

MASTER THESIS

DESIGN OF SINGLE PRECISION FLOAT ADDER (32-BIT NUMBERS) ACCORDING TO IEEE 754 STANDARD USING VHDL

Arturo Barrabés Castillo

Bratislava, April $25^{\text {th }} 2012$

Supervisors: Dr. Roman Zálusky
Prof. Viera Stopjaková
Fakulta Elecktrotechniky a Informatiky

INDEX

Index 3
Resum 5
Zhrnutie 5
Abstract 5
Chapter 1: Introduction 7
1.1. Floating Point Numbers 7
1.2. The Standard IEEE 754 8
1.2.1. Overview 8
1.2.2. Binary Interchange Format Encodings 9
1.2.3. Precision and Rounding 10
Chapter 2: Code Development 13
2.1. 32-bits Floating Point Adder Design 13
2.1.1. Addition/Subtraction Steps 13
2.1.2. Block Diagram 15
2.2. Blocks Design 17
2.2.1. Pre-Adder Design 17
2.2.2. Adder Design 17
2.2.3. Standardizing Design 19
Chapter 3: Pre-Adder 21
3.1. Special Cases 21
3.1.1. n_case Block 21
3.2. Subnormal Numbers 25
3.2.1. n_subn Block 25
3.3. Mixed Numbers 27
3.3.1. comp Block 27
3.3.2. zero Block 30
3.3.3. shift_left/shift Block 32
3.3.4. norm Block 35
3.4. Normal Numbers 38
3.4.1. comp_exp Block 38
3.4.2. shift Block 41
3.4.3. n_normal Block 41
3.5. Pre-Adder 44
3.5.1. selector Block 44
3.5.2. MUX/DEMUX Blocks 48
3.5.3. preadder Block 50
Chapter 4: Adder 55
4.1. Adder 55
4.1.1. Signout Block 55
4.1.2. Adder Block 59
4.1.3. Block_Adder Block 62
4.2. Standardizing Block 65
4.2.1. round Block 65
4.2.2. shift_left/zero Block 65
4.2.3. block_norm Block 67
4.2.4. vector Block 70
Chapter 5: 32-Bits Floating Point Adder 73
5.1. Floating Point Adder 74
5.1.1. Mux_fpadder Block 74
5.1.2. fpadder Block 74
5.2. Simulations 77
5.2.1. Special Cases 77
5.2.2. Normal Numbers 80
5.2.3. Subnormal Numbers 81
5.2.4. Mixed Numbers 82
Chapter 6: Results 83
6.1. Errors 83
6.1.1. Gap between Numbers 83
6.1.2. Rounding or Truncation 85
6.1.3. Floating Point Addition 86
6.2. Results analysis 86
6.2.1. Subnormal Numbers 86
6.2.2. Mixed Numbers 88
6.2.3. Normal Numbers 89
6.3. Conclusions 91
Chapter 7: Bibliography 93
Annex: VHDL Code 95

RESUM

La aritmètica de punt flotant és, amb diferència, el mètode més utilitzat d'aproximació a la aritmètica amb nombres reals per realitzar càlculs numèrics per ordinador.
Durant molt temps cada màquina presentava una aritmètica diferent: bases, mida dels significants i exponents, formats, etc. Cada fabricant implementava el seu propi model ,fet que dificultava la portabilitat entre diferents equips, fins que va aparèixer la norma IEEE 754 que definia un estàndard únic per a tothom.

L'objectiu d'aquest projecte és, a partir del estàndard IEEE 754, implementar un sumador/restador binari de punt flotant de 32 bits emprant el llenguatge de programació hardware VHDL.

ZHRNUTIE

Práca s číslami s pohyblivou desatinnou čiarkou je najpoužívanejší spôsob pre vykonávanie aritmetických výpočtov s reálnymi číslami na moderných počítačoch. Donedávna, každý počítač využíval rôzne typy formátov: báza, znamienko, vel'kost́ exponentu, atd'. Každá firma implementovala svoj vlastný formát a zabraňovala jeho prenosu na iné platformy pokial' sa nevymedzil jednotný štandard IEEE 754. Ciel’om tejto práce je implementovanie 32-bitovej sčítačky/odčítačky pracujúcej s číslami s pohyblivou desatinnou čiarkou podla štandardu IEEE 754 a to pomocou jazyka na opis hardvéru VHDL.

Abstract

Floating Point arithmetic is by far the most used way of approximating real number arithmetic for performing numerical calculations on modern computers.

Each computer had a different arithmetic for long time: bases, significant and exponents' sizes, formats, etc. Each company implemented its own model and it hindered the portability between different equipments until IEEE 754 standard appeared defining a single and universal standard.

The aim of this project is implementing a 32 bit binary floating point adder/subtractor according with the IEEE 754 standard and using the hardware programming language VHDL.

CHAPTER 1:

INTRODUCTION

Many fields of science, engineering and finance require manipulating real numbers efficiently. Since the first computers appeared, many different ways of approximating real numbers on it have been introduced.

One of them, the floating point arithmetic, is clearly the most efficient way of representing real numbers in computers. Representing an infinite, continuous set (real numbers) with a finite set (machine numbers) is not an easy task: some compromises must be found between speed, accuracy, ease of use and implementation and memory cost.
Floating Point Arithmetic represent a very good compromise for most numerical applications.

1.1. Floating Point Numbers

The floating point numbers representation is based on the scientific notation: the decimal point is not set in a fixed position in the bit sequence, but its position is indicated as a base power.

All the floating point numbers are composed by three components:

- Sign: it indicates the sign of the number (0 positive and 1 negative)
- Mantissa: it sets the value of the number
- Exponent: it contains the value of the base power (biased)
- Base: the base (or radix) is implied and it is common to all the numbers (2 for binary numbers)

The free using of this format caused either designed their own floating point system. For example, Konrad Zuse did the first modern implementation of a floating point arithmetic in a computer he had built (the Z3) using a radix-2 number system with 14-bit significant, 7 -bit exponents and 1-bit sign. On the other hand the PDP-10 or the Burroughs 570 used a radix- 8 and the IBM 360 had radix-16 floating point arithmetic.
This led to the need for a standard which would make a clear and concise format to be used by all the developers.

1.2. The Standard IEEE 754

The first question that comes to mind is "What's IEEE?". The Institute of Electrical and Electronics Engineers (IEEE) is a non-profit professional association dedicated to advancing technological innovations and excellence.
It was founded in 1884 as the AIEE (American Institute of Electrical Engineers). The IEEE was formed in 1963 when AIEE merged with IRE (Institute of Radio Engineers).
One of its many functions is leading standards development organization for the development of industrial standards in a broad range of disciplines as telecommunications, consumer electronics or nanotechnology.
IEEE 754 is one of these standards.

1.2.1.

Overview

Standard IEEE 754 specifies formats and methods in order to operate with floating point arithmetic.

These methods for computational with floating point numbers will yield the same result regardless the processing is done in hardware, software or a combination for the two or the implementation.

The standard specifies:

- Formats for binary and decimal floating point data for computation and data interchange
- Different operations as addition, subtraction, multiplication and other operations
- Conversion between integer-floating point formats and the other way around
- Different properties to be satisfied when rounding numbers during arithmetic and conversions
- Floating point exceptions and their handling ($\mathrm{NaN}, \pm \infty$ or zero)

IEEE 754 specifies four different formats to representing the floating point values:

- Simple Precision (32 bits)
- Double precision (64 bits)
- Simple Extended Precision (≥ 43 bits but not too used)
- Double Extended Precision (≥ 79 bits, usually represented by 80)

1.2.2.
 Binary Interchange Format Encodings

Representations of floating point data in the binary interchange formats are encoded in k bits in the following three fields ordered as shown in Figure 1:

Figure 1. Floating Point format
If a Simple Precision format is used the bits will be divided in that way:

- The first bit ($31^{\text {st }}$ bit) is set the sign (S) of the number (0 positive and 1 negative)
- Next w bits (from $30^{\text {th }}$ to $23^{\text {rd }}$ bit) represents the exponent (E)
- The rest of the string, t (from $22^{\text {nd }}$ to 0) is reserved to save the mantissa

The range of the enconding biased exponent is divided in three sections:

- Every integer between 1 and $2^{w}-2$ (being $w=8 \rightarrow 254_{(10)}$ in order to encode the normal numbers
- The value 0 which encodes subnormal numbers and the zero value
- The reserved value $2^{w}-1$ (being $w=8 \rightarrow 255_{(10)}$ to encode some special cases as NaN or $\pm \infty$

The exponent value has a bias of 127. It means the exponent value will be between $-126\left(00000000_{(2)}\right)$ and $+127\left(11111110_{(2)}\right)$ being zero at the value (01111111 ${ }_{(2)}$.
Exponent and mantissa values determine the different number r cases that it can be had.

- If $E=2^{w}-1$ and $T \neq 0$, then r is NaN regardless of S
- If $E=2^{w}-1$ and $T=0$, then r is \pm infinity according with the sign bit S
- If $1 \leq E \leq 2^{w}-2$, then r is a normal number
- If $E=0$ and $T \neq 0$, then r is a subnormal number
- If $E=0$ and $T=0$, then r is \pm zero according with S

The mantissa value is 23 bits long but it contains an implicit bit depending on the type of data (1 for normal numbers and 0 for subnormal).

A number can be represented by different ways. As an example, the number $0.11 \cdot 2^{5}$ can be described as $110 \cdot 2^{2}$ or $0.011 \cdot 2^{6}$.

It is desirable to require unique representations. In order to reach this goal the finite non-zero floating point numbers may be normalized by choosing the representation for which the exponent is minimum.
To cope with this problem the standard provides a solution. The numbers will be standardized in two ways:

- Subnormal numbers will start with a zero an it has a form like $\pm 0 . X X \cdot 2^{0}$
- Normal numbers MSB will be high ($\pm 1 . X X \cdot 2^{E}$) where $0<E<255$

Both normal and subnormal numbers MSB will be implied but taken into account in order to get the proper value in decimal.

To calculate the value of the binary bit sequence in decimal this formula will be used:

$$
\begin{equation*}
M=\sum_{k=0}^{22} m_{22-k} \cdot 2^{-(1+k)} \tag{1}
\end{equation*}
$$

Finally the different format parameters for simple and double precision are shown in table 1:

Table 1. Binary interchange format parameters

Parameter	binary32	binary64
k, storage width in bits	32	64
p, precision in bits	24	53
emax, maximum exponent e	127	1023
Encoding parameters		
bias, $E-e$	127	1023
sign bit	1	1
w, exponent field width in bits	8	11
t, trailing significand field width in bits	23	52
k, storage width in bits	32	64

1.2.3.

Precision and Rounding

The number of values which can be represented by floating point arithmetic is finite because it has a finite number of bits.

Figure 2. Floating Point values range
As it can be seen in the figure 2, the standardized numbers range is described as the values between the higher exponent and mantissa value and the lower ones. The subnormal numbers are between zero and the lowest number (positive or negative) which could be represented by normal numbers. However, these ranges are discontinuous because between two numbers there are also infinite real ones. The quantities of numbers, which can be represented, are the same than in fixed point but at the expense of increasing the distance between numbers a higher range is achieved.

The standard IEEE 754 requires that the operation result must be the same which would obtain if a calculation with absolute precision and rounded had been done.

Four types of rounding are described by the standard:

- Rounding to the nearest (to even number in case of tie) is the floating point number that is the closest to x.
- Rounding to $+\infty$ is the smallest floating point number (possibly $+\infty$) greater than or equal to x.
- Rounding to $-\infty$ is the largest floating point number (possibly $-\infty$) less than or equal to x.
- Rounding to zero is the closest floating point number to x that is no greater in magnitude than x (it is equal to rounding to $-\infty$ if $x \geq 0$ and to $+\infty$ if $x \leq 0$

Figure 3. Rounding Modes
The finite number of representing values and the rounding cause the appearance of errors in the result. This topic should be discussed when the results will be analyzed.

CHAPTER 2:

CODE DEVELOPMENT

Once the standard IEEE 754 has been explained it is time to start with the implementation of the code. First of all thinking about the different steps we should do to perform the operation required is compulsory. It is because of this that this section will talk about the procedure in addition/subtraction operations and a first look at the code design in block diagram way.

A complete description will be done first and the subblocks will be explained immediately afterwards at successive subsections.

2.1. 32-bits Floating Point Adder Design

The main goal of this project is the implementation of a 32-bit Floating Point Adder with VHDL code. The format and the main features of the standard have been described before but nothing about the steps to achieve the target has been said.

The first logical step is trying to specify what operations should be done to obtain a proper addition or subtraction. Once the idea will be clear the block diagram of the entire code will be designed.
2.1.1. Addition/Subtraction Steps

Following the established plan, the way to do the operations (addition/subtraction) will be set.
This point will be also used to try to explain why these steps are necessary in order to make clearer and easier the explanation of the code in the next section.
The different steps are as follows:

1. Extracting signs, exponents and mantissas of both A and B numbers. As it has been said, the numbers format is as follows:

Figure 4. Floating Point Number format
Then the first step is finding these values.
2. Treating the special cases:

- Operations with A or B equal to zero
- Operations with $\pm \infty$
- Operations with NaN

3. Finding out what type of numbers are given:

- Normal
- Subnormal
- Mixed

4. Shifting the lower exponent number mantissa to the right [Exp1-Exp2] bits. Setting the output exponent as the highest exponent.
A's Exponent $\rightarrow 3 \quad$ B's Exponent $\rightarrow-1 \quad$ Difference $(A-B) \rightarrow 4$
Number B:

$$
1101001 \rightarrow \overrightarrow{00001101001}
$$

5. Working with the operation symbol and both signs to calculate the output sign and determine the operation to do.

Table 1. Sign Operation

A's Sign	Symbol	B's Sign	Operation
+	+	+	+
+	+	-	-
+	-	+	-
+	-	-	+
-	+	+	-
-	+	-	+
-	-	+	+
-	-	-	-

6. Addition/Subtraction of the numbers and detection of mantissa overflow (carry bit)

Figure 5. Example
7. Standardizing mantissa shifting it to the left up the first one will be at the first position and updating the value of the exponent according with the carry bit and the shifting over the mantissa.

$$
0.1010101 \cdot 2^{3} \rightarrow \overleftarrow{1.010101 \cdot 2^{2}}
$$

8. Detecting exponent overflow or underflow (result NaN or $\pm \infty$)

This is the way forward to proper operation. Obviously there are some parts which have to be discussed because there will be more aspects to be taken into account but this will happen in next sections where the code will be explained.

2.1.2. Block Diagram

The main idea has been described before. Once the different steps to follow have been explained it is time to start to think in the code implementation.

In this subsection a first block diagram -as a draft- will be made. It still does not go into the most difficult points because in the next section, once a division of the project in three parts will be done, a complete description of each step will be performed.
These three parts are as follows:

- Pre-Adder Block
- Adder Block
- Standardizing Block

They make reference to the three main processes of the project. First the numbers should be treated (pre-adder) in order to perform the operation properly (adder) and finally, standardizing the result according with the standard IEEE 754 (standardizing).
In figure 6, a first approximation of the design has been done:

Figure 6. Block Diagram Code

2.2. Blocks Design

In this section the main blocks described in the previous block diagram will be explained.

The diagram has two branches:

- The special cases one is quiet simple because only the combination of the different exceptions are taken into account. This will be explained in the next chapter over the code directly
- The second one is more interesting. It includes the main operation of the adder. The different operations that should be done are divided in three big blocks: pre-adder, adder and normalizing block.

During the next subsections a first description of each block will be done. A block diagram will be designed to support the explanation and facilitate the comprehension. Moreover it will be used to design the different blocks in VHDL which form the 32-bit Floating Point Adder.

2.2.1.

Pre-Adder Design
The first subblock is the Pre-Adder. The goals are:

1. Distinguishing between normal, subnormal or mixed (normal-subnormal combination) numbers.
2. Treating the numbers in order to be added (or subtracted) in the adder block.

- Setting the Output's exponent
- Shifting the mantissa
- Standardizing the subnormal number in mixed numbers case to be treated as a normal case

The block diagram which display this behaviour is shown (figure 7) in the next page.

2.2.2. Adder Design

Adder is the easiest part of the blocks. This block only implements the operation (addition or subtraction). It can be said the adder block is the ALU (Arithmetic Logic Unit) of the project because it is in charge of the arithmetic operations.
Two functions are implemented in this part of the code:

1. Obtaining the output's sign
2. Implementing the desired operation

In this block two related problems should be taken into account. Firstly, the calculation symbol (+ or -) depends on itself and the A and B's signs. Secondly, positive or negative numbers addition gives the same result. The problem will appear when the signs are different. In these cases the positive number will be kept in the first operand and the negative one in the second operand. All these problems will be explained in detail in next sections.

As it is normal the easiest block has the easiest block diagram (figure 8).

Figure 7. Pre-Adder Block Diagram

Figure 8. Adder Block Diagram

2.2.3.

Standardizing Design

Finally the Standardizing Block takes the result of the addition/subtraction and gives it an IEEE 754 format.
The procedure is as follows:

1. Shifting the mantissa to standardize the result
2. Calculating the new exponent according with the addition/subtraction overflow (carry out bit) and the displacement of the mantissa.

