact that we decided to extend the BPMN2 editor with an eclipse plug-in restricts us to the BPMN2 meta-

model used by the editor and also how the graphical representation is managed.

As we can see in Figure 28 the objects referencing the activities do not have knowledge of the sequence flow that

binds them. This information is in the association itself. This is an important problem that significantly influenced

the designed weaving algorithm. Because of this restriction and given only a Proceed element and a join point we

decided the main body of the algorithm to have the structure depicted in Listing 6.

Figure 28 XML fragment that shows how tasks are related by means of a sequence flow

...

while currentLevel != ∅ do

 foreach edge in edges do

 clone(edge);

 endForEach;

 ...

endWhile;

...

Listing 6 Pseudocode fragment illustrating the iteration strategy used in the weaving algorithm

36

The idea is that we are iterating over edges because they will give as direct access to the information we need to

clone. Listing 6 shows how we iterate over the edges until currentLevel is empty.

5.2.3 Input and output

In the most generic of the cases we see that the algorithm needs to produce one or more models as an output

taking also one or more models as input. It also can happen that the aspect-oriented information and the target

processes are in the same model. That is why we need to generally define the structure of our input and output

before starting with the algorithm design.

To decrease the complexity of the algorithm we will design consider only as input a model containing the aspect-

oriented information and another model containing the target processes. In the case of this information being in

the same model, this can be both inputs at the same time.

For simplicity purposes the join point selection will not be performed by the algorithm. This will also give us

more flexibility for the implementation of such a selection process. That means that our algorithm will also take

as input the unique ids of a proceed element and a selected joinPoint. This also means that the algorithm will

have to be executed for every pair of proceed elements and selected join point if applicable, that is, if the join

point is a candidate to match this proceed element.

As an output we will generate a model containing the applied weaving. This output model will be again used as

input if more pairs exist so the different weavings will be applied sequentially without any specific order. Once

all the applicable pairs of join points and proceed elements have been weaved we will have several output

models generated as a results of the whole process.

5.2.4 Join point selection

This is a crucial step in the process and it can also be approached in several ways. We need to provide support for

some kind of selection language that would allow the user to define their own aspects. In Section 4.2 we

discussed the need of a query-based Pointcut Language and we listed several alternatives. All of the described

options has advantages depending on addressed usertherefore we decided to implement our own extension

point. Our extension offers OCL [9] as a built-In query-based pointcut language but any developer can register

their own languages.

37

As we can see in Figure 29 our language extension point needs a unique id and a name and optionally a

description. The class attribute contains a reference to the class that implements the desired language. This class

needs to implement only two methods:

 canExecute() : Boolean This function has access to a global property that represents the query string and

its aim is to return whether the query string is executable or not. Here the developer may check for

syntax errors, etc.

 execute() : List<String> This function has access also to the property representing the query string and a

property representing the URI of the queried model. Using this input the aim of the function is to return

a list of Strings representing the ids of the selected elements.

5.2.5 Cloning cases and conditions

In Section 4.6.2 we decribe how the algorithm visits the structure we need to clone. In order to guarantee the

termination of the algorithm we must guarantee that no edge is treated more than once. A part from this we

need to know what levels are already cloned. The algorithm uses two different sets of edges:

 currentLevel contains the elements of current level. For instance if we are cloning level 1 this set contains

all the elements that are at distance 1 from the proceed element.

 nextLevel contains the elements so far cloned of the next level. For example if we are cloning level 1 this

set contains all the elements so far cloned that are at distance 2 of the proceed element.

As we are dealing with directed edges we need to take into account source and target elements.

Figure 29 Pointcut query language extension point structure

function clone(Edge: edge) : void

 if {edge.source} ⊆ currentLevel or

 {edge.target} ⊆ currentLevel then

 //Treat different cloning cases

 ...

 endIf;

endFunction;

Listing 7 Pseudocode fragment that illustrates the main cloning condition used by the algorithm

38

Given the cloning condition shown in the Listing 7 we distinguish the following three cloning cases:

 Both source and target belong to the current level: This means that they have already been cloned

therefore only the information related to the link between these elements needs to be copied.

