

MASTER THESIS

DESIGN OF SINGLE

PRECISION FLOAT ADDER

(32-BIT NUMBERS)

ACCORDING TO IEEE 754

STANDARD USING VHDL

Arturo Barrabés Castillo

Bratislava, April 25th 2012

Supervisors: Dr. Roman Zálusky

Prof. Viera Stopjaková

Fakulta Elecktrotechniky a Informatiky

Slovenská Technická Univerzita v Bratislave

 - 3 -

INDEX

Index ..3

Resum...5

Zhrnutie ..5

Abstract ..5

Chapter 1: Introduction.. 7

1.1. Floating Point Numbers ..7

1.2. The Standard IEEE 754 ..8

1.2.1. Overview..8

1.2.2. Binary Interchange Format Encodings9

1.2.3. Precision and Rounding ..10

Chapter 2: Code Development .. 13

2.1. 32-bits Floating Point Adder Design ...13

2.1.1. Addition/Subtraction Steps ...13

2.1.2. Block Diagram...15

2.2. Blocks Design..17

2.2.1. Pre-Adder Design ..17

2.2.2. Adder Design ..17

2.2.3. Standardizing Design ...19

Chapter 3: Pre-Adder.. 21

3.1. Special Cases..21

3.1.1. n_case Block...21

3.2. Subnormal Numbers ..25

3.2.1. n_subn Block ..25

3.3. Mixed Numbers ...27

3.3.1. comp Block...27

3.3.2. zero Block ..30

3.3.3. shift_left/shift Block...32

3.3.4. norm Block ...35

3.4. Normal Numbers ...38

3.4.1. comp_exp Block ..38

3.4.2. shift Block ..41

3.4.3. n_normal Block ...41

Arturo Barrabés Castillo

 - 4 -

3.5. Pre-Adder ...44

3.5.1. selector Block ...44

3.5.2. MUX/DEMUX Blocks ...48

3.5.3. preadder Block..50

Chapter 4: Adder .. 55

4.1. Adder...55

4.1.1. Signout Block..55

4.1.2. Adder Block ..59

4.1.3. Block_Adder Block ...62

4.2. Standardizing Block ...65

4.2.1. round Block ..65

4.2.2. shift_left/zero Block...65

4.2.3. block_norm Block ..67

4.2.4. vector Block..70

Chapter 5: 32-Bits Floating Point Adder ... 73

5.1. Floating Point Adder...74

5.1.1. Mux_fpadder Block ..74

5.1.2. fpadder Block..74

5.2. Simulations...77

5.2.1. Special Cases..77

5.2.2. Normal Numbers ...80

5.2.3. Subnormal Numbers ..81

5.2.4. Mixed Numbers ...82

Chapter 6: Results .. 83

6.1. Errors ..83

6.1.1. Gap between Numbers ...83

6.1.2. Rounding or Truncation ..85

6.1.3. Floating Point Addition ...86

6.2. Results analysis...86

6.2.1. Subnormal Numbers ..86

6.2.2. Mixed Numbers ...88

6.2.3. Normal Numbers ...89

6.3. Conclusions ..91

Chapter 7: Bibliography.. 93

Annex: VHDL Code.. 95

 - 5 -

RESUM

La aritmètica de punt flotant és, amb diferència, el mètode més utilitzat
d’aproximació a la aritmètica amb nombres reals per realitzar càlculs numèrics
per ordinador.

Durant molt temps cada màquina presentava una aritmètica diferent: bases,
mida dels significants i exponents, formats, etc. Cada fabricant implementava el
seu propi model ,fet que dificultava la portabilitat entre diferents equips, fins que
va aparèixer la norma IEEE 754 que definia un estàndard únic per a tothom.

L’objectiu d’aquest projecte és, a partir del estàndard IEEE 754, implementar un
sumador/restador binari de punt flotant de 32 bits emprant el llenguatge de
programació hardware VHDL.