The exponent value must be controlled when these steps are going to be made because it could be the number of positions the mantissa must be shifted are higher than the exponent value. In this case the result becomes subnormal. Another exception is when exponent and number of displacements are equal: mantissa will be shifted and exponent will be one.

As the previous subsections a block diagram with this description has been made. It can be seen in the figure 8 where the different steps to standardize the value are shown.

Figure 9. Standardizing Block Diagram

CHAPTER 3: PRE-ADDER

The first block is the Pre-adder. It is in the charge of distinguishing the type of numbers which are introduced as an input.

Four different cases are possible:

1. One of the different combinations which have been explained and labeled as special cases: NaN-Infinity, Infinity-Normal, Zero-Subnormal, etc.
2. A two subnormal numbers introduction.
3. A mixed option between normal and subnormal numbers.
4. A two normal numbers introduction

All this cases must be treated separately because of the process to achieve a successful operation must be different.

3.1. Special Cases

The adder is not always necessary to operate the numbers: there are some special cases which can be solved without it.
As it has been said, in addition to normal and subnormal numbers, infinity, NaN and zero are represented in IEEE 754 standard. Some possible combinations have a direct result, for example, if a zero and a normal number are introduced the output will be the normal number directly. Time and resources are saved implementing this block. The n _case block has been designed to run this behaviour.

3.1.1.

n_case Block
Both number A and number B are introduced as inputs. Vector S is one of the outputs and it contains the result when there is a special case, otherwise
undefined. Finally, enable signal enables or disables the adder block if it is needed or not.

entity n case is
Port (NumberA : in std_logic_vector (31 downto 0); -- Number A
$\begin{array}{ll}\text { NumberA : in std_logic_vector (31 downto 0); } & \text {-- Number A } \\ \text { NumberB : in std logic_vector }(31 \text { downto } 0) ; ~ & \text {-- Number B }\end{array}$

s : out std_logic_vector(31 downto 0)); -- output
end n_case;

Firstly the possible number values are coded (zero, infinity, NaN, normal and subnormal numbers) in two signals outA and outB according to the mantissa and exponent value as it can be seen in table 2.

```
outA <= "000" when EA = X"00" and MA = 0 else -- Zero
    "001" when EA = X"00" and MA > 0 else -- Subnormal
    "011" when (EA > X"00" and EA < X"FF") and MA > 0 else -- Normal
    "100" when EA = X"FE" and MA = 0 else -- Infinity
    "110" when EA = X"FF" and MA > 0 else -- NaN
    "000";
outB <= "000" when EB = X"00" and MB = 0 else -- Zero
    "001" when EB = X"00" and MB > 0 else -- Subnormal
    "011" when (EB > X"00" and EB< X"FF") and MB > 0 else -- Normal
    "100" when EB = X"FF" and MB = 0 else -- Infinity
    "110" when EB = X"FF" and MB > 0 else -- NaN
    "000";
```

Table 2. Data coded

Exponent	Mantissa	Output	Output Coded
$=0$	$=0$	Zero	000
$=0$	>0	Subnormal	001
$0<\mathrm{E}<255$	>0	Normal	011
$=255$	$=0$	Infinity	100
$=255$	>0	NaN	110

Once both A and B numbers have been coded the different signals combinations are taken into account.

Sign, mantissa and exponent are calculated depending on out A and outB values. For example, if outA is a zero and outB is a normal number, the result is the normal number coded in outB.

All the possible values are shown in table 3 and also in the VHDL code added.

```
process (SA, SB, outA, outB)
begin
        #
        if (outA = "000") then -- Zero +/- Number B
            SS<= SB;
            ES <= EB;
            MS <= MB;
        elsif (outB = "000") then
                            - Number A +/- Zero
            SS<= SA;
            ES <= EA;
            MS <= MA;
        end if;
        -- Infinite
        if (outA(0) = '1' and outB = "100") then
                                    -- Normal or Subnormal +/- Infinity
            SS <= SB;
            ES<= EB;
            MS <= MB;
        elsif (outB(0) = '1' and outA = "100") then -- Infinity +/- Normal or Subnormal
            SS <= SA;
            ES <= EA;
            MS <= MA;
        end if;
        if ((outA and outB) = "100" and SA = SB) then -- +/- Infinity +/- Infinity
            SS <= SA;
            ES <= EA;
            MS <= MA;
        --------- NaN
        elsif ((outA and outB) = "100" and SA /= SB) then -- + Infinity - Infinity
            SS<= '1';
            ES <= X"EF";
            MS <= "00000000000000000000001";
        if (outA = "110" or outB = "110") then
            SS<= '1';
            ES<= X"EF";
            MS <= "00000000000000000000001";
            end if;
            ------------------------- Normal / Subnormal
            if ((outA (0) and outB (0)) = '1') then
                SS <= '- ';
                ES <= "--------";
                MS <= '
    end if;
end process;
```

Table 3. Output coded

Sign	Out A	Out B	Sign Output	Output
X	Zero	Number B	SB	Number B
X	Number A	Zero	SA	Number A
X	Normal / Subnormal	Infinity	SB	Infinity
X	Infinity	Normal / Subnormal	SA	Infinity
SA=SB	Infinity	Infinity	SX	Infinity
SA \neq SB	Infinity	Infinity	1	NaN
X	NaN	Number B	1	NaN
X	Number A	NaN	1	NaN

X: do not care SA: Number A's sign SB: Number B's sign SX: Sign A or B (it is the same)

Finally an enable signal has been made. If any normal or subnormal combination is had the enable signal is high, otherwise low.

```
-- If A and B are normal or subnormal numbers, enable = 1
-- If not, enable = 0
enable <= '1' when ((outA(0) and outB(0)) = '1') else '0';
```

Figure 10. n_case Simulation

3.2. Subnormal Numbers

The operation using subnormal numbers is the easiest one.
It is designed in just one block and the procedure is as follows:

1. Obtaining the two sign bits and both mantissas
2. Making a comparison between both A and B numbers in order to acquire the largest number
3. Fixing the result exponent in zero

3.2.1.

n_subn Block
Obviously Number A and B are the entries. The outputs are six. SA-MA and SB$M B$ contain the sign and mantissa of A and B respectively. Comp signal is referred to the result comparison and $E O$ is the result exponent.

entity $n _$subn is
Port (NumberA : in std logic vector (36 downto 0);
NumberA : in std_logic_vector (36 downto 0);
$\begin{array}{lll}\text { NumberA : in std_logic_vector }(36 \text { downto 0); } & \text {-- Number A } \\ \text { NumberB : in std_logic_vector (36 downto 0); } & \text {-- Number B } \\ \text { Comp }: \text { out std_logic; } & \text {-- Comparis }\end{array}$
SA : out std-logic; -- sign A
$\begin{array}{lll}\text { SB } & \text { : out std }-\operatorname{logic;} & \text {-- Sign B } \\ \text { EO } & \text { out std } \operatorname{logic} \text { vector }(7 \text { downto 0); } & \text {-- Exponent }\end{array}$
EO : out std-logic_vector (7 downto 0); -- Exponent output
$\begin{array}{lll}\text { MA } & \text { : out std } \\ \text { MB } & \text { logic-vector (27 downto 0) ; } & \text { out std } \\ \text { logic_ }\end{array}$
end n_{-}subn;
: out std_logic_vector(27 downto 0)); -- Mantissa B

The code is so simply. Sign and mantissa of both numbers are obtained directly from the entries NumberA and NumberB. The outputs exponent EO is always zero because the input exponents are zero as well and Comp signal is high when A is bigger than B and low in the opposite case.
The comparison operation does not take into account the sign of the numbers. If the result is negative or positive it will be calculated in the Adder block using SA, $S B$ and Comp signals.

```
    SA<= NumberA(36); -- Sign A & B
    SB <= NumberB(36);
    MAa <= NumberA(27 downto 0); -- Mantissa A & B
    MBb <= NumberB (27 downto 0);
---------------------------------------------------- Number Comparison
    C <= '1' when MAa >= MBb else -- A > B
        '0', when MBb > MAa else -- B > A
    Comp <= C;
---------------------------------------------------- Output's exponent
    EO<= NumberA(35 downto 28);
MB<= MBb when C = '1' else
            MAa when C = '0' else
MA <= MAa when C = '1' else
    MBb when C = '0' else
    "-----------------------------------
```


Figure 11. n_subn Entity

3.3. Mixed Numbers

When there is a mixed combination of numbers (one subnormal and other normal) the subnormal one must have a special treatment in order to be added or subtracted to the normal one.

The subnormal number treatment is going to be discuss in this block because once both numbers will be standardized the next block (normal numbers block) will be in charge of the operation between normal ones.

Figure 12. Mixed numbers block diagram
The work operation can be summarized in the following points:

1. Finding out what the subnormal number is
2. Counting the number of zeros the subnormal number has on the beginning
3. Shifting the vector and calculating the new exponent

This block is formed by three entities and each one is responsible for one of the points described.

3.3.1.
 comp Block

First block is comp entity. The block entries are both numbers and the outputs are the same numbers ordered as normal $N A$ and subnormal $N B$.

The code is not very extensive. A and B Mantissas are ordered according to the exponent: null exponent indicates what the subnormal number is and then this number is fixed in $N B$, leaving the normal one in $N A$.

```
EA <= NumberA(35 downto 28); -- Exponent & Mantissa
EB <= NumberB (35 downto 28);
process (NumberA, NumberB, EA, EB)
    begin
    if EA = X"OO" then -- If Number A is subnormal...
            NB <= NumberA;
            NA <= NumberB;
            elsif EB = X"00" then -- If Number B is subnormal...
                NB <= NumberB;
            NA <= NumberA;
        else
            NA <= "----------------------------------------";
            NB <= "-----------------------------------------";
        end if;
    end process;
```


Figure 13. comp Simulation

3.3.2.
 zero Block

Counting zeros is the zero block target. The mantissa which is needed to shift is introduced as an entry in T vector and the output Zcount contains the number of zeros the mantissa has on the beginning which corresponds with the number of positions the vector must be shifted.

A zero vector is created (Zero_vector) and compared with the T vector. The Zcount value depends on the number of matches.

```
aux <= "--------" when T(27 downto 27) = "-" else
    X"1C" when T(27 downto 0) = zero_vector (27 downto 0) else
    X"1B" when T(27 downto 1) = zero_vector (27 downto 1) else
    X"1A" when T(27 downto 2) = zero_vector (27 downto 2) else
    X"19" when T(27 downto 3) = zero-vector (27 downto 3) else
    X"18" when T (27 downto 4) = zero_vector (27 downto 4) else
    X"17" when T(27 downto 5) = Zero_vector (27 downto 5) else
    X"16" when T(27 downto 6) = zero_vector (27 downto 6) else
    X"15" when T(27 downto 7) = zero_vector (27 downto 7) else
    X"14" when T(27 downto 8) = zero_vector (27 downto 8) else
    X"13" when T (27 downto 9) = zero_vector (27 downto 9) else
    X"12" when T(27 downto 10) = zero_vector (27 downto 10) else
    X"11" when T(27 downto 11) = Zero_vector (27 downto 11) else
    X"10" when T(27 downto 12) = zero_vector (27 downto 12) else
    X"OF" when T(27 downto 13) = Zero_vector (27 downto 13) else
    X"OE" when T(27 downto 14) = Zero_vector (27 downto 14) else
    X"OD" when T (27 downto 15) = Zero_vector (27 downto 15) else
    X"OC" when T(27 downto 16) = zero_vector (27 downto 16) else
    X"OB" when T(27 downto 17) = zero-vector (27 downto 17) else
    X"OA" when T(27 downto 18) = Zero_vector (27 downto 18) else
    X"09" when T(27 downto 19) = Zero_vector (27 downto 19) else
    X"08" when T (27 downto 20) = zero_vector (27 downto 20) else
    X"07" when T(27 downto 21) = zero_vector (27 downto 21) else
    X"06" when T(27 downto 22) = zero-vector (27 downto 22) else
    X"05" when T(27 downto 23) = Zero_vector (27 downto 23) else
    X"04" when T(27 downto 24) = zero_vector (27 downto 24) else
    X"03" when T(27 downto 25) = zero_vector (27 downto 25) else
    X"02" when T (27 downto 26) = zero_vector (27 downto 26) else
    X"01" when T(27 downto 27) = zero-vector (27 downto 27) else
    X"00";
Zcount <= aux(4 downto 0);
```


Figure 14. zero Simulation

3.3.3.
 shift_left/shift Block

Shifting is required to match the normal and mixed mantissas to perform the addition/subtraction properly.
A logarithmic shift schematic as the figure 15 is used but with some differences.
28 bits (1 implicit bit +23 mantissa's bits +4 guard bits) is had in the Floating point Adder design then up to 28 positions must be able to shift. Because of the fact that this shifter consists of 5 stages: the first stage shift one position, the second stage 2 , the third one 4 , the fourth one 8 and the last one 16 . Using any combination 32 positions are able to shift which is big enough to the design purpose.
Both shifting left and shifting right are used in the Floating Point Adder implementation. In this chapter, the first one is explained but the code is quite similar to the second one. There is only a difference: the T vector order. If the bits order is changed from $0-27$ to $27-0$ a shifting right is achieved.

Figure 15. Logarithmic shift
The T vector and the number of positions to shift (Shft) are the entries of the shift entity. The shifted signal is set in S.

entity shift is
Port ($\begin{array}{lll}T & \text { : in std_logic_vector (27 downto 0); } \\ & \text { Shft } & \text { : in std logic vector (4 downto } 0) \text {; }\end{array}$ Shft : in std-logic-vector (4 downto 0); -- Exponent's subtraction : out sț_logic_vector (27 downto 0)); -- Output
end shift;
The code is implemented as follows. A multiplexor has been designed and exported to this block. Afterwards a loop for has been used to generate the different 5 stages. Following the cascade design which has been shown before a 32 positions logarithmic shifter is implemented.

```
signal z1, z2, z3, z4, z5 : std_logic_vector(27 downto 0);
begin
-- Components generation
Compl: for i in 0 to 27 generate
    shifter0_0: if (i=0) generate
    shifter0_0comp: MUX port map (A => '0', B => T(0), Sel => Shft(0), Z => Zl(i));
    end generate;
    shifter0_i: if ((i>0) and (i<28)) generate
    shifter0_icomp: MUX port map (A => T((i-1)), B => T(i), Sel => Shft(0), Z => Z1(i));
    end generate;
    shifter1_0: if ((i>=0) and (i<2)) generate
    shifterl_0comp: MUX port map (A => '0', B => Z1(i), Sel => Shft(1), Z => Z2(i));
    end generate;
    shifterl_i: if ((i>1) and (i<28)) generate
    shifter1_icomp: MuX port map (A => Z1((i-2)), B => Z1(i), Sel => Shft(1), Z => z2(i));
    end generate;
    shifter2_0: if ((i>=0) and (i<4)) generate
    shifter2_0comp: MUX port map (A => '0', B => Z2(i), Sel => Shft(2), Z => Z3(i));
    end generate;
    shifter2_i: if ((i>3) and (i<28)) generate
    shifter2_icomp: MUX port map (A => Z2((i-4)), B => Z2(i), Sel => Shft(2), Z => Z3(i));
    end generate;
    shifter3 0: if ((i>=0) and (i<8)) generate
    shifter3_0comp: MUX port map (A => '0', B => Z3(i), sel => Shft(3), z => z4(i));
    end generate;
    shifter3_i: if ((i>7) and (i<28)) generate
    shifter3_icomp: MUX port map (A => Z3((i-8)), B => Z3(i), Sel => Shft(3), Z => z4(i));
    end generate;
    shifter4_0: if ((i>=0) and (i<16)) generate
    shifter4_0comp: MuX port map (A => '0', B => Z4(i), Sel => Shft(4), Z => z5 (i));
    end generate;
    shifter4_i: if ((i>15) and (i<28)) generate
    shifter4_icomp: MUX port map (A => Z4((i-16)), B => Z4(i), Sel => Shft(4), Z => Z5(i));
    end generate;
end generate;
S<= 25;
```

Figure 16. shift_left/shift Simulation

3.3.4.

norm Block
Finally, the rest of the entities are all included in the norm block. It also performs the output exponent treatment.

The inputs are the numbers A and B. Once the subnormal one has been shifted it is fixed in $M B$. The normal number is set in MA.

entity norm is
Port (NumberA : in std_logic_vector (36 downto 0); -- NumberA NumberB : in std_logic_vector (36 downto 0); -- NumberB MA : out sț̄_logić_vector (36 downto 0); -- Normalized NumberA MB : out std logic vector (36 downto 0)); -- Normalized NumberB
end norm
The code could be divided in two parts. The first one implements the connection between the different blocks which the mixed numbers entity works with. The block diagram is coherent with the VHDL code.

```
--------------------------------------------------- Components declaration
comp0 : zero
    port map ( \(T=>\) NumberB_aux (27 downto 0 ), Zcount \(=>\) Zcount_aux) ;
comp1 : shift_left
    port map \(\overline{(T)}=>\) NumberB_aux \((27\) downto 0\()\), shft \(=>\) Zcount_aux, \(S=>\) MB_aux \()\);
comp2 : comp
    port map (NumberA \(\Rightarrow\) NumberA, Number \(B \Rightarrow\) NumberB, NA \(\Rightarrow>M A, N B=>\) NumberB_aux);
```

The second one is pretty interesting. As it has been explained before, negative prebiased exponents are not considered by the standard IEEE 754 but there is a possibility a normal and subnormal number may be operated. The number of positions the vector $M B$ is shifted could be saved as a positive exponent but introducing a mark in the last guard bit which indicates the positive exponent is actually "negative".