 Only the source element belongs to the current level: This means that the target element of the link

belongs to the next level.

 Only the target element belongs to the current level: This means that the source element belongs to the

next level.

In the two last cases we need to clone the element belonging to the next level and add it to the nextLevel set.

Once all the edges having either source or target in the currentLevel set have been treated we go to the next level.

5.2.6 RealMaps

Our algorithm needs to keep track of what elements have been already cloned and, more important, the

relationship between an already cloned element and its original element. The reason behind this is that when an

element is cloned it might need to be merged with part of the already cloned graph.

To store this information we use two data structures: RealMap and RealEdgeMap. The aim of these structures is to

keep track of the elements, edges and its clones. The idea behind both of them is the same. They are Maps with

entries that take the original element or edge as keys and store the cloned element as the value.

5.2.7 BoundaryEvents Branching

In BPMN [2] a modeler is allowed to define boundary events. These events indicate that the activity to which

they are attached should be interrupted when the event is triggered.

Because of the nature of these events and because of the fact that they are usually used for error handling they

will never be candidates for re-linking. What is more, everything directly or indirectly steaming from them will

never be considered by the re-linking strategy.

39

As we can see in Figure 30 only the events themselves have the necessary information to proceed and they will

not be found by our strategy that iterates over links for these links are “virtual”.

To overcome this issue we need to identify and register these events beforehand as it is shown in Listing 8. Right

after cloning an element we check if the element connected to it (that is, the element that will be treated in the

following level) has one or more boundary events and we clone them as if they would be in this same following

level (distance to the proceed element). Using this strategy we guarantee that these events will also be

considered normally by the algorithm.

5.2.8 Data branching

This is a similar case as the one previously described. Data branches are also not considered by the re-linking

strategy because of their nature. In this case there is no need of any beforehand identification because, as we can

see in Figure 31, these elements are linked via associations.

Figure 30 XML fragment that illustrates how a boundaryEvent is represented by the editor

...

if currentLevel ⊆ {source} then

 Link.cloneTarget(source);

 nextLevel += target;

 Events := target.getBoundaryEvents();

 forEach event in Events do

 cloneBoundaryEvent(event);

 nextLevel += event;

 endForEach;

endIf;

...

Listing 8 Pseudocode fragment illustrating the treatment of boundary events

40

Data branching also includes another issue to take into account: edge targeting. As we can see in Figure 32 the

BPMN2 editor allows us to model similar structures.

This case is also considered by the algorithm. The extended editor also allows us to link objects to an association

which at the same time targets another association (see Figure 33). Due to the unclear semantics of such a

situation the algorithm ignores such a case.

Figure 31 Example of a simple data association

Figure 32 Example of a data association targeting an edge

41

5.2.9 Unique ids

During the transformation the algorithm creates new elements so we must overcome the problem of generating

unique ids for these new elements. In order to achieve this we will define our own id generation strategy. We

face two different cases:

 We create a new element as a copy of an existing element

 We create a new element from nothing (i.e., the generated gates in the re-linking process)

In the first case we will add a suffix to the original id to produce a new id and in the second case we will give

them a fixed name. We must note that in the second situation we can assume that in the worst of the cases only

four gateways will be created per transformation. As we can see this technique does not guarantee uniqueness in

any of the cases. To solve that we will add a transformation prefix that will be generated before each execution

of the weaving algorithm, that is, for every applicable pair of selected join point and proceed element. The

uniqueness of this id is checked beforehand therefore if the prefix is unique we can imply that all the ids

generated with that prefix and the previously mentioned strategy will be unique.

5.2.10 Cost and termination

In this section we will talk about the cost of the developed algorithm from a theoretical point of view and we will

justify its termination.

We will focus on the concrete problem of having only one advice and one selected join point in, what we can

assume, an undirected graph. Despite the fact that we work with directed edges we are going to treat them as

undirected. That is because we cannot model a situation in which a Task_1 is connected to a Task_2 being this

last one the target of the relationship and at the same time this Task_2 is connected to Task_1 being the latter the

target of this other relationship. That means we can ignore the fact that in BPMN we can distinguish between

source and target therefore simplifying our problem.