ZHRNUTIE

Práca s číslami s pohyblivou desatinnou čiarkou je najpoužívanejší spôsob pre
vykonávanie aritmetických výpočtov s reálnymi číslami na moderných
počítačoch. Donedávna, každý počítač využíval rôzne typy formátov: báza,
znamienko, veľkosť exponentu, atď. Každá firma implementovala svoj vlastný
formát a zabraňovala jeho prenosu na iné platformy pokiaľ sa nevymedzil
jednotný štandard IEEE 754. Cieľom tejto práce je implementovanie 32-bitovej
sčítačky/odčítačky pracujúcej s číslami s pohyblivou desatinnou čiarkou podľa
štandardu IEEE 754 a to pomocou jazyka na opis hardvéru VHDL.

ABSTRACT

Floating Point arithmetic is by far the most used way of approximating real
number arithmetic for performing numerical calculations on modern computers.

Each computer had a different arithmetic for long time: bases, significant and
exponents’ sizes, formats, etc. Each company implemented its own model and it
hindered the portability between different equipments until IEEE 754 standard
appeared defining a single and universal standard.

The aim of this project is implementing a 32 bit binary floating point
adder/subtractor according with the IEEE 754 standard and using the hardware
programming language VHDL.

 - 7 -

CHAPTER 1:

INTRODUCTION

Many fields of science, engineering and finance require manipulating real
numbers efficiently. Since the first computers appeared, many different ways of
approximating real numbers on it have been introduced.

One of them, the floating point arithmetic, is clearly the most efficient way of
representing real numbers in computers. Representing an infinite, continuous set
(real numbers) with a finite set (machine numbers) is not an easy task: some
compromises must be found between speed, accuracy, ease of use and
implementation and memory cost.

Floating Point Arithmetic represent a very good compromise for most numerical
applications.

1.1. Floating Point Numbers

The floating point numbers representation is based on the scientific notation: the
decimal point is not set in a fixed position in the bit sequence, but its position is
indicated as a base power.

All the floating point numbers are composed by three components:

• Sign: it indicates the sign of the number (0 positive and 1 negative)

• Mantissa: it sets the value of the number

Arturo Barrabés Castillo

 - 8 -

• Exponent: it contains the value of the base power (biased)

• Base: the base (or radix) is implied and it is common to all the numbers (2
for binary numbers)

The free using of this format caused either designed their own floating point
system. For example, Konrad Zuse did the first modern implementation of a
floating point arithmetic in a computer he had built (the Z3) using a radix-2
number system with 14-bit significant, 7-bit exponents and 1-bit sign. On the
other hand the PDP-10 or the Burroughs 570 used a radix-8 and the IBM 360
had radix-16 floating point arithmetic.

This led to the need for a standard which would make a clear and concise format
to be used by all the developers.

1.2. The Standard IEEE 754

The first question that comes to mind is “What’s IEEE?”. The Institute of
Electrical and Electronics Engineers (IEEE) is a non-profit professional association
dedicated to advancing technological innovations and excellence.

It was founded in 1884 as the AIEE (American Institute of Electrical Engineers).
The IEEE was formed in 1963 when AIEE merged with IRE (Institute of Radio
Engineers).

One of its many functions is leading standards development organization for the
development of industrial standards in a broad range of disciplines as
telecommunications, consumer electronics or nanotechnology.

IEEE 754 is one of these standards.

1.2.1. Overview

Standard IEEE 754 specifies formats and methods in order to operate with
floating point arithmetic.

These methods for computational with floating point numbers will yield the same
result regardless the processing is done in hardware, software or a combination
for the two or the implementation.

The standard specifies:

• Formats for binary and decimal floating point data for computation and
data interchange

• Different operations as addition, subtraction, multiplication and other
operations

• Conversion between integer-floating point formats and the other way
around

• Different properties to be satisfied when rounding numbers during
arithmetic and conversions

• Floating point exceptions and their handling (NaN, ±∞ or zero)

 32-bits Floating Point Adder

 - 9 -

IEEE 754 specifies four different formats to representing the floating point
values:

• Simple Precision (32 bits)

• Double precision (64 bits)

• Simple Extended Precision (≥43 bits but not too used)

• Double Extended Precision (≥79 bits, usually represented by 80)

1.2.2. Binary Interchange Format Encodings

Representations of floating point data in the binary interchange formats are
encoded in k bits in the following three fields ordered as shown in Figure 1:

Figure 1. Floating Point format

If a Simple Precision format is used the bits will be divided in that way:

• The first bit (31st bit) is set the sign (S) of the number (0 positive and 1
negative)

• Next w bits (from 30th to 23rd bit) represents the exponent (E)

• The rest of the string, t, (from 22nd to 0) is reserved to save the mantissa

The range of the enconding biased exponent is divided in three sections:

• Every integer between 1 and 2w-2 (being w=8 � 254(10) in order to
encode the normal numbers

• The value 0 which encodes subnormal numbers and the zero value

• The reserved value 2w-1 (being w=8 � 255(10) to encode some special
cases as NaN or ±∞

The exponent value has a bias of 127. It means the exponent value will be
between -126 (00000000(2) and +127 (11111110(2) being zero at the value
(01111111(2).