So if a normal number with a quite small exponent is had it is possible that normal and subnormal numbers are able to be operated.

```
------------------------------------------------- New Exponent
process(Zcount_aux, NumberB_aux, EB, MB_aux)
    begin
        if zcount aux /= "-----" then
            EB <= "\overline{000" & zcount_aux; -- Number shifted}
            MB (27 downto 0) <= MB aux (27 downto 1) & '1'; -- Bit 0 --> Mark
        else
            EB <= "--------";
            MB (27 downto 0) <= MB_aux;
        end if;
            MB (35 downto 28) <= EB;
            MB (36) <= NumberB_aux (36);
end process;
```


Figure 17. norm Simulation

3.4. Normal Numbers

Two normal numbers are the most common operation mode because it represents the main operation without any exception.

The procedure is as follows:

1. Making a comparison between both A and B numbers and obtaining the largest number
2. Obtaining the output exponent (the largest one)
3. Shifting the smallest mantissa to equal both exponents

Figure 18. Normal numbers block diagram

3.4.1. comp_exp Block

The comp_exp entries are the two introduced numbers again. There are several outputs: $S A$ and $S B$ are the sign of A and B respectively, $E M a x$ is the output exponent, MMax the largest mantissa, Mshft the mantissa to shift, Dexp the number of positions Mshft must be shifted and Comp indicates what number is the largest one.

entity comp_exp is
Port (${ }^{-}$NumberA: in std logic vector (36 downto 0); _- Number A

NumberA	: in std_logic_vector (36 downto 0);	-- Number A
NumberB	: in std_logic_vector (36 downto 0) ;	- Number B
SA	: out std_logic;	-- Sign A
SB	: out std_logic;	-- Sign B
Emax	: out std_logic_vector (7 downto 0) ;	-- Output exponent
Mmax	: out std_logic_vector (27 downto 0);	-- Largest Mantissa
Mshft	: out std_logic_-vector (27 downto 0) ;	-- Mantissa to shift
Dexp	: out std_logic_vector (4 downto 0);	-- Subtraction of exponents
Comp	: out std ${ }^{-10 g i c)}$;	-- Determine largest number

end comp_exp;
Exponents and signs are obtained from the introduced numbers directly. Once the exponents are fixed in $E A$ and $E B$ signals, these values are used to determine the largest number: if A is larger than B or number B's LSB (negative exponent mark) is high, Comp will be ' 1 ', otherwise ' 0 '.
Using this signal the output exponent could be determined.

```
SA <= NumberA(36); -- Sign A & B
SB <= NumberB(36);
EA <= NumberA(35 downto 28); -- Exponent & Mantissa
EB <= NumberB (35 downto 28);
MA <= NumberA (27 downto 0);
MB <= NumberB (27 downto 0);
----------------------------- Exponent Comparison
C <= '1' when (EA > EB) or (MB (0) = ' ' '') else -- Exponent A > Exponent B
    '0' when EA < EB else -- Exponent B > Exponent A
    '1' when MA >= MB else -- EA = EB --> A>B
    '0' when MA < MB else -- EA = EB --> B > A
    ' - ' ;
Comp <= C;
------------------------------ Largest exponent
Emax <= EA when C = '1' else
    EB when C = '0' else
    "--------";
```

Next step is determining the difference between both exponents. Once more time comp signal fixes the largest exponent and determines the subtraction order.

If B's LSB is high a negative exponent is had. In this case $E A$ and $E B$ are added.

```
----------------------------- Difference between exponents
dif <= EA-EB when (C = '1') and (MB(0) = '0') else
    EB-EA when C = '0' else
    EA+EB when (C = '1') and (MB (0) = '1') else
    "--------";
process (dif)
    begin
        if dif <= X"1B" then -- If the difference is less than or equal to 27...
            Dexp <= dif(4 downto 0); -- Use directly the subtraction between exponents
        elsif dif > X"1B" then -- If the difference is greater...
            Dexp <= "11100"; -- The difference is 28
        else
            Dexp <= "-----";
        end if;
    end process;
                                    Mantissa
Mshft <= MB when C = '1' else
            MA when C = '0' else
            "------------------------------";
Mmax <= MA when C = '1' else
    MB when C = '0' else
```

The mantissa to shift corresponds with the smallest number (using comp again).
Finally a maximum value is set if the difference between exponents is greater than 28 which is the maximum number of bits that the mantissa has.
"Negative" exponent

Figure 19. comp_exp Simulation

3.4.2.

shift Block
A shifter is needed to match the exponents. The entity is the same than in the mixed case. The vector T is the input which contains the mantissa to shift, shft fix the number of positions to move and S is the output with the result of the operation.

The code is quite similar. Only a part is added because it is enough to see its operation.

```
-- Components generation
Comp1: for i in 0 to 27 generate
```

```
shifter0_0: if (i=0) generate
                            if (i=0) generate 
    end generate;
shifter0_i: if ((i>0) and (i<28)) generate
    shifter0_icomp: MuX port map (A => T(27-(i-1)), B => T(27-i), Sel => Shft(0), z => Z1(27-i));
    end generate;
shifter1_0: if ((i>=0) and (i<2)) generate
            shifter1_0comp: MuX port map (A => '0', B => Z1(27-i), Sel => Shft(1), Z => Z2(27-i));
            end generate;
shifter1_i: if ((i>1) and (i<28)) generate
    shifterl_icomp: MUX port map (A => Z1(27-(i-2)), B => Z1(27-i), Sel => Shft(1), Z => Z2(27-i));
    end generate;
```

Changing the order of the vector, a displacement in the other direction is achieved. The simulation is not required because the result is the same but on the right.

3.4.3.
 n_normal Block

The n_normal block includes the two blocks which have been explained above. The entries are NumberA and NumberB and the outputs are both sign A (SA) and sign $B(S B)$, the result exponent ($E O$), the Comp signal and the two mantissas (MA and MB).


```
entity n_normal is
    Port ( NumberA : in std logic vector(36 downto 0);
    NumberB : in std logic vector(36 downto 0); -- Number B
    Comp : out st\overline{d_logic; -- A & B Comparison}
    SA : out std_logic; -- Sign A
    SB : out std`logic; -- sign B
    EO : out std_logic_vector (7 downto 0); -- Exponent output
    MA : out std logic vector(27 downto 0); -- Greatest Mantissa
    MB : out std_logic_vector(27 downto 0)); -- Shifted Mantissa
end n_normal;
```

The VHDL code implements just the interconnection between the different blocks. Comp_exp fix the mantissa which has to been shifted and the number of positions it must be displaced.

Shift block collects these two signals and gives the mantissa in order to be operated in the next block: the Adder block.

```
component comp_exp port (NumberA, NumberB : in std_logic_vector(36 downto 0);
    SA, SB : out st\overline{d_logic;}
    Emax : out std logic vector(7 downto 0);
    Mmax, Mshft : out std logic vector(27 downto 0);
    Dexp : out std_logic-vector(4 downto 0);
    Comp : out std_logic);
end component;
component shift port (T : in std_logic_vector(27 downto 0);
    shft : in std_logic_vector(4 downto 0);
    s : out std_logic_vector(27 downto 0));
end component;
signal Mshft_aux : std_logic_vector(27 downto 0);
signal Dexp_\overline{aux : std_logic_vector(4 downto 0);}
begin
comp0 : comp_exp
    port map (NumberA => NumberA, NumberB => NumberB,
                SA => SA, SB => SB, Emax => EO, Mmax => MA, Mshft => Mshft_aux, Dexp => Dexp_aux, Comp => Comp) ;
comp1 : shift
    port map (T => Mshft_aux, shft => Dexp_aux
    S => MB) ;
```


Figure 20. n_normal Simulation

3.5. Pre-Adder

Finally a complete Pre-Adder block diagram will be shown and explained. As it could be seen there are some blocks which are not discussed. These blocks are 4:

1. The first one is so important: Selector block
2. A demultiplexor (demux) to route the signal in the correspondent block
3. A multiplexor (mux_ns) to choose between the mixed numbers or the normal ones
4. A multiplexor (mux_adder) to choose between the normal or subnormal numbers

Figure 21. preadder block diagram
These blocks are going to be grouped in two different chapters. First one includes only the selector block which is more important and has more complexity.
The second group contains the different multiplexors and demultiplexors. They are going to be treated all together because of code's simplicity.

3.5.1.

selector Block
Selector block prepares the numbers: the entries are shorter than outputs because the implicit bit (high if the number is normal and low in subnormal's case) and the guard bits are added in this block. Enable signal enables this block (and therefore the entire preadder block) when we do not have a special case.

The outputs are the two numbers with the added bits and the e_data signal which distinguish between normal, subnormal and mixed numbers.

If enable signal is high it means we do not have a special case. Then the outputs signals $N A$ and $N B$ are made: first the sign and exponent bits are placed in its positions.

Next step, the implicit bit is fixed according with the exponent value. The mantissa and the guard bits are added too.

```
SA <= NumberA(31);
SB <= NumberB (31);
EA <= NumberA(30 downto 23);
EB <= NumberB (30 downto 23);
MA <= NumberA(22 downto 0);
MB <= NumberB (22 downto 0);
process (SA, SB, EA, EB, MA, MB, enable)
begin
    if enable = '1' then
        NA(36) <= SA; -- Exponent & sign A
        NA (35 downto 28) <= EA;
        NB(36) <= SB; -- Exponent & sign B
        NB (35 downto 28) <= EB; If the exponent is bigger
        if (EA > X"00"| then 
            NA(27)<= '1'; -- Implicit bit Implicit bit > '1'
            NA (26 downto 4) <= MA; -- Mantissa
            NA(3 downto 0)<= X"O"; -- Guard bits 
```



```
            NA (26 downto 4)<= MA; ll -- Mantissa 
            else
            NA <= "------------------------------------------";
            end if;
        --------------------------------------- Mantissa B
        if (EB > X"00") then
            NB(27) <= '1'; -- Implicit bit
            NB(26 downto 4) <= MB; -- Mantissa
            NB (3 downto 0) <= X"0"; -- Guard bits
        elsif EB = X"00" then
            NB(27) <= '0'; -- Implicit b
            NB (26 downto 4) <= MB; -- Mantissa
            NB(3 downto 0) <= X"0"; -- Guard bits
        else
            NB <= "----------------------------------------";
        end if;
    else
        NA <= "-----------------------------------------";
        NB <= "------------------------------------------------
    end if;
end process;
```

Finally the e_data signal is fixed as follows:

1. Subnormal numbers \rightarrow e_data $:=" 00 "$
2. Normal numbers \rightarrow e_data $:=" 01 "$
3. Mixed numbers \rightarrow e_data $:=" 10 "$
```
e_data <= "00" when EA = X"00" and EB = X"00" and enable = '1' else -- Subnormals
    "01" when EA > X'00" and EB > X"00" and enable = '1' else
    "10" when (EA = X"00" or EB = X"00") and enable = '1' else
-- Normals
    "--";
```

-- Normals
-- Combination

Figure 22. selector Simulation

3.5.2.
 MUX/DEMUX Blocks

The operation of the demux demultiplexor is routing the A and B numbers to the subnormal, normal or mixed block according with the e_data value.

NumberA, NumberB and the enable signal e_data are the entries and the outputs are 3 pairs of signals but only one pair is activated in each time. The typical demultiplexor's behaviour.

process (NumberA, NumberB, e_data)
begin
case e_data is
--- Subnormals
when "00" \Rightarrow " NA0 < = NumberA;
NBD <= NumberB;
NA1 <= "---";

NB2 <= "--"
-- Normals

NA1 <= NumberA;
NB1 <= NumberB;
NA2 <= "---";

-- MiX

NA2 <= NumberA;
NB2 <= NumberB;

end case;

The mux_ns multiplexor's target is selecting which signal must be introduced in the normal numbers block: normal numbers or a standardized numbers from the mixed numbers block.

The entries are the two pairs of numbers and e_data signal and the outputs are the A and B numbers according with e_data value.

entity mux ns is
 NorB : in std_logic_vector (36 downto 0); -- Normal B MixA : in std_logic_vector (36 downto 0); -- Mixed A. MixB : in std-logic_vector (36 downto 0); -- Mixed B e_data : in std ${ }^{-}$logic-vector (1 downto 0); -- Enable type data $\begin{array}{lll}\text { NA } & \text { : out std_logic vector }(36 \text { downto } 0) ; \\ \text { NB } & \text { : out std } & \text {-- Number } A^{\top}\end{array}$
end mux_ns;
-- Normal numbers
-- Mixed numbers
-- Normal numbers
-- Mixed numbers

Finally mux_adder multiplexor is in charge of selecting which data are going to be introduced in the adder.

The entries are the comp signal, the two mantissas, signs and exponents and all of them multiplied by two: one for the subnormal numbers and another for the normal/mixed numbers. The output is one of the pair's members according with e_data.

A	```<= NorMA when e_data = "01" or e_data = "10" else SubMA when e_data = "00" else```	-- Normal/Mix numbers -- Subnormal numbers
B	```<= NorMB when e_data = "01" or e_data = "10" else SubMB when e_data = "00" else "-------------------------------";```	-- Normal/Mix numbers -- Subnormal numbers
C	```<= CompN when e_data = "01" or e_data = "10" else Comps when e_data = "00" else ' - ';```	-- Normal/Mix numbers -- Subnormal numbers
SA	```<= NorsA when e_data = "01" or e_data = "10" else SubSA when e_data = "00" else '-';```	-- Normal/Mix sign A -- Subnormal sign A
SB	```<= NorsB when e_data = "01" or e_data = "10" else SubSB when e_data = "00" else ' - ';```	-- Normal / Mix sign B -- Subnormal sign B
E		-- Normal / Mix exponent -- Subnormal exponent

3.5.3. preadder Block

Finally the preadder block is going to be explained. The special cases block is not considered in this block diagram because it will be added next to adder block in a complete block diagram.

NumberA, NumberB and enable are the inputs. A and B sign (SA and SB), the C signal, output's exponent Eout, and both MAout and MBout mantissas are the outputs of the design.

entity preadder is
Port (NumberA : in std_logic_vector (31 downto 0); -- Number A
NumberB : in std_logic_vector (31 downto 0); -- Number B
enable : in std_logic; -- Enable
sA : out st \bar{d} logic: $\quad--\operatorname{sign} \mathrm{A}$
SB : out std_logic; -- Sign B
C : out std logic: -- Comparison
EOut : out std_logic_vector (7 downto 0); -- Exponent output
MAOut : out std_logic_vector (27 downto 0); -- Greatest Mantissa
MBOUt : out std_logic_vector $(27$ downto 0)); -- shifted Mantissa
end preadder;

The components description is shown in this part of the code. Normal numbers block (n _normal), subnormal numbers block ($n _s u b n$), mixed numbers block (norm), the multiplexor and demultiplexors (mux_ns, mux_adder and demux) and the selector entity are added there.

Finally the connection between the different components is described in the second part of the code.

```
comp0 : n normal
    por̄}\mathrm{ map (NumberA => Amux, NumberB => Bmux,
        Comp => NComp, SA => SAnor, SB => SBnor, EO => Enor, MA => MAnor, MB => MBnor) ;
comp1 : n_subn
    por\overline{t map (NumberA => A_sub, NumberB => B_sub,}
            Comp => SComp,SA => SAsub, SB }=>\mathrm{ SBsub, EO => Esub, MA => MAsub, MB => MBsub) ;
comp2 : norm
    port map (NumberA => A_mix, NumberB => B_mix,
            MA => MixAaux, MB => MixBaux) ;
comp3 : demux
    port map (NumberA => NA_out_select, NumberB => NB_out_select, e_data => edata,
        NA0 => A_sub, NB0 => B_sub, NA1 => A_nor, NB1 => B_nor, NA2 => A_mix, NB2 => B_mix);
comp4 : mux_ns
    port map (NorA => A_nor, NorB => B_nor, MixA => MixAaux, MixB => MixBaux, e_data => edata,
        NA => Amux}, NB => Bmux) ;
comp5 : selector
    port map (NumberA => NumberA, NumberB => NumberB, enable => enable,
            e_data => edata, NA => NA_out_select, NB => NB_out_select);
comp6 : mux_adder
    port \overline{map (NorSA => SAnor, NorSB => SBnor, SubSA => SAsub, SubSB => SBsub, CompN => NComp, CompS => SComp,}
                NorE => Enor, SubE => Esub, NorMA => MAnor, NorMB => MBnor, SubMA => MAsub, SubMB => MBsub,
                e_data => edata, SA => SA, SB => SB, C => C, E => Eout, A => MAout, B => MBout);
```


Figure 23. preadder Simulation

CHAPTER 4:
 ADDER

This chapter will deal with the adder and the standardizing block. The first one is in charge of operating the numbers which have been prepared in the Pre-adder block. The second one will standardize the result according with standard IEEE 754.

The block procedure is as follows:

1. Calculating the output's sign according to the sign numbers and the operation symbol
2. Addition/Subtraction of the both A and B numbers
3. Standardizing the result as IEEE 754 standard says
4. Grouping sign, exponent and mantissa in a single vector

The result is reached and the last step is multiplexing this value with the other one obtained as a special cases event explained in previous chapters.