Figure 33 Example of a non clear modeling situation

42

Let us consider the worst of the cases in which we have a complete graph, that is a graph G = (V, E) where for

every pair of nodes a and b that a, b ⊆ V , it is true that {a, b} ⊆ E. By definition we have that a complete graph G

= (V, E) :

This means that a complete graph G with n nodes is the simple graph with more nodes among all simple graphs

with n nodes.

Let us also consider the unique existence of a node pk with 0 ≤ k ≤ n representing the proceed element and di,j the

distance between a node pi and another node pj. Let dmax be the maximal distance, that is:

The algorithm iterates over all the edges as many times as levels the graph has. In the previous sections we

defined the level of a graph G as a set of all the nodes that are at the same distance of the proceed element and

we defined distance between two nodes as the number of edges in the shortest path that links the two elements.

Therefore, we can conclude that the number of levels in our G graph as previously defined equals dmax. With all

this information we can already calculate the cost of our algorithm:

In practice, the algorithm will be executed for every pair of Proceed element and selected join point but this

number is of a much lower magnitude than the n nodes of the graph therefore does not significantly influence

the already calculated cost. There are other steps in the final implementation that require a single iteration over

the whole set of nodes (i.e., registration of boundary events) but again this steps are not costly enough as to

influence in this calculations. This leads us the following conclusion: Given a simple undirected graph G = (V, E)

with |V| = n, the cost of our algorithm is

 () =

43

Concerning the termination of the algorithm we will give some informal comments about it in the following lines.

As we explained before the algorithm uses the sets currentLevel and nextLevel to explore the different levels of our

graph. We can informally prove that our algorithm terminates by observing the fact that we are always in the

domain of finite graphs and that we only visit the nodes maximum once. That means that at some point the set

nextLevel will be empty and the algorithm will terminate.

44

6 Case study

In this chapter we illustrate the defined concepts and the respective implementations by means of a case study.

There are two main parts to focus on: The editor tool and the weaving mechanism. Section 6.1 illustrates how

the base processes of the case study are modeled. Section 6.2 describes how aspects are modeled. Section 6.3

shows how the weaving is started and the resulting processes.

6.1 Modeling the processes

In this section we will model the processes of the example introduced in Section 3.1. We first open Eclipse and

we switch to our runtime extension by means of the preferences menu. These steps are shown in Figure 34.

We create an empty project called WebApplicationDevelopment by means of the default Eclipse project creation

wizard. These steps are shown in Figure 35.

Figure 34 Screenshots illustrating how to change the Target Runtime

45

Then, we create a new diagram called FeaturesAndBugs by following the steps shown in Figures 36 and 37. After

that we create the diagram by adding the corresponding modeling elements, which leads to the diagram shown

in Figure 38.

Figure 35 Screenshots illustrating how to create the project

46

Figure 36 Screenshots that illustrate the steps to open the BPMN2 diagram creation wizard

Figure 37 Screenshots illustrating how to create a diagram

47

6.2 Modeling the aspects

After modeling the business processes in the previous section we model in this section the monitoring and

compliance aspects. To do that, we create two collaboration diagrams called Monitoring and Compliance

following the same steps shown in Figures 36 and 37. Once these diagrams are created we add the necessary

elements to build the aspect-oriented models for these crosscutting concerns. To identify the aspect and the

advice we must check the isAspect and isAdvice checkboxes in the AO4BPMN property tabs as shown in Figures 40

and 42. The resulting aspect models are shown in Figure 39 and 41 after manually laying out their model

elements.

Figure 38 Screenshot illustrating the resulting diagram

48

In this case study we use the light-weight notation to represent the aspect-oriented constructs.

Next, we see in Figure 40 the pointcut definition of the compliance aspect, which is done by writing an

appropriate OCL query in the AO4BPMN properties tab. In this example we use an OCL condition in the context

of the type Event that compares by name.

Figure 39 Screenshot illustrating the resulting compliance aspect

Figure 40 Screenshot illustrating the property tab of the compliance advice

49

Then, we define in Figure 42 the pointcut query through the AO4BPMN properties tab. In this example we use an

OCL condition in the context of the type Activity that compares by name.