Exponent and mantissa values determine the different number r cases that it can
be had.

• If 12 −= wE and 0≠T , then r is NaN regardless of S

• If 12 −= wE and 0=T , then r is ±infinity according with the sign bit S

• If 221 −≤≤ wE , then r is a normal number

• If 0=E and 0≠T , then r is a subnormal number

• If 0=E and 0=T , then r is ±zero according with S

Arturo Barrabés Castillo

 - 10 -

The mantissa value is 23 bits long but it contains an implicit bit depending on the
type of data (1 for normal numbers and 0 for subnormal).

A number can be represented by different ways. As an example, the number
0.11�25 can be described as 110�22 or 0.011�26.

It is desirable to require unique representations. In order to reach this goal the
finite non-zero floating point numbers may be normalized by choosing the
representation for which the exponent is minimum.

To cope with this problem the standard provides a solution. The numbers will be
standardized in two ways:

• Subnormal numbers will start with a zero an it has a form like 02·.0 XX±

• Normal numbers MSB will be high (EXX 2·.1±) where 0<E<255

Both normal and subnormal numbers MSB will be implied but taken into account
in order to get the proper value in decimal.

To calculate the value of the binary bit sequence in decimal this formula will be
used:

 ∑
=

+−
− ⋅=

22

0

)1(
22 2

k

k
kmM (1)

Finally the different format parameters for simple and double precision are
shown in table 1:

Table 1. Binary interchange format parameters

1.2.3. Precision and Rounding

The number of values which can be represented by floating point arithmetic is
finite because it has a finite number of bits.

 32-bits Floating Point Adder

 - 11 -

Figure 2. Floating Point values range

As it can be seen in the figure 2, the standardized numbers range is described as
the values between the higher exponent and mantissa value and the lower ones.
The subnormal numbers are between zero and the lowest number (positive or
negative) which could be represented by normal numbers. However, these
ranges are discontinuous because between two numbers there are also infinite
real ones. The quantities of numbers, which can be represented, are the same
than in fixed point but at the expense of increasing the distance between
numbers a higher range is achieved.

The standard IEEE 754 requires that the operation result must be the same
which would obtain if a calculation with absolute precision and rounded had been
done.

Four types of rounding are described by the standard:

• Rounding to the nearest (to even number in case of tie) is the floating
point number that is the closest to x.

• Rounding to +∞ is the smallest floating point number (possibly +∞)
greater than or equal to x.

• Rounding to -∞ is the largest floating point number (possibly -∞) less
than or equal to x.

• Rounding to zero is the closest floating point number to x that is no
greater in magnitude than x (it is equal to rounding to -∞ if 0≥x and to
+∞ if 0≤x

Arturo Barrabés Castillo

 - 12 -

Figure 3. Rounding Modes

The finite number of representing values and the rounding cause the appearance
of errors in the result. This topic should be discussed when the results will be
analyzed.

 - 13 -

CHAPTER 2:

CODE DEVELOPMENT

Once the standard IEEE 754 has been explained it is time to start with the
implementation of the code. First of all thinking about the different steps we
should do to perform the operation required is compulsory. It is because of this
that this section will talk about the procedure in addition/subtraction operations
and a first look at the code design in block diagram way.

A complete description will be done first and the subblocks will be explained
immediately afterwards at successive subsections.

2.1. 32-bits Floating Point Adder Design

The main goal of this project is the implementation of a 32-bit Floating Point
Adder with VHDL code. The format and the main features of the standard have
been described before but nothing about the steps to achieve the target has
been said.

The first logical step is trying to specify what operations should be done to obtain
a proper addition or subtraction. Once the idea will be clear the block diagram of
the entire code will be designed.