4.1. Adder

The adder is a fundamental piece of the design because it implements the addition/subtraction operation, main purpose of the 32 bit Floating Point Adder.
The Adder block is composed by two entities: signout and adder. Signout is responsible for the sign operation and the adder is the adder strictly speaking.

4.1.1.

Signout Block

Signout entity has six inputs: numbers A and B, both signs $S A$ and $S B$, signal A_S which indicates if we add or subtract and the bit Comp (high if A is greater than B otherwise low).

The outputs are the two numbers $A a$ and $B b$, the outputs sign $S O$ and the signal $A S$ that has the same function than $A _S$: determine the sign of the operation.

-- Sign A
-- Sign B
-- Number A
-- Number B
-- Add (0) or sub (1)
-- Determine largest number
-- Number A'
-- Number B'
-- A S'
-- Determine output's sign

Three different parts are visible in the code.
Firstly the outputs sign will be determined using the bits $A _S, C o m p, S A$ and $S B$, A's sign and B respectively.

```
SB_aux <= SB xor A_S;
-- sign B because of the operation
SO<= SA when Comp = '1' else -- A > B --> Sign A
    SB_aux when Comp = '0' else -- B > A --> Sign B
```

An exclusive OR operand performs the function that is shown in table 4.
Table 4. $S B$ xor A_S

A_s	SB	SB_aux
+	+	+
+	-	-
-	+	-
-	-	+

Basically, it does the mathematical combination between the operation's symbol and the B number sign. Once the "new" B's sign is found out, the outputs sign $S O$ is determined with the aid of $S A$ and the bit Comp.

Table 5. SO determined

SA	SB_aux	Comp	SO
+	+	0	+
+	+	1	+
+	-	0	-
+	-	1	+
-	+	0	+
-	+	1	-
-	-	0	-
-	-	1	-

First of all, the two vectors A and B are reordered according with their original value (remember the numbers have been exchanged -or not- in preadder block when the exponents have been made equal)

When A is greater than B, the outputs sign $S O$ will be equal to A 's sign, $S A$. Otherwise, if B is greater than A, the output will keep the sign of the number B (the "new B's sign" one, SB_aux).

Secondly, if both $S A$ and $S B$ signs are equal is realized that both number A and number B will be added with the only difference of the sign. On the other hand, if $S A$ and $S B$ are different, what number is the negative one will be determined in order to simplify the adder implementation.

```
Aaux <= A when Comp = '1' else
    B when Comp = '0' else
    "------------------------------";
Baux <= B when Comp = '1' else
    A when Comp = '0' else
    "-------------------------------";
process (SA, SB_aux, A, B)
    begin
    --------------------- if sign }A\mathrm{ is equal to sign B
        if (SA xor SB_aux) = '0' then
            Aa <= A; -- Nothing changes
            Bb}<= B
        ---------------------- if Sign A is 1 and Sign B is 0
            elsif SA = '1' and SB_aux = '0' then
            Aa}<=B; -- A is changed by B
            Bb <= A;
        --------------------- if Sign A is 0 and Sign B is 1
            elsif SA = '0' and SB_aux = '1' then
            Aa}<= A; -- Nothing changes
            Bb <= B;
        else
            Aa <= "-----------------------------";
            Bb <= "--------------------------------";
        end if;
end process;
```

As it is seen in the code, the negative number when we have two different signs always will be in the vector B called $B b$ setting the positive one in vector $A a$. In another way it does not care: $A a$ will be A and $B b$ will be B.

Finally a bit indicating when a subtraction is produced is needed in order to achieve a properly operation in the adder. If A and B signs are equal that means an addition will be calculated ($A S$ low). In the other hand, if A and B are different, the number $A A$ and the negative number B, which had being moved to the vector $B b$, are going to be subtracted (AS high).

```
AS <= '1' when SA /= SB_aux else
    * 0';
```

-- Complement to 1 is needed when
-- the signs are different

Figure 24. signout Simulation

4.1.2.
 Adder Block

The Adder block is in charge of the addition/subtraction operation. The two numbers A and B and the bit $A _S$ which indicates the operation's symbol are the entries. The outputs are the result vector S and the Carry bit Co which shows if there was an overflow.

entity adder is
Port (

$$
\begin{array}{ll}
\text { : in std_logic_vector }(27 \text { downto } 0) ; & - \text { - Number } \mathrm{A} \\
\text { : in std_logic_vector }(27 \text { downto } 0) ; & -- \text { Number } \mathrm{B} \\
\text { : in std_logic; } & -- \text { Add }(0) / \text { Sub (1) } \\
\text { : out std_logic_vector }(27 \text { downto } 0) ; & -- \text { output }
\end{array}
$$

end adder;

First of all the type of adder will be explained. A Carry Look Ahead structure has been implemented. This structure allows a faster addition than other structures. It improves by reducing the time required to determine carry bits. This is achieved calculating the carry bits before the sum which reduces the wait time to calculate the result of the large value bits.

Figure 25. 1-bit Carry Look Ahead Structure
The implementation of the Carry Look Ahead structure is shown at the figure above. The idea is to obtain the carry generation and the carry propagation independently of each bit in order to obtain last carry faster.

The code has been designed implementing a 1-bit CLA structure and generating the other components up to 28 (the number of bits of the adder) by the function generate. Before that the $A_{-} S$ signal is used to determine if the second operand should be in complement to 1 (subtraction) or not (addition) using an exclusive or gate.

```
-- Components generation
Comp1: for i in 0 to 27 generate
    B1(i) <= B(i) xor A_S;
    sumador_0: if (i=0) generate
        sumador_0comp: CLA port map (A => A(i), B => B1(i), Cin => A_S, S => S (i), Cout => aux (i));
        end generate;
    sumador_i: if ((i>0) and (i<28)) generate
        sumador_icomp: CLA port map (A => A(i), B => B1(i), Cin => aux(i-1),S => S(i), Cout => aux(i));
        end generate;
end generate;
Co <= aux (27)
```

Finally the Co bit is fixed by the carry of the last component.

Figure 26. adder Simulation

4.1.3.
 Block_Adder Block

Finally the Block_Adder block joins both signout and adder entities to implement the complete adder. The inputs are the signs and the value of A and B (SA-SB and $A-B$ respectively), the bit Comp and $A _S$. Moreover the outputs are the result S, the carry $C O$ and the outputs sign $S O$.

The code is quite brief. Basically the connection of the different blocks is done in this block.

```
component adder port (A, B : in std_logic_vector(27 downto 0);
    A_S : in std_logic;
    S : out std_logic_vector(27 downto 0);
end component;
component signout port (SA, SB : in std_logic;
    A, B : in std_logic_vector(27 downto 0);
    A_S, Comp : in std_logic;
    A\overline{a}, Bb : out st\overline{d}_logic_vector(27 downto 0);
    AS, SO : out std_logic);
end component;
signal Aa aux, Bb aux, S aux : std logic vector(27 downto 0);
signal AS_aux, SO_aux, Co__aux : std_logic;
begin
component00: signout port map (SA => SA, SB => SB, A => A, B => B, A_S => A_S, Comp => Comp,
                        Aa => Aa_aux, Bb => Bb_aux, AS => AS_aux, SO => SO_aux);
component01: adder port map (A => Aa_aux, B => Bb_aux, A_S => AS_aux, S => S_aux, Co => Co_aux);
--------- If a complement to 1 is used and Output's sign is 1 a C2 is needed
S <= (S_aux xor X'EFEFFFFF")+'1' when ((AS_aux and SO_aux) = '1') else
Co <= 'O' when ((SB xor A_S) /= SA) else
    Co_aux;
SO<= SO_aux;
```

The most interesting part is on the bottom: if a subtraction operation is done and the outputs sign is set (that means negative number is greater than the positive) that means a complement to 2 is needed over the result because as it has been explained the negative number always is moved to the vector B and the result is "negative" (C to 2) when truly it is not. An example is shown:

Table 6. Example correct operation

SA	A	SB	B	A_s	SO	Result
-	101	+	100	+	-	001

At the table 6 it is shown the correct and theoretical operation of the adder. The signs are not taken into account because they have their own bits. The result is 1-decimal positive with SO negative.

Table 7. Example wrong operation

Aa	Bb	AS	SO $^{\prime}$	Result
100	101	-	-	111

At table 7 the operation of the adder is shown without the complement to 2 part. The negative vector is move to Bb then a negative binary result (-1) is obtained not being correct according to the IEEE 754 standard. AS is recalculated in signout according to the sign values. Then if $A S$ (subtraction) and SO (negative) are set a complement to 2 is necessary to reach a correct result.

Note the complement to 2 is not necessary when we have two negative numbers because it has been considered like an addition of two positive numbers.

Finally the carry value is also corrected in the same circumstances: when a subtraction is operated and we have a negative number at the output it will always have a carry out high. If the complement to 2 is needed that implies a carry low to obtain a proper result.

Figure 27. Block_Adder Simulation

4.2. Standardizing Block

The Standardizing block, as its name suggest, is responsible for displaying the addition/subtraction operation value according to the IEEE 754 standard.

This block is composed of four entities. Shift_left and zero blocks have been explained in the previous chapter. Round and vector are the two new ones. Basically they are in charge of dealing with the result obtained from the adder and showing it in the same format as the numbers had been introduced

4.2.1. round Block

Round block provides more accuracy to the design. Four bits at the end of the vector had been added in the Pre-Adder block. Now it is time to use these bits in order to round the result.

$$
\begin{aligned}
& 1001000 \cdot 2^{4} \\
& 1101001 \cdot 2^{1}
\end{aligned} \quad>\quad \begin{aligned}
& 1001000 \\
& 000011001001 \cdot 2^{5} \\
& \text { Guard Bits }
\end{aligned}
$$

This block has only one input and one output. The input is the vector Min and the output Bout. Note Min is larger than Bout (27 bits against 22). The reason is Min contains the implicit and round bits that will be treated during the round code execution.

The process to round is chosen arbitrarily: if the round bits are greater than the value "1000" the value of the mantissa will be incremented by one. Otherwise the value keeps the same value.

```
process(Min)
    begin
        if Min(3 downto 0) = "----" then
            M_aux <= "------------------------";
        elsif Min(3 downto 0) >= "1000" then -- Round Mantissa
            M_aux <= Min(26 downto 4) + '1';
        else
            M_aux <= Min(26 downto 4);
        end if;
    end process;
    Mout <= M_aux;
```

4.2.2.
shift_left/zero Block
Both shift_left and zero blocks are completely reused from the mixed number block. It has been explained in the last chapter and it is not going to be commented again.

Figure 28. Round Simulation

4.2.3.
 block_norm Block

The block_norm implement the standardizing function. It is composed by the entities signout, shift_left and zero_counter. The entries are the result's mantissa (MS) and exponent (ES) and the add's carry Co. The outputs will be the standardized result (its mantissa (M) and exponent (E)).


```
entity block_norm is
    Port ( MS : in std_logic_vector(27 downto 0); -- Number S
    ES : in std_logic_vector(7 downto 0); -- Exponent S
    Co : in std_logic; -- Carry out
    M : out st\overline{d}logic vector(22 downto 0); -- Output's Mantissa
    E : out std_logic_vector(7 downto 0)); -- Output's Exponent
end block_norm;
```

The first part of the code implements the connection between the different components which compose the block. Zero, shift_left and round are connected as shown in the code and the block diagram.

```
-------------------------------------------------- Components declaration
comp0 : zero
    port map (T => MS, zcount => Zcount_aux);
comp1 : shift_left
    port map (T => MS, shft => Shift, S => Number);
comp2 : round
    port map (Min => Number, Mout => M) ;
```

The second part of the code refers to the exponent treatment. Three different cases have been taken into account:

1. If the exponent is larger than the number of zeros (number of positions the vector should be shifted) it means the number is normal and the standardized exponent will be the exponent minus the positions shifted plus the carry.
2. If the exponent is shorter than the number of zeros it means the output will be subnormal, only the value which marks the exponent could be shifted and the final exponent will be zero.
3. Last case referred when the exponent is equal to the number of zeros. On this occasion the vector will be shifted the number of positions the exponent marks (or the signal zero_counter) and the result will be normal with exponent one.
```
------------------------------------------------ Normal or Subnormal Number
process(MS, ES, Shift, Zcount_aux, Co
    begin
        if zcount_aux = "-----" then
            Shift <= "-----";
            E<= "--------";
        elsif ES > Zcount_aux then
    -- If the number is normal...
            Shift <= Zcount aux;
    -- ... the number is shifted --> Output normal
            E<= ES - Shift + Co;
        elsif ES < Zcount aux then
    -- If the number is normal...
            Shift <= ES(4 downto 0)
    -- ... the number is shifted --> Output subnormal
            E<= X"00";
        elsif ES = Zcount_aux then
    - If N}\mp@subsup{N}{}{\circ}\mathrm{ Zeros = Exponent...
            Shift <= Zcount aux
    -- ... the mantissa is shifted and EO = 1
            E<= X"01";
        end if;
    end process
```


Figure 29. norm_block Simulation

4.2.4.
 vector Block

This block has an easy function: regrouping the sign, exponent and mantissa in a single vector to be consistent with the format adopted for data entry.

It has three inputs: sign S which it comes from the adder block, mantissa M and exponent E. The output is the vector N which keeps the format of numbers A and B (the main entries of the system).


```
entity vector is
    Port ( S : in std logic; -- sign
    E : in std_logic_vector(7 downto 0); -- Exponent
    M : in std logic vector(22 downto 0); -- Mantissa
    N : out st\overline{d}_logic_vector(31 downto 0)); -- vector
end vector;
```

The code is so simple. Sign, mantissa and exponent are set in the proper position as follows:

```
N(31) <= S;
N(30 downto 23) <= E;
N(22 downto 0) <= M;
```

Table 8. Bit positions

$\mathbf{3 1}$	$\mathbf{3 0 . . 2 3}$	$\mathbf{2 2 . 0}$
Sign	Exponent	Mantissa

Note this entity will be out of the standardizing block because it uses signals from two different blocks. However it is part of the standardizing process and it is clearer to be explained in this chapter.

Two simulations are added: the first one test the entity operation and the second one perform the behaviour when it is joined to the block_norm entity.

Figure 30. vector Simulation

Figure 31. block_norm + vector Simulation

CHAPTER 5:

32-BITS FLOATING

POINT ADDER

Finally all the different entities and sub-blocks has been described and explained. In this chapter the blocks will be joined in order to test totally the Floating Point Adder. The procedure will be as follows:

1. n_case Entity sort the data type according with the standard IEEE 754 and enable the adder if it is needed to operate the numbers. Otherwise (special cases) the result is done by it.
2. If the numbers are normal, subnormal or a mix, the Pre-Adder sub-block deals with the treatment of the numbers in order to be added / subtracted.
3. The Adder Block adds or subtracts the two numbers given
4. It is time to standardize the result according with the standard: shifting the mantissa and recalculating the new exponent.
5. Finally the result will be choose between the special case or the operated one depending on the input values

Two more entities will be explained in this section: the multiplexor which takes care of the last step of the list and the fpadder grouping all this points and making them work together.
On this occasion, the simulations will not be added to the code. Being the complete Floating Point Adder it is considered make another point in this chapter to demonstrate the proper functioning.

Moreover a table will be used to collect the different binary values, convert to decimal and as similar or different the results are.

5.1. Floating Point Adder

As it has been said, this first section will contain two entities: the multiplexor that is in charge of setting the correct result in the output (special cases or operated result) and the entity which groups all the blocks.
Continuing with the format used before, the ports and the block diagram are explained at the beginning and immediately afterwards the behaviour.

5.1.1.
 Mux_fpadder Block

The multiplexor is not so complicated. It has three inputs: N1, N2 and enable. The first signal refers to the $n_{\text {_case }}$ result and the second one to the vector obtained in the adder block. Enable decides which one will be at the output.
Finally, the output is Result which contains the 32 bits (Sign, exponent and mantissa) result.