6.3 Using the weaver

Next we start the weaver as shown in Figures 43 and 44 to compose the process models and the aspects models.

Figure 43 shows the integration of the weaver in Eclipse. Figure 44 shows the selection of the processes and

aspects that will be composed. The weaver generates a new process models as shown in Figure 45.

Figure 41 Screenshot illustrating the resulting monitoring aspect

Figure 42 Screenshot illustrating the property tab of the monitoring advice

50

The wizard shown in Figure 44 allow us to select on the left side the BPMN diagrams containing the aspects we

want to include in the weaving and on the right side the diagrams containing the base processes. If the aspects

are in the same diagram as the base processes we can use the checkbox with the label Use the same Diagrams. By

using the buttons labeled as Remove selected diagrams we can unselect previously selected diagrams.

Figure 43 Integration of the weaver in Eclipse

Figure 44 Screenshot illustrating how to trigger the weaving operation

51

Figure 45 shows the weaving result. As we can see in that figure the elements modeled as crosscutting concerns

in a separate module are now integrated in the base processes and everything is saved in a new file so that the

base diagrams are not lost after weaving.

Figure 45 Screenshot illustrating the result diagram after the weaving execution

52

7 Conclusion

This chapter concludes the thesis with a summary of the contents presented and an overview on the limitations

of this work as well as directions for future work.

7.1 Summary

In this thesis we motivated the need for a better support for crosscutting concerns in business process modeling

languages such as OMG’s BPMN. We also introduced and described an aspect-oriented extension of BPMN called

AO4BPMN 2.0 that allows the modeler to encapsulate such concerns.

First, we motivated the problems of crosscutting concerns with an example of a web application development

company. Then, we discussed the limitations of AO4BPMN 1.0. After that, we presented the design of AO4BPMN

2.0 and reported on the implementation of the editor and the weaver. AO4BPMN 2.0 is a refinement of

AO4BPMN 1.0. We implemented an editor for AO4BPMN 2.0 by extending an Eclipse-based BPMN2 editor.

Further we implemented a weaving mechanism for aspects and process using a model-to-model transformation

and the QVTo language. We also discussed the details of the weaving mechanism and the underlying algorithm.

We discussed different alternatives related to the model transformation language to choose and also related to

which graphical notation should the editor tool support. We offered built–in support for OCL as a pointcut

language and we provided an extensible design that would allow the users to plug in their own pointcut

languages. For this purpose we have implemented an appropriate extension mechanism. Finally, we illustrated

the concepts and the implementation through a case study based on the motivation example.

7.2 Limitations and future work

AO4BPMN 2.0 has some conceptual limitations that could be addressed in future work:

 AO4BPMN 2.0 does not support the concepts of choreography and collaboration. AO4BPMN 2.0 works at

a process level. AO4BPMN 2.0 supports processes defined in collaborations but it does not support

collaboration and choreography as a unit of work.

 AO4BPMN 2.0 supports only OCL as pointcut language. However, it gives the possibility for other

developers to add support to other languages by providing appropriate extension mechanisms. In the

future, further pointcut languages beyond OCL can be provided.

 The current implementation does not support the transformation of AO4BPMN 2.0 to executable aspects

(for example in AO4BPEL [11, 12]). Part of the future work could be to implement such a transformation

and offer it as an integrated functionality with the editor.

53

In addition, the current implementation has the following limitations, which can be addressed in future work:

 The concepts of AO4BPMN are not integrated to the built-in Graphiti palette defined by the BPMN2

editor tool being extended. This limitation is due to the currently provided extension points. The BPMN2

modeling tool does not offer palette extension mechanisms.

 There is not yet auto-layouting support. Part of the future work could be to integrate the Graphiti auto-

layouting plugin of the KIELER project [13] for example.

 The Proceed element is mandatory in the current implementation. A future extension can provide support

to model using the different advice types such as before, after and around.

 The current implementation supports only one of the two graphical representations described in [1]. Part

of the future work could be to add support for both representations and allow the user to switch between

them.