2.1.1. Addition/Subtraction Steps

Following the established plan, the way to do the operations
(addition/subtraction) will be set.

This point will be also used to try to explain why these steps are necessary in
order to make clearer and easier the explanation of the code in the next section.

The different steps are as follows:

1. Extracting signs, exponents and mantissas of both A and B numbers. As it has
been said, the numbers format is as follows:

Arturo Barrabés Castillo

 - 14 -

Figure 4. Floating Point Number format

 Then the first step is finding these values.

2. Treating the special cases:

• Operations with A or B equal to zero

• Operations with ±∞

• Operations with NaN

3. Finding out what type of numbers are given:

• Normal

• Subnormal

• Mixed

4. Shifting the lower exponent number mantissa to the right []21 ExpExp − bits.
Setting the output exponent as the highest exponent.

A’s Exponent � 3 B’s Exponent � -1 Difference (A-B) � 4

 Number B:

 1 1 0 1 0 0 1 � 0 0 0 0 1 1 0 1 0 0 1

5. Working with the operation symbol and both signs to calculate the output sign
and determine the operation to do.

Table 1. Sign Operation

A’s Sign Symbol B’s Sign Operation

+ + + +

+ + - -

+ - + -

+ - - +

- + + -

- + - +

- - + +

- - - -

6. Addition/Subtraction of the numbers and detection of mantissa overflow
(carry bit)

 32-bits Floating Point Adder

 - 15 -

Figure 5. Example

7. Standardizing mantissa shifting it to the left up the first one will be at the first
position and updating the value of the exponent according with the carry bit
and the shifting over the mantissa.

 0.1010101�23 � 1.010101�22

8. Detecting exponent overflow or underflow (result NaN or ±∞)

This is the way forward to proper operation. Obviously there are some parts
which have to be discussed because there will be more aspects to be taken into
account but this will happen in next sections where the code will be explained.

2.1.2. Block Diagram

The main idea has been described before. Once the different steps to follow have
been explained it is time to start to think in the code implementation.

In this subsection a first block diagram –as a draft- will be made. It still does not
go into the most difficult points because in the next section, once a division of
the project in three parts will be done, a complete description of each step will be
performed.

These three parts are as follows:

• Pre-Adder Block

• Adder Block

• Standardizing Block

They make reference to the three main processes of the project. First the
numbers should be treated (pre-adder) in order to perform the operation
properly (adder) and finally, standardizing the result according with the standard
IEEE 754 (standardizing).

In figure 6, a first approximation of the design has been done:

Carry bit �

Arturo Barrabés Castillo

 - 16 -

Figure 6. Block Diagram Code

 32-bits Floating Point Adder

 - 17 -

2.2. Blocks Design

In this section the main blocks described in the previous block diagram will be
explained.

The diagram has two branches:

• The special cases one is quiet simple because only the combination of the
different exceptions are taken into account. This will be explained in the
next chapter over the code directly

• The second one is more interesting. It includes the main operation of the
adder. The different operations that should be done are divided in three
big blocks: pre-adder, adder and normalizing block.

During the next subsections a first description of each block will be done. A block
diagram will be designed to support the explanation and facilitate the
comprehension. Moreover it will be used to design the different blocks in VHDL
which form the 32-bit Floating Point Adder.

2.2.1. Pre-Adder Design

The first subblock is the Pre-Adder. The goals are:

1. Distinguishing between normal, subnormal or mixed (normal-subnormal
combination) numbers.

2. Treating the numbers in order to be added (or subtracted) in the adder block.

• Setting the Output’s exponent

• Shifting the mantissa

• Standardizing the subnormal number in mixed numbers case to be treated
as a normal case

The block diagram which display this behaviour is shown (figure 7) in the next
page.

2.2.2. Adder Design

Adder is the easiest part of the blocks. This block only implements the operation
(addition or subtraction). It can be said the adder block is the ALU (Arithmetic

Logic Unit) of the project because it is in charge of the arithmetic operations.

Two functions are implemented in this part of the code:

1. Obtaining the output’s sign

2. Implementing the desired operation

In this block two related problems should be taken into account. Firstly, the
calculation symbol (+ or -) depends on itself and the A and B’s signs. Secondly,
positive or negative numbers addition gives the same result. The problem will
appear when the signs are different. In these cases the positive number will be
kept in the first operand and the negative one in the second operand. All these
problems will be explained in detail in next sections.