The code is pretty simple. If enable is high it means the numbers were normal, subnormal or mixed and then the vector which comes from the adder is the correct result. Otherwise, if enable is low, a special case combination is had and the block n _case is who has the proper value.

```
Result <= N1 when enable = '0' else -- N case number
    N2 when enable = '1' else -- A\overline{d}der number
```


5.1.2.
 fpadder Block

Finally, the entire Floating Point Adder is designed. The last entity is fpadder which joins all the different blocks previously described.
The inputs are both NumberA and NumberB numbers and the operand $A_{1} S$. Obviously, the output is the final result of the operation according with the standard.

```
entity fpadder is
    Port ( NumberA : in std_logic_vector(31 downto 0); -- Number A
        NumberB : in std_logic_vector(31 downto 0); -- Number B
        A_S : in std_logic; -- Add / Sub
        Result : out st\overline{d}logic_vector(31 downto 0)); -- Result
end fpadder;
```

On the next page a complete block diagram is shown:

Figure 32. Block Diagram

The first part of the code includes all the component declarations. As it can be seen all the main blocks are here: n_case, preadder, block_adder, norm_vector (norm + vector blocks) and mux_fpadder.


```
component mux_fpadder port (N1, N2 : in std logic_vector(31 downto 0);
    enable : in std_logic;
    Result : out std}\mp@subsup{}{}{-}logic vector(31 downto 0))
```

end component;
The second part of the code is responsible for connecting the different blocks properly as it is represented in the block diagram.

```
comp0 : preadder
    port map (NumberA => NumberA, NumberB => NumberB, enable => enable_aux,
        SA => SA_aux, SB => SB_aux, C => Comp_aux, EOut => EOut_\overline{aux, MAOut => MA_aux, MBOut => MB_aux) ;}
comp1 : block adder
    port map (SA => SA_aux, SB => SB_aux, A => MA_aux, B => MB_aux, A_S => A_s, Comp => Comp_aux,
        S M MOut_aux, SO => S_aux, Co => Carry) ;
comp2 : norm_vector
    port map (SS => S_aux, MS => MOut_aux, ES => EOut_aux, Co => Carry,
        N => Na\overline{dder);}
comp3 : mux_fpadder
    port map (N1 => Ncase, N2 => Nadder, enable => enable_aux,
        Result => Result) ;
comp4 : n_case
    port map (NumberA => NumberA, NumberB => NumberB,
        enable => enable aux, S => Ncase);
```


5.2. Simulations

At this point the simulations to test the operation will be comment. As it has been done before four different cases could happen: special case, normal, subnormal or mixed numbers.

All the different possibilities must be tested and this is the reason why the different data types will be treated separately.
The procedure will be as follows:

1. Enough different cases for each data type to demonstrate the correct working will be taken into account. The binary values of the entries and the output will be grouped in a table.
2. Using the simulation the result will be obtained and added to the table.
3. Decimal value of the numbers and the result will be calculated with the formula which had been explained at the standard IEEE 754 chapter.
4. Simulation value will be compared with the arithmetic value in order to see as similar or different the numbers will be.

The discussion about the accuracy of the 32-bit Floating Point Adder and the general standard IEEE 754 will be carried out in the next chapter.

5.2.1.

Special Cases

Recovering the table added in the second chapter, 8 different cases are possible.
Zero-NumberX, NaN-NumberX and Normal/Subnormal-Infinity cases can be taken into account only one time (Zero-NumberX or NumberX-Zero tests the same result). Then the simulation will contain 5 combinations.

Table 9. Special Cases combination

Sign	Out A	Out B	Sign Output	Output
X	Zero	Number B	SB	Number B
X	Number A	Zero	$S A$	Number A
X	Normal / Subnormal	Infinity	$S B$	Infinity
X	Infinity	Normal / Subnormal	$S A$	Infinity
SA=SB	Infinity	Infinity	$S X$	Infinity
SA $\neq S B$	Infinity	Infinity	1	NaN
X	NaN	Number B	1	NaN
X	Number A	NaN	1	NaN

X: do not care SA: Number A's sign SB: Number B's sign SX: Sign A or B (it is the same)

Figure 33. Special Cases Simulation

The results are collected in the next table:
Table 10. Special Cases Results

SX: Sign Number X EX: Exponent Number x MX: Mantissa Number X XS: Result X(10: Base-10 Number
As it can be seen the results are consistent with the theoretical explanation.

5.2.2.

Normal Numbers
n_case block is only a combination between the entries and no more blocks are involved in this operation. Normal numbers have more complexity.

In this section the blocks which are responsible for normal numbers are tested.

	$+4.056481920730334 \mathrm{e}+031$		$-2.863270299048707 e+036$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & + \\ & 0 \\ & 0 \\ & N \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & -1 \\ & + \end{aligned}$
$\stackrel{e}{5}$		SعO+26T6SI 92SIOTE9FT'T-	$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$		
\sum	8 8 8 8 8 8 8 8 8 8 8 8 8 8		8 8 8 8 0 8 8 7 7 0 7 7 8 8 8 8		7 8 0 -1 -1 -1 0 8 - -1 -1 -1 0 8 8 1 -1 -1
$\begin{gathered} \boldsymbol{\omega} \end{gathered}$	8 8 7 0 -1 -1	$\begin{aligned} & 7 \\ & -7 \\ & 8 \\ & -7 \\ & -7 \\ & -1 \end{aligned}$	8 8 - -1 -1 -1	$\begin{aligned} & -1 \\ & 8 \\ & - \\ & - \\ & - \\ & -1 \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \end{aligned}$
$\begin{aligned} & \circlearrowleft \\ & \emptyset \end{aligned}$	\bigcirc	\rightarrow	\cdots	\rightarrow	\bigcirc

5.2.3.
 Subnormal Numbers

Turn to the subnormal numbers. Different possibilities with the sign of the numbers and the operation symbol will be treated in order to test more combinations.

Figure 35. Subnormal Numbers Simulation

5.2.4.
 Mixed Numbers

Finally, the mixed numbers. The other combinations will be tried.

Figure 36. Mixed Numbers Simulation

CHAPTER 6:

RESULTS

Finally in the last chapter the results, they have been obtained before, will be evaluated.

Firstly a theorical and brief introduction about floating point errors is compulsory because this information is important to understand the behaviour of the results achieved.

At last, the report will finished with a conclusion where the main goals of the adder will be discussed.

6.1. Errors

There is a lot of literature which speaks about errors in a floating point system. The most of these errors are produced in the conversion between the internal binary format and the external decimal one or conversely.
Usually the computers use a fixed quantity of memory to represent each sort of number. This representation makes the electronic design easier but it involves rounding and it can lead to erroneous values.
This project focuses on the design of the binary floating point adder. Hence this type of errors will not be taken into account unless when a decimal representation with MATLAB is used (we will see it later).
The floating point format is discontinuous. It means not all real numbers have representation and this is another error source especially important with high numbers where the gap between them is largest.

6.1.1.
 Gap between Numbers

Once again, the real numbers could have an infinite number of digits and the floating point format is used to represent it with a computer.
The accuracy of the number is represented by the number of digits of the mantissa. A 24bits mantissa could be represented by 7 decimal digits.

In numerical analysis, errors are very often expressed in terms of relative errors. And yet, when errors of "nearly atomic" function are expressed, it is more adequate and accurate to express errors in terms of the last bit of the significant: the last significant weight give us the precision of the system. Let us define that notion more precisely. William Krahan coined the term ulp (unit in the last place) in 1960 and its definition was as follows:
$\operatorname{Ul}(x)$ is the gap between the two floating point numbers nearest to x, even if x is one of them.

Mathematically the ulp could be defined as follows:

$$
\begin{equation*}
u l p=\beta^{-p+e} \tag{2}
\end{equation*}
$$

The value in our system will be (when $e=e_{\min }$) ulp $=2^{-24+1}=1.1921 \cdot 10^{-7}$
As it has been said, the floating point format is discontinuous that means not all the real numbers have a representation in this format. The ulp represents the step between two consecutive numbers. Using MATLAB with $p=6, \beta=2$ and $0<e<3$ (simplifying results) a representation of this discontinuous format has been obtained:

Figure 37. ulp representation
The ulp is doubled as the exponent increases by one because of the base (power of two).

Figure 38. ulp increase

6.1.2.

Rounding or Truncation
To represent a real number in a computer an adequate floating point number must be chosen. At first glance it seems the nearest one will be the best choice but sometimes this will not be an option unless all the number digits are known.

We need a procedure which requires only one digit more to represent the number. Using this condition rounding and truncation are our two possibilities.

Truncation consists of chosen the m more significant bits/digits of a number x. On the other hand, rounding needs to know the next bit/digit too and according with it add one to the LSB/last digit (5, 6, 7, 8 and 9 cases) or not (1, 2, 3, 4).

We use an example to find out what method is better and why.

Rounding $(2 / 3)=(0.666 \ldots)$	\rightarrow	0.667
Truncation $2 / 3)=(0.666 \ldots)$	\rightarrow	0.666

If a mantissa of 3 bits is considered we have a maximum truncation error when the number ends with a periodic 9 as 0.66699999 . The error is $0.999 \cdot 10^{-4} \approx 10^{-4}$ which matches up with the bit error (or the ulp).
The maximum rounding error is produced when the numbers have a decimal part ended in 4 plus infinity 9 digits as 0.66649999 . The error is calculated rounding the maximum error $4.9999 \cdot 10^{-4} \approx 5 \cdot 10^{-4}$. Then the relative error is equal to half the last digit ($1 / 2 u l p$).
In conclusion we have demonstrated the relative error caused by truncation is equal to the $u l p$ and the rounding one $1 / 2 u l p$.

As it has said the error increases according with the exponent of the number.

6.1.3.
 Floating Point Addition

Finally a brief comment about the floating point addition/subtraction will be done.
The basic arithmetic operations have their equivalent in floating point format. The goal is noting these operations always have errors.

Let see an example:
Being $\mathrm{x}=1867=0.1867 \cdot 10^{4}$ and $\mathrm{y}=0.32=0.3200 \cdot 10^{0}$, then:

$$
f l(x+y)=f l\left(0.1867 \cdot 10^{4}+0.000032 \cdot 10^{4}\right)=0.1867 \cdot 10^{4} \neq 1867.32=x+y
$$

The floating point representation is correct but anyway we have an error. A mantissa shifting is necessary to add two numbers with different exponents and we can lose some "information" during the procedure.

6.2. Results analysis

Once a small introduction to the errors is done we are going to use the values from last section tables.

To show the result we have implemented a simple program using MATLAB. First, inside the for loop we calculate the mantissa value and set its value in Aux. Then according with the data type (normal or subnormal) we use the appropriate formula for each case.

6.2.1.

Subnormal Numbers

In the table 14 we have grouped all the results obtained during a new simulation with subnormal numbers.

As it can be seen the relative error is always zero. The error for a subnormal bits is $2^{(-23-126)}=1.4012 \cdot 10^{-45}$. The number is small enough. In addition there is not any shifting and the double precision format of MATLAB provides this great accuracy.

Table 11. Subnormal Numbers Results

MA/MB	$\mathrm{A}_{\text {(10 }} / \mathrm{B}_{(10}$	AS	$\mathbf{A}_{(10} \pm \mathbf{B}_{\text {(10 }}$	S	$\mathbf{S}_{(10}$	E_{r}
1100000000\|10011001100110011001100	-7.052964983894954e-039	-	-1.097127855243694e-038	1100000000\|11101110111011101110110	-1.097127855243694e-038	0
1100000000\|01010101010101010101010	-3.918313568541982e-039					
	$7.006492321624085 \mathrm{e}-045$	-	8.407790785948902e-045	0100000000100000000000000000000110	8.407790785948902e-045	0
1100000000100000000000000000000001	-1. $401298464324817 \mathrm{e}-045$					
1100000000\|10111001101110011011100	-8.528095061708117e-039	-	-1.714838575327956e-038	1100000001101110101011101010111001	$-1.714838575327956 \mathrm{e}-038$	0
0100000000\|10111011101110111011101	8.620290691571439e-039					
1100000000\|10111011101110111011101	-8.620290691571439e-039	-	-5.877471754111438e-039	1/00000000\|10000000000000000000000	-5.877471754111438e-039	0
1100000000100111011101110111011101	-2.742818937460002e-039					
0100000000101010100101010110101010	$3.887821313958274 \mathrm{e}-039$	+	-7.867120792966137e-039	1100000000\|10101011010101001010101	-7.867120792966137e-039	0
1100000000\|11111111111111111111111	-1.175494210692441e-038					
$010000000 \mid 11111111111111111111111$	1.175494210692441e-038	$+$	$7.867120792966137 \mathrm{e}-039$	$0100000000 \mid 10101011010101001010101$	$7.867120792966137 \mathrm{e}-039$	0
1100000000101010100101010110101010	$-3.887821313958274 \mathrm{e}-039$					
0100000000110101010101010101010001	$7.836622933188571 \mathrm{e}-039$	+	1.567325147157100e-038	$0100000001 \mid 01010101010101010100110$	$1.567325147157100 \mathrm{e}-038$	0
$0100000000 \mid 10101010101010101010101$	$7.836628538382429 \mathrm{e}-039$					
1100000000100000000000000101010101	-4.778427763347626e-043	+	-7.160635152699815e-043	1100000000100000000000000111111111	-7.160635152699815e-043	0
1100000000100000000000000010101010	-2.382207389352189e-043					

Table 12. Mixed Numbers Results
(

The smaller the number, the greater the relative errors we have because each time, we are nearer to the bit error value.

Figure 39. Relative error
The reason to get this error is that using mixed numbers we have to shift the subnormal number, first to standardize it and later to make equal the exponents causing a big displacement because the other number is normal and its exponent will be greater.

6.2.3. Normal Numbers

Finally the normal numbers turn. The results have been grouped in the table 13.
The relative error is not so big in most cases but there are two values where it increase so much. Two possible causes: the first one, as we have said, the greater the number, the greater the error we can have. The second one, as in the mixed numbers, we must shift one of the numbers losing some bits in the operation and increasing the error if the exponents are very different.

Table 13. Normal Numbers Results

MA/MB	$\mathrm{A}_{(10} / \mathrm{B}_{(10}$	AS	$\mathrm{A}_{(10} \pm \mathrm{B}_{(10}$	s	$\mathrm{s}_{(10}$	E_{r}	
0\|11111101	10101010101010101010101	+1.417843161699894e+38		+4.056481920730334e+31	0111101000100000000000000000000000	+4.056481920730334e+31	0
0111111101110101010101010101010001	+1.417842756051702e+38						
0111110101101010100101010110101010	+4.422139697774293e+35		-1.116310152615919e+35	1\|11110011	01010111111111010101100	-1.116310152615919e+35	0
0111110101\|10101010101010101010101	+5.538449850390212e+35						
111111010\|10011001100110011001100	-1.701411733192644e+37	+	-2.863270299048707e+36	1\|11111000	00010011101110010001000	$-2.863270299048707 \mathrm{e}+36$	0
0111111010101010100101010110101010	+1.415084703287774e+37						
0111110000\|10111011101110111011101	+1.799996137003937e+34	+	+8.144778900470302e+31	0111101001100000001000000010000000	+8.144778900470302e+31	0	
1111110000110111001101110011011100	-1.791851358103467e+34						
0111111001\|10111011101110111011101	+9.215980221460157e+36	,	+1.036276509064638e+37	$0111111001 \mid 11110010111100101111001$	+1.036276540755903e+37	+3.058186181824276e-008	
1111110110110111001101110011011100	-1.146784869186219e+36						
0111111101\|10101010101010101010101	+1.417843161699894e+38	-	+2.835685917751596e+38	0111111110101010101010101010100110	+2.268548166293808e+38	-0.200000200271640	
1\|11111101	10101010101010101010001	-1.417842756051702e+38					
0110011001101110111011101110111010	+98426320	In	-13421752	$1\|10010110\| 10011001100110010111000$	-13421752	min	
1\|10011001	10101010101010101010001	-111848072					
0110110110110101010101010101010001	+5.284222818320384e+16	+	+6.034822523571405e+16	0110110110\|11011111111111111111011	+6.755397293572096e+16	+0.119402810469769	
0110110011\|10101010101010101010001	+7.505997052510208e+15						

6.3.
 Conclusions

The importance and usefulness of floating point format nowadays does not allow any discussion. Any computer or electronic device which operates with real numbers implements this type of representation and operation.

During this report I have tried to explain the operation and benefits of using this notation against the fixed point. The main feature is that it can represent a very large or small numbers with a relatively small and finite quantity of memory.

The clear utility of the floating point format was the main reason why I decide to do this work. The other reason was the possibility of implementing it in VHDL. I could work on something that I like as programming and design something which has a current use. What is the result?

The reached goal is the implementation of a 32bits adder/subtractor based on floating point arithmetic according with the IEEE 754 standard.

This design works with all the numbers defined by the standard: normal and subnormal. Furthermore, all the exceptions are taken into account as NaN , zero or infinity.

The VHDL code has been implemented so that all the operations are carried out with combinational logic which reaches a faster response because there are not any sequential devices as flip-flops which delays the execution time.
If I have to defend this project I will appoint two features.
The first one deals with type of architecture used. For example, the adder or the shifter is implemented with a known structure. Predetermined operations as addition (+) or shifting (SLL or SLR) are allow but I decided using a generate function and designing my own device which improves the time response.

Finally the mixed numbers option. IEEE 754 does not say anything about the operations between subnormal and normal numbers. I have designed a trick which allows the operation. I standardize the subnormal number and set a "false positive subnormal exponent" (truly it is negative but IEEE 754 does not allow negative exponent prebiased). Adding the normal exponent and the false subnormal one I know the number of positions I must shift the mantissa and then the operation is done properly.

Obviously the design is not perfect. The accuracy is not optimal. In the future using a double precision format would be an improvement. The execution time would increase but the accuracy also would be better.
Maybe a complete FPU design would be another good improvement. Multiplication and division have an easier implementation than the addition/subtraction and it would do the project more complete.

Finally using the code over a FPGA and testing it physically over a board would be the last aim which would leave the design completely finished.

CHAPTER 7:

BIBLIOGRAPHY

Muller, Jean-Michel; Brisebarre, Nicolas; De Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien and Serge Torres. "Handbook of Floating-Point Arithmetic" Birkhäuser Boston, 2010.
Lu, Mi. Texas A\&M University "Arithmetic and Logic in Computer Systems" Hoboken, New Jersey, Wiley-Interscience, 2004.
Floating Point book. Wikibooks, 2012. en.wikibooks.org/wiki/Floating_Point
Overton, Michael L. "Numerical Computing with IEEE Floating Point Arithmetic". Cambridge University Press, 2001.
Mozos, Daniel; Sánchez-Elez, Marcos and José Luis Risco. "Aritmética en coma flotante: Ampliación de estructura de computadoras". Valencia, Spain: Facultad de Informática, 2008.