 The current implementation offers support for OCL as pointcut language. Part of the future work could

be to offer a built-in wizard that would help non experienced business users in defining their own OCL

queries without having to write actual code for example.

54

References

 [1] Anis Charfi, Heiko Witteborg, Mira Mezini. Aspect-Oriented Business Process Modeling with AO4BPMN,

in Proc. of 6th European Conference on Modelling Foundations and Applications (EC-MFA), LNCS 6138, pp.

48-61, Springer, Paris, France, June 2010.

 [2] Object Management Group. Business Process Model and Notation v2.0. http://www.omg.org/spec/

BPMN/2.0/. July 2012.

 [3] Anis Charfi and Mira Mezini. Aspect-Oriented Workflow Languages. In Proc. Of the 14
th

 International

Conference on Cooperative Information Systems (CoopIS), volume 4275 of LNCS, pages 183-200. Springer,

November 2006.

 [4] Anis Charfi. Aspect-Oriented Workflow Languages: AO4BPEL and Applications. PhD thesis, Darmstadt

University of Technology, Darmstadt, Germany 2007. http://elib.tu-darmstadt.de/diss/000852/.

 [5] Gregor Kiczales, Joh Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and

John Irwin. Aspect-oriented programming. In Proc. Of the 11th European Conference on Object-Oriented

Pprogramming (ECOOP), volume 1241 of LNCS, pages 220-242. Springer, June 1997.

 [6] MDT/BPMN2. Meta-model implementation. http://wiki.eclipse.org/MDT-BPMN2. July 2012.

 [7] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

http://www.omg.org/docs/ptc/05-11-01.pdf, November 2005.

 [8] Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M. (2009) Controller experiments on the web:

survey and practical guide. In Data Mining and Knowledge Discovery, volume 18, Number 1, pages 140-
181, 2009.

 [9] Object Management Group. Object Constraint Language 2.0 Final Adopted Specification.

http://www.omg.org/cgi-bin/doc?ptc/2003-10-14, October 2003.

 [10] ATL. ATLAS Transformation language. http://www.eclipse.org/atl/. July 2012.

 [11] Anis Charfi and Mira Mezini. Aspect-Oriented Web Services Composition with AO4BPEL. In Proc. Of the

2
nd

 European Conference on Web Services (ECOWS), volume 3250 of LNCS, pages 168-182. Springer,
September 2004.

 [12] Anis Charfi and Mira Mezini AO4BPEL: An Aspect-Oriented extension to BPEL. World Wide Web Journal:

Recent Advances on Web Services (special issue), March 2007.

 [13] Cristian-Albrechts-Universität zu Kiel. Kiel Integrated Environment for Layout Eclipse RichClient

(KIELER). http://www.informatik.uni-kiel.de/rtsys/kieler/. August 2012.

 [14] Eclipse Model Development Tools (MDT). http://www.eclipse.org/mdt/. July 2012.

 [15] Eclipse BPMN2 Modeler. http://www.eclipse.org/bpmn2-modeler/. July 2012.

 [16] Eclipse Graphiti. A Graphical Tooling Infrastructure. http://www.eclipse.org/graphiti/. July 2012.

 [17] Eclipse Modeling Framework Project (EMF). Model Query. http://www.eclipse.org/modeling/emf/
?project=query. July 2012.

 [18] VIATRA2. EMF-IncQuery. http://viatra.inf.mit.bme.hu/incquery. July 2012.

 [19] Eclipse Modeling Framework project (EMF). Model Query 2. http://www.eclipse.org/modeling/

emf/?project=query2. July 2012.

 [20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, William G. Griswold. An

Overview of AspectJ. In Proc. Of the 15th European Conference on Object-Oriented Pprogramming

(ECOOP), volume 2072/2001 of LNCS, pages 327-354. Springer, June 1997.

 [21] AspectR. Simple Aspect-Oriented programming in Ruby. http://aspectr.sourceforge.net/. July 2012.