Arturo Barrabés Castillo

 - 18 -

As it is normal the easiest block has the easiest block diagram (figure 8).

Figure 7. Pre-Adder Block Diagram

 32-bits Floating Point Adder

 - 19 -

Figure 8. Adder Block Diagram

2.2.3. Standardizing Design

Finally the Standardizing Block takes the result of the addition/subtraction and
gives it an IEEE 754 format.

The procedure is as follows:

1. Shifting the mantissa to standardize the result

2. Calculating the new exponent according with the addition/subtraction
overflow (carry out bit) and the displacement of the mantissa.

The exponent value must be controlled when these steps are going to be made
because it could be the number of positions the mantissa must be shifted are
higher than the exponent value. In this case the result becomes subnormal.
Another exception is when exponent and number of displacements are equal:
mantissa will be shifted and exponent will be one.

Arturo Barrabés Castillo

 - 20 -

As the previous subsections a block diagram with this description has been
made. It can be seen in the figure 8 where the different steps to standardize the
value are shown.

Figure 9. Standardizing Block Diagram

 - 21 -

CHAPTER 3:

PRE-ADDER

The first block is the Pre-adder. It is in the charge of distinguishing the type of
numbers which are introduced as an input.

Four different cases are possible:

1. One of the different combinations which have been explained and labeled as
special cases: NaN-Infinity, Infinity-Normal, Zero-Subnormal, etc.

2. A two subnormal numbers introduction.

3. A mixed option between normal and subnormal numbers.

4. A two normal numbers introduction

All this cases must be treated separately because of the process to achieve a
successful operation must be different.

3.1. Special Cases

The adder is not always necessary to operate the numbers: there are some
special cases which can be solved without it.

As it has been said, in addition to normal and subnormal numbers, infinity, NaN
and zero are represented in IEEE 754 standard. Some possible combinations
have a direct result, for example, if a zero and a normal number are introduced
the output will be the normal number directly. Time and resources are saved
implementing this block. The n_case block has been designed to run this
behaviour.

3.1.1. n_case Block

Both number A and number B are introduced as inputs. Vector S is one of the
outputs and it contains the result when there is a special case, otherwise

Arturo Barrabés Castillo

 - 22 -

undefined. Finally, enable signal enables or disables the adder block if it is
needed or not.

Firstly the possible number values are coded (zero, infinity, NaN, normal and
subnormal numbers) in two signals outA and outB according to the mantissa and
exponent value as it can be seen in table 2.

Table 2. Data coded

Exponent Mantissa Output Output Coded

= 0 = 0 Zero 000

= 0 > 0 Subnormal 001

0<E<255 > 0 Normal 011

= 255 = 0 Infinity 100

= 255 > 0 NaN 110

Once both A and B numbers have been coded the different signals combinations
are taken into account.

Sign, mantissa and exponent are calculated depending on outA and outB values.
For example, if outA is a zero and outB is a normal number, the result is the
normal number coded in outB.

All the possible values are shown in table 3 and also in the VHDL code added.

 32-bits Floating Point Adder

 - 23 -

Table 3. Output coded

Sign Out A Out B Sign Output Output

X Zero Number B SB Number B

X Number A Zero SA Number A

X Normal / Subnormal Infinity SB Infinity

X Infinity Normal / Subnormal SA Infinity

SA=SB Infinity Infinity SX Infinity

SA≠SB Infinity Infinity 1 NaN

X NaN Number B 1 NaN

X Number A NaN 1 NaN

 X: do not care SA: Number A’s sign SB: Number B’s sign SX: Sign A or B (it is the same)

Finally an enable signal has been made. If any normal or subnormal combination
is had the enable signal is high, otherwise low.

Arturo Barrabés Castillo

 - 24 -

Figure 10. n_case Simulation

 32-bits Floating Point Adder

 - 25 -

3.2. Subnormal Numbers

The operation using subnormal numbers is the easiest one.

It is designed in just one block and the procedure is as follows:

1. Obtaining the two sign bits and both mantissas

2. Making a comparison between both A and B numbers in order to acquire the
largest number

3. Fixing the result exponent in zero

3.2.1. n_subn Block

Obviously Number A and B are the entries. The outputs are six. SA-MA and SB-
MB contain the sign and mantissa of A and B respectively. Comp signal is
referred to the result comparison and EO is the result exponent.