Floating Point book. Wikibooks, 2012. en.wikibooks.org/wiki/Floating_Point
Overton, Michael L. "Numerical Computing with IEEE Floating Point Arithmetic". Cambridge University Press, 2001.
Altera. "Floating-Point Adder/Subtractor". San José, CA, 1996
Carrera, Manuel; López, Efrén O. and Juan Naranjo. "ALU Logarítmica". Pontificia Universidad Javeriana, Facultad de ingeniería electrónica, Bogotá DC, 2005.
Pardo, Fernando, and José A. Boluda. "VHDL. Lenguaje para síntesis y modelado de circuitos" Rama Ed.
Universidad Tecnológica de la Mixteca. "Lenguaje VHDL: Código para representar sistemas digitales en VHDL", 2009.
Madrenas, Jordi. "Disseny de subsistemes". Disseny Microelectrònic II, Universitat Politècnica de Catalunya, Barcelona, Spain, 2010.

ANNEX:

VHDL CODE

PRE-ADDER BLOCK: n_case Block

```
-- Floating point adder (32 bits)
-- Block 01 --> n case
-- Description: I\overline{dentify the types of data between:}
-- -NaN --> E=255 & T>0
-- -Infinity --> E=255 & T=0
-- -Normal --> 0<E<255 & T>0
-- -Subnormal --> E=0 & T>0
-- -Zero --> E=0 & T=0
-- and solve the operations which we can made without the adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity n case is
    Port ( NumberA : in std logic vector(31 downto 0); -- Number A
        NumberB : in std_logic_vector(31 downto 0); -- Number B
        enable : out std logic; -- Enable Adder
        s : out std_logic_vector(31 downto 0)); -- Output
end n_case;
---------------------------------------------------------------------
-- Architecture description
architecture behavioral of n_case is
-- Signals declaration
---------------------------------------------------------------------------------------------------------
    signal outA, outB : std_logic_vector(2 downto 0);
    signal EA, EB : std_logic_vector(7 downto 0);
    signal MA, MB : std_logic_vector(22 downto 0);
    signal SA, SB : std_logic;
    signal SS : std_logic;
    signal ES : std_logic_vector(7 downto 0);
    signal MS : std_logic_vector(22 downto 0);
    begin
        SA <= NumberA(31);
        SB <= NumberB(31);
        EA <= NumberA(30 downto 23);
        EB<= NumberB(30 downto 23);
        MA <= NumberA(22 downto 0);
        MB <= NumberB (22 downto 0);
        outA <= "000" when EA = X"00" and MA = 0 else -- zero
        "001" when EA = X"00" and MA > 0 else -- Subnormal
        "011" when (EA > X"00" and EA < X"FF") and MA > 0 else -- Normal
        "100" when EA = X"FF" and MA = 0 else -- Infinity
        "110" when EA = X"FF" and MA >0 else -- NaN
        "000";
        outB <= "000" when EB = X"00" and MB = 0 else -- zero
            "001" when EB = X"00" and MB > 0 else -- Subnommal
            "011" when (EB > X"00" and EB < X"FF") and MB > 0 else -- Normal
            "100" when EB = X"FF" and MB = 0 else -- Infinity
            "110" when EB = X"FF" and MB > 0 else -- NaN
        "000";
```

```
    -- If A and B are normal or subnormal numbers, enable = 1
    -- If not, enable = 0
    enable <= '1' when ((outA(0) and outB(0)) = '1') else '0';
    process (SA, SB, outA, outB)
        begin
        ---------------------------- Zero
            if (outA = "000") then _-- Zero +/- Number B
            SS<= SB;
            ES<= EB;
            MS <= MB;
        elsif (outB = "000") then -- Number A +/- Zero
            SS<= SA;
            ES <= EA;
            MS <= MA;
        end if;
        if (outA(0) = '1' and outB = "100") then -- Normal or Subnormal +/- Infinity
            SS<= SB;
            ES <= EB;
            MS <= MB;
        elsif (outB(0) = '1' and outA = "100") then -- Infinity +/- Normal or Subnommal
            SS<< SA;
            ES <= EA;
            MS <= MA;
        end if;
        if ((outA and outB) = "100" and SA = SB) then -- +/- Infinity +/- Infinity
            SS<= SA;
            ES<= EA;
            MS <= MA;
        --------------------------- NaN
        elsif ((outA and outB) = "100" and SA /= SB) then -- + Infinity - Infinity
            SS<= '1';
            ES <= X"FE";
            MS <= "00000000000000000000001";
        end if;
        if (outA = "110" or outB = "110") then
            SS<= '1';
            ES<= X"EF";
            MS <= "00000000000000000000001";
        end if;
        ----------------------------Normal / Subnormal
        if((outA(0) and outB(0)) = '1') then
            SS<= '- ';
            ES <= "--------";
            MS <= "------------------------------";
        end if;
    end process;
    S (31) <= SS;
    S (30 downto 23) <= ES;
    S(22 downto 0) <= MS;
end behavioral;
```


PRE-ADDER BLOCK: Select Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 1 --> Selector
-- Description: Identify the type of the numbers between:
-- - Normal & Subnormal (or Subnormal & Normal)
_- - Normal & Normal
-- - Subnormal & Subnormal
-- and activate the correspondent block.
-- Moreover, I add the implicit and the guard bits
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
--------------------------------------------------------------------------------------------------------
entity selector is
    Port ( NumberA : in std logic vector(31 downto 0); -- Number A
        NumberB : in std_logic_vector(31 downto 0); -- Number B
        enable : in std_logic; -- Enable
        e data : out std logic vector(1 downto 0); -- Enable type data
        N\overline{A}}:\mathrm{ : out std_logic_vector (36 downto 0); -- Number A}\mp@subsup{}{}{+
        NB : out std logic vector(36 downto 0)); -- Number B'
end selector
-- Architecture description
architecture behavioral of selector is
-- Signals declaration
    signal EA, EB : std_logic_vector(7 downto 0);
    signal MA, MB : std_logic_vector (22 downto 0);
    signal SA, SB : std_logic;
    begin
        SA <= NumberA(31);
        SB <= NumberB(31);
        EA <= NumberA(30 downto 23);
        EB <= NumberB(30 downto 23);
        MA <= NumberA (22 downto 0);
        MB <= NumberB(22 downto 0);
        process (SA, SB, EA, EB, MA, MB, enable)
        begin
            if enable = '1' then
                NA(36) <= SA; -- Exponent & sign A
                NA (35 downto 28) <= EA;
                NB (36)<= SB;
                ----------------------------------- Mantissa A
                if (EA > X"00") then
                    NA(27) <= '1'; -- Implicit bit
                    NA(26 downto 4) <= MA; -- Mantissa
                    NA(3 downto 0) <= X"0"; -- Guard bits
            elsif EA = X"00" then
                NA(27) <= '0'; -- Implicit bit
                    NA(26 downto 4) <= MA; -- Mantissa
                    NA(3 downto 0) <= X"0"; -- Guard bits
            else
                NA <= "---------------------------------------";
                end if;
                ------------------------------------ Mantissa B
```

```
            NB(27) <= '1'; -- Implicit bit
            NB (26 downto 4) <= MB; -- Mantissa
            NB (3 downto 0)<= X"0"; -- Guard bits
        elsif EB = X"00" then
            NB(27) <= '0'; -- Implicit bit
            NB (26 downto 4) <= MB; -- Mantissa
            NB(3 downto 0)<= X"0"; -- Guard bits
        else
            NB <= "-----------------------------------------------
        end if;
    else
        NA <= "---------------------------------------------
        NB <= "---------------------------------------------
    end if;
end process;
e_data <= "00" when EA = X"00" and EB = X"00" and enable = '1' else -- subnormals
        "01" when EA > X"00" and EB > X"00" and enable = '1' else
        "10" when (EA = X"00" or EB = X"00") and enable = '1' else
        -- Normals
        -- Combination
end behavioral;
```


PRE-ADDER BLOCK: Normal Numbers: Comp_Exp Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 2 --> Normal Numbers
-- Description: Prepare normal numbers for addition or subtraction operation
--
-- Comp_exp: Calculate the difference between exponents and the largest one
-- Determine the largest number (to calculate the output's sign)
-- Determine the shortest mantissa to shift in the next block
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity comp_exp is
    Port ( NumberA : in std_logic_vector(36 downto 0); -- Number A
                NumberB : in std_logic_vector(36 downto 0); -- Number B
                SA : out std logic; -- sign A
            SB : out std_logic; -- sign B
            Emax : out std_logic_vector(7 downto 0); -- Output exponent
            Mmax : out std_logic_vector(27 downto 0); -- Largest Mantissa
            Mshft : out std_logic_vector(27 downto 0); -- Mantissa to shift
            Dexp : out std logic vector(4 downto 0); -- Subtraction of exponents
            Comp : out std_logic); -- Determine largest number
end comp_exp;
-- Architecture description
-----------------------------------------------------------------------------------------------------
architecture behavioral of comp_exp is
-- Signals declaration
    signal EA, EB : std_logic_vector(7 downto 0);
    signal MA, MB : std_logic_vector(27 downto 0);
signal dif : std_logic_vector(7 downto 0);
signal C : std_logic;
begin
SA <= NumberA (36); -- Sign A & B
SB <= NumberB (36);
EA <= NumberA(35 downto 28); -- Exponent & Mantissa
EB <= NumberB (35 downto 28);
MA <= NumberA(27 downto 0);
MB <= NumberB (27 downto 0);
------------------------------ Exponent Comparison
C<= '1', when (EA > EB) or (MB (0) = '1') else -- Exponent A > Exponent B
            C' when EA < EB else -- Exponent B > Exponent A
            '1' when MA >= MB else -- EA = EB --> A>B
            '0' when MA < MB else -- EA = EB --> B > A
            '-';
        Comp <= C;
        -------------------------------- Largest exponent
        Emax <= EA when C = '1' else
            EB when C = '0' else
            "---------";
```

```
    *)
    dif <= EA-EB when (C = '1') and (MB(0) = '0') else
        EB-EA when C = '0' else
        EA+EB when (C = '1') and (MB (0) = '1') else
        "--------";
    process (dif)
    begin
        if dif <= X"1B" then -- If the difference is less than or equal to 27...
            Dexp <= dif(4 downto 0); -- Use directly the subtraction between exponents
        elsif dif > X"1B" then
            -- If the difference is greater...
            Dexp <= "11100"; -- The difference is 28
        else
            Dexp <= "-----";
        end if;
    end process;
    _-------------------------------- Mantissa
Mshft <= MB when C = '1' else
        MA when C = '0' else
        "------------------------------------
    Mmax <= MA when C = '1' else
        MB when C = '0' else
        "-----------------------------------
end behavioral;
```


PRE-ADDER BLOCK: Normal Numbers: Shift Block: MUX Entity

```
_- Logarithmic shifter
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity MUX is port (
    A, B, Sel : in std_logic;
    Z : out std_logic);
end MUX;
----------
-- Architecture description
architecture behavioral of MUX is
begin
    z<= A when sel = '1' else
        B;
end behavioral;
```


PRE-ADDER BLOCK: Normal Numbers: Shift Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 2 --> Normal Numbers
-- Description: Prepare normal numbers for addition or subtraction operation
--
-- Shift: Shift the shortest significand to do the addition/subtraction
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity shift is
    Port ( T : in std_logic_vector(27 downto 0); -- Significand to shift
        Shft : in std_logic_vector(4 downto 0); -- Exponent's subtraction
        S : out std_logic_vector(27 downto 0)); -- output
end shift;
----------------------------------------------------------------------------------------------------
-- Architecture description
architecture behavioral of shift is
-- signals and components declaration
    component MUX port (A, B, Sel : in std_logic; Z : out std_logic); end component;
    signal z1, z2, z3, z4, z5 : std_logic_vector(27 downto 0);
    begin
    -- Components generation
    Comp1: for i in 0 to 27 generate
    shifter0_0: if (i=0) generate
                            shifter0_0comp: MUX port map (A => '0', B => T(27), Sel => Shft(0), Z => Z1(27-i));
            end generate;
    shifter0_i: if ((i>0) and (i<28)) generate
            shifter0_icomp: MUX port map (A => T(27-(i-1)), B => T(27-i), Sel => Shft(0), z => Z1(27-i));
            end generate;
    shifter1_0: if ((i>=0) and (i<2)) generate
            shifter1_0comp: MUX port map (A => '0', B => Z1(27-i), Sel => Shft(1), Z => Z2(27-i));
            end generate;
    shifter1_i: if ((i>1) and (i<28)) generate
            shifter1_icomp: MUX port map (A => z1(27-(i-2)), B => z1(27-i), Sel => Shft(1), Z => z2(27-i));
            end generate;
    shifter2_0: if ((i>=0) and (i<4)) generate
            shifter2_0comp: MUX port map (A => '0', B => Z2(27-i), Sel => Shft(2), Z => Z3 (27-i));
            end generate:
    shifter2_i: if ((i>3) and (i<28)) generate
            shifter2_icomp: MUX port map (A => z2(27-(i-4)), B => z2(27-i), Sel => Shft(2), z => Z3(27-i));
            end generate;
    shifter3_0: if ((i>=0) and (i<8)) generate
            shifter3_Ocomp: MUX port map (A => '0', B => z3(27-i), sel => Shft(3), Z => z4(27-i));
            end generate;
    shifter3_i: if ((i>7) and (i<28)) generate
            shifter3_icomp: MUX port map (A => Z3(27-(i-8)), B => z3(27-i), Sel => Shft(3), Z => Z4(27-i));
            end generate;
    shifter4_0: if ((i>=0) and (i<16)) generate
            shifter4_0comp: MuX port map (A => '0', B => Z4(27-i), Sel => Shft(4), Z => Z5 (27-i));
            end generate;
    shifter4_i: if ((i>15) and (i<28)) generate 
            end generate;
end generate;
    S<= 25;
end behavioral:
```


PRE-ADDER BLOCK: Normal Numbers: n_normal Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
    Sub Block 2 --> Normal Numbers
-- Description: Prepare normal numbers for addition or subtraction operation
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_-UNSIGNED.ALL;
-- Entity declaration
entity n normal is
    Port NumberA : in std logic vector(36 downto 0) ; -- Number A
        NumberB : in std_logic_vector(36 downto 0); -- Number B
        Comp : out st\overline{d}logi\overline{C};
        SA : out std_logic; -- Sign A
        SB : out std_logic; -- Sign B
        EO : out std_logic_vector(7 downto 0); -- Exponent Output
        MA : out std_logic_vector(27 downto 0); -- Greatest Mantissa
        MA : out std_logic_vector(27 downto 0); -- Greatest Mantissa
end n_normal;
-- Architecture description
architecture behavioral of n_normal is
-- Signals and components declaration
    component comp_exp port (NumberA, NumberB : in std_logic_vector(36 downto 0);
                SA, SB : out st\overline{d}_logi\overline{c};
                Emax : out std logic vector (7 downto 0);
                Mmax, Mshft : out std_logic_vector(27 downto 0);
            Dexp : out std_logic_vector(4 downto 0);
            Comp : out std_logic);
    end component;
    component shift port (T : in std logic vector(27 downto 0);
            shft : in std_logic_vector(4 downto 0);
            shft : in std_logic_vector(4 downto 0);
    end component;
    signal Mshft_aux : std_logic_vector(27 downto 0);
    signal Dexp_aux : std_logic_vector(4 downto 0);
    begin
    comp0 : comp_exp
        port map (NumberA => NumberA, NumberB => NumberB,
        SA => SA, SB => SB, Emax => EO, Mmax => MA, Mshft => Mshft_aux, Dexp => Dexp_aux, Comp => Comp);
    comp1 : shift
        port map (T => Mshft_aux, shft => Dexp_aux,
            S => MB);
end behavioral;
```