 [22] Schauerhuber, Andrea and Shwinger, Wieland and Kapsamer, Elisabeth and Retschitzegger, Werner and

Wimmer, Manuel and Kappel, Gerti. A Survey on Aspect-Oriented Modeling Approaches. Technical
Report, Insitut für Softwaretechnik und Interaktive Systeme; technische Universität of Wien, 2007.

http://www.dblp.org/db/indices/a-tree/k/Kiczales:Gregor.html
http://www.dblp.org/db/indices/a-tree/h/Hilsdale:Erik.html
http://www.dblp.org/db/indices/a-tree/h/Hugunin:Jim.html
http://www.dblp.org/db/indices/a-tree/k/Kersten:Mik.html
http://www.dblp.org/db/indices/a-tree/p/Palm:Jeffrey.html
http://www.dblp.org/db/indices/a-tree/g/Griswold:William_G=.html

55

 [23] Iris Groher, Markus Voelter. Xweave: Models and Aspects in Concern. In 10th Int’l Workshop on Aspect-

Oriented Modeling. Vancouver, 2007.

 [24] Eclipse STP/BPMN Termination document. http://wiki.eclipse.org/STP/BPMN_Component/Termination.

July 2012.

 [25] The Eclipse Foundation. http://www.eclipse.org/org/. July 2012.

 [26] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks. EMF: Eclipse Modeling Framework, 2nd

Edition. Eclipse Series. Addison-Wesley Professional. ISBN-13: 978-0-321-33188-5. 2008.

 [27] Object Management Group (OMG). XML Metadata Interchange (XMI) Specification, July 2012.

 [28] Object Management Group (OMG) UML Specification. July 2012.

 [29] Oracle Java Language Specification. http://docs.oracle.com/javase/specs/. July 2012.

 [30] Eclipse Ecore tools. http://www.eclipse.org/modeling/emft/?project=ecoretools. July 2012.

 [31] Dan Rubel, Jaime Wren, Eric Clayberg. The Eclipse Graphical Editing Framework (GEF). Eclipse Series.

ISBN-13: 978-0321718389. August 2011.

 [32] Eclipse Graphical Modeling Framework (GMF). http://www.eclipse.org/modeling/gmp/. July 2012.

 [33] Eclipse Draw2d plug-in. http://www.eclipse.org/gef/draw2d/index.php. June 2012.

 [34] Eclipse (Model-To-Model) M2M. http://www.eclipse.org/m2m/. July 2012.

 [35] Eclipse Modeling Project. http://www.eclipse.org/modeling/. July 2012.

 [36] Stevens, Perdita. A landscape of bidirectional model transformations. In Generative and Transformational

Techniques in Software Engineering II (GTTSE). Volume 5235/2008 of LNCS, pages 408-424. Berlin /
Heidelberg 2008.

 [37] Stephan A. White. Introduction to BPMN (PDF). http://www.omg.org/bpmn/Documents/

Introduction_to_BPMN.pdf .IBM, May 2004.

 [38] Reiko Heckel. Graph transformation in a nutshell. In Electronic Notes in Theoretical Computer Science.
Volume 148, Issue 1, pages 187-198. February 2006.

 [39] IBM’s Eclipse Membership. http://www.eclipse.org/membership/showMember.php?member_id=656.

July 2012.

 [40] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, Simon Helsen. Model-driven software

development – technology, engineering, management. ISBN: 978-0-470-02570-3. Pitman 2006.

 [41] Tomas Kühne. Matters of (Meta-)Modeling. In Software and System Modeling. Volume 5, Number 4, pages
369-385. 2006.

 [42] Eric Clayberg, Dan Rubel. Eclipse Plug-ins (3th Edition). Eclipse Series. ISBN-13: 978-0321553461, 2008.

 [43] Fabiana Jack Nogueira Santos, Claudia Cappelli, Flávia Maria Santoro, Julio Cesar Sampaio do Prado

Leite, Thaís Vasconcelos Batista. Analysis of heuristics to identify crosscutting concerns in business

process models. In Proceedings of the 27th Annual ACM Symposium of Applied Computing, pages 1725-
1726. Italy 2012.