The code is so simply. Sign and mantissa of both numbers are obtained directly
from the entries NumberA and NumberB. The outputs exponent EO is always
zero because the input exponents are zero as well and Comp signal is high when
A is bigger than B and low in the opposite case.

The comparison operation does not take into account the sign of the numbers. If
the result is negative or positive it will be calculated in the Adder block using SA,
SB and Comp signals.

Arturo Barrabés Castillo

 - 26 -

Figure 11. n_subn Entity

 32-bits Floating Point Adder

 - 27 -

3.3. Mixed Numbers

When there is a mixed combination of numbers (one subnormal and other
normal) the subnormal one must have a special treatment in order to be added
or subtracted to the normal one.

The subnormal number treatment is going to be discuss in this block because
once both numbers will be standardized the next block (normal numbers block)
will be in charge of the operation between normal ones.

Figure 12. Mixed numbers block diagram

The work operation can be summarized in the following points:

1. Finding out what the subnormal number is

2. Counting the number of zeros the subnormal number has on the beginning

3. Shifting the vector and calculating the new exponent

This block is formed by three entities and each one is responsible for one of the
points described.

3.3.1. comp Block

First block is comp entity. The block entries are both numbers and the outputs
are the same numbers ordered as normal NA and subnormal NB.

The code is not very extensive. A and B Mantissas are ordered according to the
exponent: null exponent indicates what the subnormal number is and then this
number is fixed in NB, leaving the normal one in NA.

Arturo Barrabés Castillo

 - 28 -

 32-bits Floating Point Adder

 - 29 -

Figure 13. comp Simulation

Arturo Barrabés Castillo

 - 30 -

3.3.2. zero Block

Counting zeros is the zero block target. The mantissa which is needed to shift is
introduced as an entry in T vector and the output Zcount contains the number of
zeros the mantissa has on the beginning which corresponds with the number of
positions the vector must be shifted.

A zero vector is created (Zero_vector) and compared with the T vector. The
Zcount value depends on the number of matches.

 32-bits Floating Point Adder

 - 31 -

Figure 14. zero Simulation

Arturo Barrabés Castillo

 - 32 -

3.3.3. shift_left/shift Block

Shifting is required to match the normal and mixed mantissas to perform the
addition/subtraction properly.

A logarithmic shift schematic as the figure 15 is used but with some differences.

28 bits (1 implicit bit + 23 mantissa’s bits + 4 guard bits) is had in the Floating
point Adder design then up to 28 positions must be able to shift. Because of the
fact that this shifter consists of 5 stages: the first stage shift one position, the
second stage 2, the third one 4, the fourth one 8 and the last one 16. Using any
combination 32 positions are able to shift which is big enough to the design
purpose.

Both shifting left and shifting right are used in the Floating Point Adder
implementation. In this chapter, the first one is explained but the code is quite
similar to the second one. There is only a difference: the T vector order. If the
bits order is changed from 0-27 to 27-0 a shifting right is achieved.

Figure 15. Logarithmic shift

The T vector and the number of positions to shift (Shft) are the entries of the
shift entity. The shifted signal is set in S.

The code is implemented as follows. A multiplexor has been designed and
exported to this block. Afterwards a loop for has been used to generate the
different 5 stages. Following the cascade design which has been shown before a
32 positions logarithmic shifter is implemented.

 32-bits Floating Point Adder

 - 33 -

Arturo Barrabés Castillo

 - 34 -

Figure 16. shift_left/shift Simulation

 32-bits Floating Point Adder

 - 35 -

3.3.4. norm Block

Finally, the rest of the entities are all included in the norm block. It also performs
the output exponent treatment.

The inputs are the numbers A and B. Once the subnormal one has been shifted it
is fixed in MB. The normal number is set in MA.

The code could be divided in two parts. The first one implements the connection
between the different blocks which the mixed numbers entity works with. The
block diagram is coherent with the VHDL code.

The second one is pretty interesting. As it has been explained before, negative
prebiased exponents are not considered by the standard IEEE 754 but there is a
possibility a normal and subnormal number may be operated. The number of
positions the vector MB is shifted could be saved as a positive exponent but
introducing a mark in the last guard bit which indicates the positive exponent is
actually “negative”.