PRE-ADDER BLOCK: Subnormal Numbers: n_subn Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 3 --> SubNormal Numbers
-- Description: Prepare subnormal numbers for addition or subtraction operation
library IEEE
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity n_subn is
    Port' ( NumberA : in std_logic_vector(36 downto 0); -- Number A
            NumberB : in std logic vector(36 downto 0); -- Number B
            Comp : out st\overline{d_logi\overline{c}}\mathrm{ C -- Comparison A & B}
            SA : out std_logic; -- Sign A
            SB : out std logic; -- sign B
            EO : out std_logic_vector(7 downto 0); -- Exponent output
            MA : out std_logic_vector(27 downto 0); -- Mantissa A
            MB : out std_logic_vector (27 downto 0)); -- Mantissa B
end n_subn;
-- Architecture description
architecture behavioral of n_subn is
-- Signals declaration
    signal MAa, MBb : std_logic_vector(27 downto 0);
    signal C : std_logic;
    begin
        SA <= NumberA(36); -- Sign A & B
        SB <= NumberB(36);
        MAa <= NumberA(27 downto 0); -- Mantissa A & B
        MBb <= NumberB (27 downto 0);
    C <= '1' when MAa >= MBb else -- A > B
            "0' when MBb > MAa else -- B > A
            ' - ';
        Comp <= C;
        ----------------------------------------------- Output`s exponent
        EO<= NumberA(35 downto 28);
        MB <= MBb when C = '1' else
            MAa when C = '0' else
            MAa when C = "---------------------------";
        MA <= MAa when C = '1' else
            MBb}\mathrm{ when C = '0' else
            "------------------------------------
    end behavioral;
```


PRE-ADDER BLOCK: Mixed Numbers: Comp Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 4 --> Mixed numbers
-- Description: Prepare a mix of numbers (normal & subnormal) for addition
-- or subtraction operation
--
-- Comp : Determine the subnormal number
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_-ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity comp is
    Port ( NumberA : in std_logic_vector(36 downto 0); -- Number A
            NumberB : in std_logic__vector(36 downto 0); -- Number B
            NA : out st\overline{d_logic_vector(36 downto 0); -- Normal number}
            NB : out std_logic_vector(36 downto 0)); -- Subnormal number
end comp;
-- Architecture description
----------------------------------------------------------------------------------------------------------
architecture behavioral of comp is
-- Signals declaration
    signal EA, EB : std_logic_vector(7 downto 0);
    begin
        EA <= NumberA(35 downto 28); -- Exponent & Mantissa
        EB <= NumberB(35 downto 28);
        process (NumberA, NumberB, EA, EB)
            begin
                if EA = X"00" then -- If Number A is subnormal...
                    NB <= NumberA;
                NA <= NumberB;
                elsif EB = X"00" then -- If Number B is subnormal...
                    NB <= NumberB;
                    NA <= NumberA;
                else
                        NA <= "-----------------------------------------";
                    NB <= "-----------------------------------------------
                end if;
            end process;
    end behavioral;
```


PRE-ADDER BLOCK: Mixed Numbers: Zero Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 4 --> Mixed numbers
-- Description: Prepare subnommal numbers to be operated with the normal ones
_-
-- zero: Count the number of zeros to shift the subnormal number
-----------------------------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD__LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity zero is
    Port ( T : in std logic vector(27 downto 0); -- significand
                            zcount : out st\overline{d}_logic_vector(4 downto 0)); -- Number of Zeros
end zero;
*)
-- Architecture description
architecture behavioral of zero is
-- Signals and components declaration
    signal Zero vector : std logic vector(27 downto 0);
    signal aux - : std_logic_vector(7 downto 0);
    begin
    Zero_vector <= X"0000000";
    aux <= "_-------" when T(27 downto 27) = "-" else
                X"1C" when T(27 downto 0) = zero_vector (27 downto 0) else
                X"1B" when T(27 downto 1) = Zero vector (27 downto 1) else
                X"1A" when T(27 downto 2) = zero_vector (27 downto 2) else
                X"19" when T(27 downto 3) = zero_vector (27 downto 3) else
                X"18" when T(27 downto 4) = zero_vector (27 downto 4) else
                X"17" when T (27 downto 5) = Zero_vector (27 downto 5) else
                X"16" when T(27 downto 6) = zero vector (27 downto 6) else
                X"15" when T(27 downto 7) = zero_vector (27 downto 7) else
                X"14" when T(27 downto 8) = zero_vector (27 downto 8) else
                X"13" when T(27 downto 9) = zero-vector (27 downto 9) else
                X"12" when T(27 downto 10) = zero_vector (27 downto 10) else
                X"11" when T(27 downto 11) = Zero vector (27 downto 11) else
                X"10" when T(27 downto 12) = zero_vector (27 downto 12) else
                X"OF" when T(27 downto 13) = Zero_vector (27 downto 13) else
                X"OE" when T(27 downto 14) = zero-vector (27 downto 14) else
                X"OD" when T(27 downto 15) = zero_vector (27 downto 15) else
                X"OC" when T(27 downto 16) = Zero vector (27 downto 16) else
                X"OB" when T(27 downto 17) = zero_vector (27 downto 17) else
                X"OA" when T (27 downto 18) = zero_vector (27 downto 18) else
                X"09" when T(27 downto 19) = zero vector (27 downto 19) else
                X"08" when T (27 downto 20) = Zero_vector (27 downto 20) else
                X"07" when T(27 downto 21) = Zero vector (27 downto 21) else
                X"06" when T (27 downto 22) = Zero_vector (27 downto 22) else
                X"05" when T(27 downto 23) = zero_vector (27 downto 23) else
                X"04" when T (27 downto 24) = Zero_vector (27 downto 24) else
                X"03"}\mathrm{ when T (27 downto 25) = Zero_vector (27 downto 25) else
                X"02" when T(27 downto 26) = Zero_vector (27 downto 26) else
                X"01" when T(27 downto 27) = zero_vector (27 downto 27) else
                X"00";
    Zcount <= aux(4 downto 0);
end behavioral;
```


PRE-ADDER BLOCK: Mixed Numbers: shift_left Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 4 --> Mixed Numbers
-- Description: Prepare normal numbers for addition or subtraction operation
-- Shift_left: Shift the subnormal significand to get a normal one
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_-ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
------------------------------------------------------------------------------
entity shift left is
    Port (-T : in std logic vector(27 downto 0); -- significand to shift
            Shft : in std_logic_vector(4 downto 0); -- Exponent's subtraction
            S : out std_logic_vector(27 downto 0)); -- output
end shift_left;
-- Architecture description
------------------------------------------------------------------------------------------------------
architecture behavioral of shift_left is
-- Signals and components declaration
    component MUX port (A, B, Sel : in std_logic; Z : out std_logic); end component;
signal z1, z2, 23, 24, z5 : std_logic_vector(27 downto 0);
begin
-- Components generation
Comp1: for i in 0 to 27 generate
    shifter0_0: if (i=0) generate
```



```
    end generate;
    shifter0_i: if ((i>0) and (i<28)) generate
                        shifter0_icomp: MUX port map (A => T((i-1)), B => T(i), Sel => Shft(0), Z => z1(i));
            end generate;
    shifter1_0: if ((i>=0) and (i<2)) generate
            shifter1_0comp: MUX port map (A => '0', B => Z1(i), Sel => Shft(1), Z => Z2(i));
            end generate;
    shifter1_i: if ((i>1) and (i<28)) generate
                            shifter1_icomp: MUX port map (A => Z1((i-2)), B => Z1(i), Sel => Shft(1), Z => z2(i));
                            end generate;
    shifter2_0: if ((i>=0) and (i<4)) generate
            shifter2 0comp: MuX port map (A => '0', B => z2(i), sel => Shft(2), Z => Z3(i));
            end generate;
    shifter2_i: if ((i>3) and (i<28)) generate
                            shifter2 icomp: MUX port map (A => Z2((i-4)), B => Z2(i), Sel => Shft(2), Z => Z3(i));
                            end generate;
    shifter3_0: if ((i>=0) and (i<8)) generate
    shifter3_Ocomp: MUX port map (A => '0', B => Z3(i), Sel => Shft(3), Z => Z4(i));
    end generate;
    shifter3_i: if ((i>7) and (i<28)) generate
            shifter3_icomp: MUX port map (A => Z3((i-8)), B => Z3(i), Sel => Shft(3), Z => Z4(i));
            end generate;
    shifter4_0: if ((i>=0) and (i<16)) generate
            shifter4_0comp: MUX port map (A => '0', B => z4(i), Sel => Shft(4), z => z5 (i));
            end generate;
    shifter4_i: if ((i>15) and (i<28)) generate
    shifter4_icomp: MUX port map (A => Z4((i-16)), B => Z4(i), Sel => Shft(4), Z => Z5(i));
        end generate;
```

```
end generate;
S<= 25;
end behavioral;
```


PRE-ADDER BLOCK: Mixed Numbers: norm Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 4 --> Mixed numbers
-- Description: Prepare the subnormal number for addition or subtraction
--
_-
-- Norm: Normalize the subnormal number to operate like a normal number
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
-----------------------------------------------------------------------------------------------------------
entity norm is
    Port (NumberA : in std_logic_vector(36 downto 0); -- NumberA
        NumberB : in std_logic_vector(36 downto 0); -- NumberB
        MA : out std_logic_vector(36 downto 0); -- Normalized NumberA
        MB : out std logic vector(36 downto 0)); -- Normalized NumberB
end norm;
-- Architecture description
architecture behavioral of norm is
-- Signals and components declaration
    component zero port (T : in std_logic_vector(27 downto 0); zcount : out std_logic_vector(4 downto 0));
    end component;
    component shift_left port (T : in std_logic_vector(27 downto 0);
        Shft : in std_logic_vector(4 downto 0);
        S : out std_logic vector(27 downto 0));
    end component;
    component comp port (NumberA : in std_logic_vector(36 downto 0);
            NumberB : in std_logic_vector(36 downto 0);
            NA : out std_logic_vector (36 downto 0);
            NB : out std_logic-vector(36 downto 0));
    end component;
    signal zcount aux : std_logic vector(4 downto 0);
    signal EB : std_logic_vector(7 downto 0);
    signal NumberB aux : std logic vector(36 downto 0);
    signal MB_aux ( std_logic_vector (27 downto 0);
    begin
    ----------------------------------------------------- Components declaration
    comp0 : zero
        port map (T }T>\mathrm{ NumberB_aux (27 downto 0), Zcount => Zcount_aux);
    comp1 : shift_left
        port map (
    comp2 : comp
        port map (NumberA }=>>\mathrm{ NumberA, NumberB }=>>\mathrm{ NumberB, NA => MA, NB => NumberB_aux);
```



```
    process (Zcount_aux, NumberB_aux, EB, MB_aux)
        begin
            if zcount aux /= "-----" then
                EB <= "\overline{0}00" & Zcount_aux; -- Number shifted
            MB (27 downto 0) <= MB aux (27 downto 1) & '1'; -- Bit 0 --> Mark
        else
            EB <= "--------";
            MB {27 downto 0)<= MB_aux;
        end if;
            MB (35 downto 28) <= EB;
            MB (36) <= NumberB aux (36);
    end process;
end behavioral;
```


PRE-ADDER BLOCK: MUX/DEMUX

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 5 --> DEMUX
-- Description: Demultiplexor
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity demux is
    Port ( NumberA : in std_logic_vector(36 downto 0); -- Number A
            NumberB : in std_logic_vector(36 downto 0); -- Number B
            e data : in std logic vector(1 downto 0); -- Enable type data
            NA\overline{O}: Out st\overline{d}logic
            NB0 : out std_logic_vector(36 downto 0); -- Number B1
            NA1 : out std logic-vector(36 downto 0); -- Number A2
            NB1 : out std_logic_vector(36 downto 0); -- Number B2
            NA2 : out std_logic_vector(36 downto 0); -- Number A3
            NB2 : out std_logic_vector(36 downto 0)); -- Number B3
end demux;
-- Architecture description
architecture behavioral of demux is
    begin
    process (NumberA, NumberB, e_data)
    begin
            case e_data is
            -------------------------------------------- Subnormals
            when "00" => NA0 <= NumberA;
                            NBO <= NumberB;
                            NA1 <= "--------------------------------------------
                            NB1 <= "_-------------------------------------------------
                            NA2 <= "-----------------------------------------------
                            NB2 <= "_----------------------------------------------
            -------------------------------------------- Normals
            when "01" => NA0 <= "-------------------------------------------
                    NB0 <= "------------------------------------------------
                            NA1 <= NumberA;
                    NB1 <= NumberB;
                    NA2 <= "---------------------------------------";
                    NB2 <= "-------------------------------------------------
            --------------------------------------------------- MiX
            when "10" => NA0 <= "--------------------------------------------
                    NBO <= "----------------------------------------";
                    NA1 <= "---------------------------------------------
                    NB1 <= "--------------------------------------------
                    NA2 <= NumberA;
                    NB2 <= NumberB;
                    NA0 <= "----------------------------------------------
                    NBO <= "----------------------------------------";
                    NA1 <= "-------------------------------------------";
                    NB1 <= "----------------------------------------";
                    NA2 <= "---------------------------------------------
                    NB2 <= "---------------------------------------------
        end case;
        end process;
    end behavioral;
```

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
_- Sub Block 6 --> MUX
-- Description: Multiplexor
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
-------------------------------------------------------------------------------------------------------
entity mux_ns is
        Port (- NorA : in std_logic_vector(36 downto 0); -- Normal A
            NorB : in std_logic_vector(36 downto 0); -- Normal B
            MixA : in std logic vector(36 downto 0); -- Mixed A
            MixB : in std_logic_vector(36 downto 0); -- Mixed B
            e_data : in std_logic_vector(1 downto 0); -- Enable type data
            N\overline{A}
            NB : out std_logic_vector(36 downto 0)); -- Number B'
end mux_ns;
-- Architecture description
------------------------------------------------------------------------------------------------------------
architecture behavioral of mux_ns is
    begin
        NA <= NorA when e_data = "01" else -- Normal numbers
            MixA when e_data = "10" else -- Mixed numbers
            "-------------------------------------------
        NB <= NorB when e_data = "01" else -- Normal numbers
            MixB when e_data = "10" else -- Mixed numbers
            MixB when e_data = 10 else 
    end behavioral;
```

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Sub Block 7 --> MUX
-- Description: Multiplexor
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
------------------------------------------------------------------------------------------------------------------
entity mux_adder is
    Port (- NorsA : in std_logic; -- Sign A normal
            NorsB : in std__logic; -- sign B normal
            SubsA : in std_logic; -- Sign A subnommal
            SubsB : in std_logic; -- sign B subnormal
            CompN : in std_logic; -- Comparison Normal numbers
            Comps : in std_logic; -- Compaison Sub numbers
            NorE : in std_logic_vector(7 downto 0); -- Exponent output normal
            SubE : in std_logic_vector(7 downto 0); -- Exponent output subnormal
            NorMA : in std_logic_vector(27 downto 0); -- Mantissa nommal A
            NorMB : in std_logic_vector (27 downto 0); -- Mantissa normal B
            SubMA : in std_logic_vector(27 downto 0); -- Mantissa subnormal A
            SubMB : in std_logic_vector(27 downto 0); -- Mantissa subnormal B
            e_data : in std_logic_vector(1 downto 0); -- Enable type data
            S\overline{A} : out st\overline{d_logic}; -- Sign A
            SB : out std_logic; -- sign B
            C : out std_logic; -- Comparison
            E : out std_logic_vector(7 downto 0); -- output Exponent
            A : out std_logic_vector (27 downto 0); -- Mantissa A
            B : out std_logic_vector (27 downto 0)); -- Mantissa B
end mux_adder;
-- Architecture description
architecture behavioral of mux_adder is
begin
```


PRE-ADDER BLOCK: preadder Block

```
-- Floating point adder (32 bits)
-- Block 02 --> Pre - Adder
-- Prepare the numbers to be used by the adder
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
```


component n_normal port (NumberA, NumberB : in std_logic_vector(36 downto 0);
$\begin{array}{ll}\text { Comp } & \text { : out std_logic; } \\ \text { SA } & \text { : out std_logic; }\end{array}$
SB : out std logic;
EO : out std logic vector (7 downto 0);
MA, MB : out std_logic_vector (27 downto 0));
end component;
out std_logic_vector (7 downto 0);
out std logic vector (27 downto 0)