http://www.dblp.org/db/indices/a-tree/s/Stahl:Thomas.html
http://www.dblp.org/db/indices/a-tree/v/V=ouml=lter:Markus.html
http://www.dblp.org/db/indices/a-tree/b/Bettin:Jorn.html
http://www.dblp.org/db/indices/a-tree/h/Haase:Arno.html
http://www.dblp.org/db/indices/a-tree/h/Helsen:Simon.html
http://www.dblp.org/
http://www.dblp.org/db/indices/a-tree/s/Santos:Fabiana_Jack_Nogueira.html
http://www.dblp.org/db/indices/a-tree/c/Cappelli:Claudia.html
http://www.dblp.org/db/indices/a-tree/s/Santoro:Fl=aacute=via_Maria.html
http://www.dblp.org/db/indices/a-tree/l/Leite:Julio_Cesar_Sampaio_do_Prado.html
http://www.dblp.org/db/indices/a-tree/l/Leite:Julio_Cesar_Sampaio_do_Prado.html
http://www.dblp.org/db/indices/a-tree/b/Batista:Tha=iacute=s_Vasconcelos.html

56

A. Test Cases for the weaver

In order to evaluate the weaving we designed our own suit of test cases. Basically we defined several sample

pairs of models containing a proceed element and a selected join point. It is not the focus of this concrete

evaluation to test the selection language therefore we directly provide the algorithm with the id of the proceed

element and the id of the selected join point. The test results presented in this section do not pretend to be

exhaustive but rather to present some of the most illustrative and significant cases.

The structure of the tests is the following:

 Simple cases: This testing package includes a set of simple models. There is no boundary or data

branching and they are built using only tasks and sequence flow elements.

 Complex cases: This testing package follows the same philosophy as the previous one but here we

include more complex structures and elements such as events and gateways but always leaving out

special cases like boundary or data branching.

 Branching cases: The aim of this package is to test the previously described boundary event and data

braching.

In this chapter we describe some of the relevant conducted tests and their results. In order to simplify the results

and to guarantee the document’s readability we omit advices, aspects and other modeling elements whenever

they are irrelevant in the pictures. We also assume that a layout after the weaving has been applied either for a

human user or an auto-layout engine. In order to present the test cases and their results we will use the template

that appears in Table 2. In some cases we show the test picture on the left side and the expected results on the

right side of the same row for space reasons.

Package <Package name> Number <Test number>

Advice
Proceed element <Name of the proceed element>

Pointcut Query <Informal description of the query>

…

<Test picture>

<Expected results>

Result <results: {As expected, Not as expected}>

Table 2 Template to show the test results.

57

A.1. Simple cases

As stated before this testing package includes a set of simple models. There is no boundary or data branching and

they are built using only tasks and sequence flow elements.

Package Simple cases Number 1

Advice
Proceed element Element with the name „Proceed”

Pointcut Query Element with the name „Target”

Result as expected

Table 3 Simple cases test results. Number 1

58

Package Simple cases Number 2

Advice
Proceed element Element with the name „Proceed”

Pointcut Query Element with the name „Join point”

Result as expected

Table 4 Simple cases test results. Number 2

Package Simple cases Number 3

Advice
Proceed element Element with the name „p”

Pointcut Query Element with the name „jp”

Result as expected

Table 5 Simple cases test results. Number 3

59

Package Simple cases Number 4

Advice
Proceed element Element with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 6 Simple cases test results. Number 4

60

A.2. Complex cases

In this section we present some of the tests that belong to the complex cases package. As we stated before these

cases do not content any branching but they test situations with elements different than activities.

Package Complex cases Number 1

Advice
Proceed element Eelemtn with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 7 Complex cases test results. Number 1

61

Package Complex cases Number 2

Advice
Proceed element Element with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 8 Complex cases test results. Number 2

Package Complex cases Number 3

Advice
Proceed element Element with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 9 Complex cases test results. Number 3

62

A.3. Branching cases

In this section we will show 2 representative cases of branching. The first example shown in Table 10 is an event

branching case and the results of table 11 show a data branching case.

Package Branching cases Number 1

Advice
Proceed element Element with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 10 Branching cases test results. Number 1

Package Branching cases Number 2

Advice
Proceed element Element with the name „proceed“

Pointcut Query Element with the name „jp”

Result as expected

Table 11 Branching cases test results. Number 2