MUX/DEMUX

 component mux_ns port (NorA, NorB, MixA, MixB : in std_logic_vector (36 downto 0);
 e data : in std logic vector (1 downto 0);
 NA, NB : out std_logic_vector (36 downto 0));
 end component;
 component demux port (NumberA, NumberB : in std_logic_vector (36 downto 0);
 e_data
 in std_logic_vector (1 downto 0);
 NĀ0, NB0, NA1, NB1, NA2, NB2 : out st-
 end component;
 component mux_adder port (NorsA, NorsB, SubsA, SubSB : in std_logic;
 CompN, Comps : in std_logic;
Nore, Sube : in std_logic_vector (7 downto 0);
NorMA, NorMB, SubMA, SubMB : in std_logic_vector (27 downto 0);
e_data : in std_logic_vector (1 downto 0);
SA $\bar{A}, \mathrm{SB}, \mathrm{C} \quad$: out std logic;
E : out std_logic_vector (7 downto 0);
A, B : out std_logic_vector (27 downto 0));
end component;

component norm port (NumberA, NumberB : in std_logic_vector (36 downto 0);
MA, MB : out std_logic_vector (36 downto 0));
end component;

component n_subn port (NumberA, NumberB : in std_logic_vector (36 downto 0);
Comp : out st̄_logic;
SA : out std_logic;

```
                    SB : out std_logic;
                    MA, MB : out std_logic_vector(27 downto 0));
    end component;
```



```
    component selector port (NumberA, NumberB : in std_logic_vector(31 downto 0);
        enable : in std_logic;
        e data : out st\overline{d}_logic_vector(1 downto 0);
        NA, NB : out std_logic_vector(36 downto 0));
    end component;
    signal NA_out_select, NB_out_select : std_logic_vector(36 downto 0);
    signal A_\overline{sub,}\mp@subsup{\overline{B}}{-}{\primesub : st\overline{d}_logic_vector (36-}\mathrm{ downto 0 0);}
    signal A nor, B_nor : std_logic_vector(36 downto 0);
    signal A_mix, B_mix : std_logic_vector(36 downto 0);
    signal MixAaux, -MixBaux :- std_logic_vector(36 downto 0);
    signal Amux, Bmux : std_logic_vector(36 downto 0);
    signal SAnor, SBnor, SAsub, SBsub, NComp, SComp : std_logic;
    signal Enor, Esub : std_logic_vector(7 downto 0);
    signal MAnor, MBnor, MĀSub, MB̄sub : std_logic_vector(27 downto 0);
    signal edata : std_logic_vector(1 downto 0);
    begin
    comp0 : n_normal
        port map (NumberA => Amux, NumberB => Bmux,
            Comp => NComp, SA => SAnor, SB => SBnor, EO => Enor, MA => MAnor, MB => MBnor) ;
    comp1 : n_subn
        port map (NumberA => A_sub, NumberB => B_sub,
            Comp => SComp, SA => SAsub, SB => SBsub, EO => Esub, MA => MAsub, MB => MBsub) ;
    comp2 : norm
        port map (NumberA => A mix, NumberB => B mix,
            MA => MixAaux, MB => MixBaux);
comp3 : demux
    port map (NumberA => NA_out_select, NumberB => NB_out_select, e_data => edata,
            NA0 => A_sub, NB0 => B_sub, NA1 => A_nor, NB1 => B_nor, NA2 => A_mix, NB2 => B_mix) ;
comp4 : mux_ns
    port map (NorA => A_nor, NorB => B_nor, MixA => MixAaux, MixB => MixBaux, e_data => edata,
            NA => Amux, NB => Bmux) ;
comp5 : selector
    port map (NumberA => NumberA, NumberB => NumberB, enable => enable,
            e_data => edata, NA => NA_out_select, NB => NB_out_select);
comp6 : mux adder
    port map (NorSA => SAnor, NorSB => SBnor, SubSA => SAsub, SubSB => SBsub, CompN => NComp, CompS => SComp,
            Nore => Enor, SubE => Esub, NorMA => MAnor, NorMB => MBnor, SubMA => MAsub, SubMB => MBsub,
            e_data => edata, SA => SA, SB => SB, C => C, E => Eout, A => MAout, B => MBout) ;
end behavioral;
```


ADDER BLOCK: Signout Block

```
-- Floating point adder (32 bits)
-- Block 03 --> Adder
-- Description: Prepare normal numbers for addition or subtraction operation
--
-- Signout: Calculate the B's and output's sign because of addition or subtraction
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_-ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
------------------------------------------------------------------------------------------------
-- Entity declaration
entity signout is
    Port (SA : in std_logic; -- sign A
            SB : in std_logic; -- Sign B
            A : in std_logic_vector(27 downto 0); -- Number A
            B : in std_logic_vector(27 downto 0); -- Number B
            A_S : in std_logic;
            Comp : in std_logic; -- Determine largest number
            Aa : out st\overline{d}logic_vector(27 downto 0); -- Number A.
            Bb : out std_logic_vector(27 downto 0); -- Number B'
            AS : out std_logic; -- A_S'
            so : out std_logic); -- Détermine output's sign
end signout;
---------------------------------------------------------------------------------------------------
-- Architecture description
architecture behavioral of signout is
-- Signals declaration
--------------------------------------------------------------------------------------------------
    signal SB_aux : std_logic;
    signal Aaux, Baux \ std_logic_vector(27 downto 0);
    begin
        SB_aux <= SB xor A_S; -- Sign B because of the operation
        So<= SA when Comp = '1' else -- A > B --> Sign A
            SB_aux when Comp = '0' else -- B > A --> Sign B
            '-';
        AS <= '1'' when SA /= SB_aux else -- Complement to 1 is needed when
            '0'; -- the signs are different
        Aaux <= A when Comp = '1' else
            B when Comp = '0' else
            "-----------------------------------
        Baux <= B when Comp = '1' else
            A when Comp = '0' else
            "-----------------------------------
        process (SA, SB_aux, Aaux, Baux)
        begin
        --------------------- if Sign A is equal to Sign B
            if (SA xor SB_aux) = '0' then
                Aa <= Aaux; -- Nothing changes
                Bb <= Baux;
            if Sign A is 1 and Sign B is 0
            elsif SA = '1' and SB_aux = '0' then
                Aa <= Baux; -- A is changed by B
            Bb}<= Aaux
```

73 74

ADDER BLOCK: Adder Block: CLA Entity

```
-- Adder Carry LookAhead
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity CLA is port (
    A, B, Cin : in std_logic;
    S, Cout : out std_logic);
end CLA;
-- Architecture description
architecture behavioral of CLA is
-- Signals declaration
---------------------------------------------------------------------------------------------------------------
    signal c_g, c_p : std_logic;
begin
    C_g <= A and B; -- Carry generation
    C_p <= A xor B; -- Carry propagation
    Cout <= c_g or (c_p and Cin); -- Carry out
    s<= C_p xor Cin;-' -- Bit's sum
end behavioral;
```


ADDER BLOCK: Adder Block

```
-- Floating point adder (32 bits)
-- Block 03 --> Adder
-- Description: Implement the addition with a CLA adder
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_-ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity adder is
    Port ( A : in std_logic vector(27 downto 0); -- Number A
            B : in std_logic_vector(27 downto 0); -- Number B
            A_S : in std logic; -- Add(0) / Sub (1)
            S
            Co : out std_logic); -- Carry out
end adder;
-- Architecture description
-_-----------------------------------------------------------------------------------------------------------
architecture behavioral of adder is
-- Signals and components declaration
------------------------------------------------------------------------------------------------------
    component CLA port (A, B, Cin : in std_logic; S, Cout : out std_logic); end component;
    signal B1, aux, s_aux : std_logic_vector(27 downto 0);
begin
-- Components generation
Comp1: for i in 0 to 27 generate
    B1(i)<= B(i) xor A_S;
    sumador_0: if (i=0) generate
            sumador_0comp: CLA port map (A => A(i), B => B1(i), Cin => A_S, S => S_aux(i), Cout => aux(i));
            end generate;
    sumador_i: if ((i>0) and (i<28)) generate
            sumador_icomp: CLA port map (A => A(i), B => B1(i), Cin => aux(i-1), s => s_aux(i), Cout => aux (i));
            end generate;
end generate;
S <= S_aux;
Co <= aux (27);
end behavioral;
```


ADDER BLOCK: Block_Adder Block

```
-- Floating point adder (32 bits)
-- Block 03 --> Adder
-- Description: Implement the addition with a CLA adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
---------------------------------------------------------------------------------------
-- Entity declaration
entity block_adder is
    Port ( SA : in std_logic; -- sign A
            SB : in std_logic; -- Sign B
            A : in std_logic_vector(27 downto 0); -- Number A
            B : in std logic vector (27 downto 0); -- Number B
            A_S : in std_logic; - -- Add(0) / Sub (1)
            Comp : in std_logic; -- Comparison
            s : out st\overline{d}logic vector(27 downto 0); -- output
            so : out std_logic; -- output's sign
            Co : out std_logic); -- Carry out
end block_adder;
-- Architecture description
architecture behavioral of block_adder is
-- Signals and components declaration
component adder port ( }A,B\mathrm{ : in std_logic_vector(27 downto 0);
                    A_S : in std_logic;
                    S
                    Co : out std_logic);
    end component;
    component signout port (SA, SB : in std_logic;
                        A, B : in std_logic_vector (27 downto 0);
            A_S, Comp : in std_logic;
            A\overline{a}, Bb : out st\overline{d}logic_vector(27 downto 0);
            As, SO : out std_logic);
    end component;
    signal Aa aux, Bb aux, S aux : std logic vector(27 downto 0);
    signal AS_aux, SO_aux, Co_aux : std_logic;
    begin
    component00: signout port map (SA =>SA,SB =>SB, A => A, B => B, A_S => A_S, Comp => Comp,
                    Aa => Aa_aux, Bb => Bb_aux, AS => AS_aux, SO => SO_aux);
    component01: adder port map (A => Aa_aux, B => Bb_aux, A_S => AS_aux, S => S_aux, Co => Co_aux);
    -------- If a complement to 1 is used and output's sign is 1 a C2 is needed
    s <= (S_aux xor X'FFFFFFF") +'1'' when ((AS_aux and SO_aux) = '1') else
            s aux;
    Co <= '0' when ((SB xor A_S) /= SA) else
            Co_aux;
    SO<= SO_aux;
end behavioral;
```


STANDARDIZING BLOCK: Round Block

```
-- Floating point adder (32 bits)
-- Block 04 --> Normalize
-- Description: Normalize the result
--
-- round: Round the result deleting the guard bits
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity round is
    Port (Min : in std_logic_vector(27 downto 0); -- Input's mantissa
    Mout : out std_logic_vector(22 downto 0)); -- output`s mantissa
end round;
-- Architecture description
architecture behavioral of round is
-- signals and components declaration
    signal M_aux : std_logic_vector(22 downto 0);
    begin
    process(Min)
        begin
            if Min(3 downto 0) = "----" then
                M_aux <= "------------------------";
            elsif Min(3 downto 0) >= "1000" then -- Round Mantissa
                    M_aux <= Min (26 downto 4) + ''1';
            else
                M aux <= Min(26 downto 4);
            end if;
        end process;
        Mout <= M_aux;
end behavioral;
```


STANDARDIZING BLOCK: Vector Block

```
-- Floating point adder (32 bits)
-- Block 04 --> Normalize
-- Description: Normalize the result
--
-- vector: Regroup sign, exponent and mantissa in a single vector
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
```

```
entity vector is
    Port ( S : in std_logic; -- sign
    E : in std_logic_vector(7 downto 0); -- Exponent
    M : in std__logic_vector(22 downto 0); -- Mantissa
    N : out st\overline{d}}\operatorname{logic}\mathrm{ vector(31 downto 0)); -- vector
end vector;
-- Architecture description
------------------------------------------------------------------------------------------------------
architecture behavioral of vector is
-- Signals and components declaration
----------------------------------------------------------------------------------------------------------------
begin
    N(31) <= S;
    N(30 downto 23)<= E;
    N(22 downto 0) <= M;
end behavioral;
```


STANDARDIZING BLOCK: Block_norm Block

```
-- Floating point adder (32 bits)
-- Block 04 --> Normalize
-- Sub Block 4 --> Normalize the result
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity block_norm is
    Port ( MS : in std_logic_vector(27 downto 0); -- Number S
            ES : in std logic vector(7 downto 0); -- Exponent S
            Co : in std-logic;
            M : out st\overline{d}llogic_vector(22 downto 0); -- output's Mantissa
            E : out std_logic_vector(7 downto 0)); -- Output's Exponent
end block_norm;
-- Architecture description
architecture behavioral of block_norm is
-- Signals and components declaration
    component zero port (T : in std_logic_vector(27 downto 0); zcount : out std_logic_vector(4 downto 0));
    end component;
    component shift_left port (T : in std_logic_vector(27 downto 0);
            Shft : in std_logic_vector(4 downto 0);
            s : out std_logic_vector(27 downto 0));
    end component;
    component round port (Min : in std_logic_vector(27 downto 0);
        Mout : out std_logic_vector(22 downto 0));
    end component;
signal Zcount_aux, Shift : std_logic_vector(4 downto 0);
signal Number : std logic vector(27 downto 0);
```

49 50 51 52 53

```
begin
----------------------------------------------- Components declaration
comp0 : zero
        port map (T => MS, Zcount => Zcount_aux);
comp1 : shift_left
        port map (T => MS, shft => Shift, S => Number);
comp2 : round
        port map (Min => Number, Mout => M) ;
----------------------------------------------- Normal or Subnormal Number
    process(MS, ES, Shift, Zcount aux, Co)
    begin
        if zcount aux = "-----" then
            Shift<= "-----";
            E<= "--------";
        elsif ES > Zcount_aux then -- If the number is nommal...
            Shift<= Zcount_aux; -- ... the number is shifted --> Output normal
            E<= ES - Shift + Co;
        elsif ES < Zcount_aux then
            Shift <= ES(4 downto 0);
            E<= X"00";
        elsif ES = Zcount aux then
            Shift <= zcount_aux;
            E<= X"01";
        end if;
    end process;
end behavioral;
```


STANDARDIZING BLOCK: norm+vector Block

```
-- Floating point adder (32 bits)
-- Block 04 --> Normalize
-- Sub Block 4 --> Normalize the result
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD__LOGIC_-ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
entity norm_vector is
    Port (- SS : in std_logic; -- sign S
            MS : in std_logic_vector(27 downto 0); -- Number S
            ES : in std_logic_vector(7 downto 0); -- Exponent s
            Co : in std_logic; -- Carry out
            N : out st\overline{d_logic_vector(31 downto 0)); -- Output Number}
end norm_vector;
-- Architecture description
architecture behavioral of norm_vector is
-- Signals and components declaration
```

```
component block_norm port (MS : in std_logic_vector(27 downto 0);
            ES : in std logic-
            Co : in std_logic;
            M : out st\overline{d}_logic_vector(22 downto 0);
            E : out std_logic_vector(7 downto 0));
    end component;
    component vector port (s : in std_logic;
            E : in std_logic_vector(7 downto 0);
            M : in std_logic_vector(22 downto 0);
            N : out std_logic_vector(31 downto 0));
    end component;
    signal Maux : std_logic_vector(22 downto 0);
    signal Eaux : std_logic_vector(7 downto 0);
    begin
```



```
    comp0 : block_norm
        port map (MS => MS, ES => ES, Co => Co, M => Maux, E => Eaux);
    comp1 : vector
        port map (S => SS, E => Eaux, M => Maux, N => N);
end behavioral;
```


32bit Floating Point Adder BLOCK: MUX

```
-- Floating point adder (32 bits)
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
----------------------
entity mux_fpadder is
    Port (- N1 : in std_logic_vector(31 downto 0); -- N_case number
            N2 : in std_logic_vector(31 downto 0); -- A\overline{dder number}
            enable : in std_logic;
            Result : out std_logic_vector(31 downto 0)); -- Result
end mux_fpadder;
-- Architecture description
architecture behavioral of mux_fpadder is
    begin
        Result <= N1 when enable = '0' else -- N_case number
                    N2 when enable = '1' else -- A\overline{d}der number
            n----------------------------------";
```

 end behavioral;

32bit Floating Point Adder BLOCK:

```
-- Floating point adder (32 bits)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Entity declaration
```



```
entity fpadder is
    Port ( NumberA : in std_logic_vector(31 downto 0); -- Number A
            NumberB : in std_logic_vector(31 downto 0); -- Number B
            A_S : in std_logic; -- Add / Sub
            Result : out std_logic_vector(31 downto 0)); -- Result
end fpadder;
-- Architecture description
architecture behavioral of fpadder is
-- Signals and components declaration
------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------
    component n_case port (NumberA, NumberB : in std_logic_vector(31 downto 0);
                enable : out st\overline{d}_logic\overline{c};
                S : out std_logic_vector(31 downto 0));
    end component;
```



```
    component preadder port (NumberA, NumberB : in std_logic_vector(31 downto 0);
            enable : in std logic;
            SA, SB : out st\overline{d}logic;
            C : out std_logic;
            EOut : out std_logic vector(7 downto 0);
            MAOut, MBOut : out std_logic_vector(27 downto 0));
end component;
```



```
component block_adder port (SA, SB : in std_logic;
                                    A, B : in std_logic_vector(27 downto 0);
            A_S : in std_logic;
            Comp : in std_logic;
            S : out st\overline{d_logic_vector (27 downto 0);}
            SO : out std_logic;
            Co : out std_logic);
end component;
component norm_vector port (SS : in std_logic;
            MS : in std_logic_vector(27 downto 0);
            ES : in std_logic_vector(7 downto 0);
            Co : in std_logic;
            N : out st\overline{d_logic_vector(31 downto 0));}
end component;
```



```
    component mux_fpadder port (N1, N2 : in std_logic_vector(31 downto 0);
            enable : in std_logic;
            Result : out std_logic_vector(31 downto 0));
    end component;
signal MA_aux, MB_aux, MOut_aux : std_logic_vector(27 downto 0);
signal EOut_aux : std_logic_vector(7 downto 0);
signal Comp_aux, Carry
signal SA_aux, SB_aux, s_aux - : std_logic;
signal enāble_aux}\mp@subsup{}{}{-}: std_\overline{logic;
signal Ncase, Nadder : std_logic_vector(31 downto 0);
begin
comp0 : preadder
    port map (NumberA => NumberA, NumberB => NumberB, enable => enable_aux,
        SA => SA_aux, SB => SB_aux, C => Comp_aux, EOut => EOut_aux, MAOut => MA_aux, MBOut => MB_aux) ;
    comp1 : block_adder
    port map (SA => SA_aux, SB => SB_aux, A => MA_aux, B => MB_aux, A_S => A_S, Comp => Comp_aux,
            S => MOut_aux, SO => S_aux, Co => Carry);
comp2 : norm_vector
    port map (SS => S_aux, MS => MOut_aux, ES => EOut_aux, Co => Carry,
            N => Nadder);
comp3 : mux_fpadder
    port map (N1 => Ncase, N2 => Nadder, enable => enable_aux,
            Result => Result);
comp4 : n_case
    por\overline{t map (NumberA => NumberA, NumberB => NumberB,}
            enable => enable_aux, S => Ncase);
end behavioral;
```