So if a normal number with a quite small exponent is had it is possible that
normal and subnormal numbers are able to be operated.

Arturo Barrabés Castillo

 - 36 -

 32-bits Floating Point Adder

 - 37 -

Figure 17. norm Simulation

Arturo Barrabés Castillo

 - 38 -

3.4. Normal Numbers

Two normal numbers are the most common operation mode because it
represents the main operation without any exception.

The procedure is as follows:

1. Making a comparison between both A and B numbers and obtaining the
largest number

2. Obtaining the output exponent (the largest one)

3. Shifting the smallest mantissa to equal both exponents

Figure 18. Normal numbers block diagram

3.4.1. comp_exp Block

The comp_exp entries are the two introduced numbers again. There are several
outputs: SA and SB are the sign of A and B respectively, EMax is the output
exponent, MMax the largest mantissa, Mshft the mantissa to shift, Dexp the
number of positions Mshft must be shifted and Comp indicates what number is
the largest one.

Exponents and signs are obtained from the introduced numbers directly. Once
the exponents are fixed in EA and EB signals, these values are used to determine
the largest number: if A is larger than B or number B’s LSB (negative exponent
mark) is high, Comp will be ‘1’, otherwise ‘0’.

Using this signal the output exponent could be determined.

 32-bits Floating Point Adder

 - 39 -

Next step is determining the difference between both exponents. Once more time
comp signal fixes the largest exponent and determines the subtraction order.

If B’s LSB is high a negative exponent is had. In this case EA and EB are added.

The mantissa to shift corresponds with the smallest number (using comp again).

Finally a maximum value is set if the difference between exponents is greater
than 28 which is the maximum number of bits that the mantissa has.

Arturo Barrabés Castillo

 - 40 -

Figure 19. comp_exp Simulation

 32-bits Floating Point Adder

 - 41 -

3.4.2. shift Block

A shifter is needed to match the exponents. The entity is the same than in the
mixed case. The vector T is the input which contains the mantissa to shift, shft
fix the number of positions to move and S is the output with the result of the
operation.

The code is quite similar. Only a part is added because it is enough to see its
operation.

Changing the order of the vector, a displacement in the other direction is
achieved. The simulation is not required because the result is the same but on
the right.

3.4.3. n_normal Block

The n_normal block includes the two blocks which have been explained above.
The entries are NumberA and NumberB and the outputs are both sign A (SA) and
sign B (SB), the result exponent (EO), the Comp signal and the two mantissas
(MA and MB).

Arturo Barrabés Castillo

 - 42 -

The VHDL code implements just the interconnection between the different blocks.

Comp_exp fix the mantissa which has to been shifted and the number of
positions it must be displaced.

Shift block collects these two signals and gives the mantissa in order to be
operated in the next block: the Adder block.

 32-bits Floating Point Adder

 - 43 -

Figure 20. n_normal Simulation

Arturo Barrabés Castillo

 - 44 -

3.5. Pre-Adder

Finally a complete Pre-Adder block diagram will be shown and explained. As it
could be seen there are some blocks which are not discussed. These blocks are
4:

1. The first one is so important: Selector block

2. A demultiplexor (demux) to route the signal in the correspondent block

3. A multiplexor (mux_ns) to choose between the mixed numbers or the normal
ones

4. A multiplexor (mux_adder) to choose between the normal or subnormal
numbers

 Figure 21. preadder block diagram

These blocks are going to be grouped in two different chapters. First one includes
only the selector block which is more important and has more complexity.

The second group contains the different multiplexors and demultiplexors. They
are going to be treated all together because of code’s simplicity.

3.5.1. selector Block

Selector block prepares the numbers: the entries are shorter than outputs
because the implicit bit (high if the number is normal and low in subnormal’s
case) and the guard bits are added in this block. Enable signal enables this block
(and therefore the entire preadder block) when we do not have a special case.

The outputs are the two numbers with the added bits and the e_data signal
which distinguish between normal, subnormal and mixed numbers.

 32-bits Floating Point Adder

 - 45 -

If enable signal is high it means we do not have a special case. Then the outputs
signals NA and NB are made: first the sign and exponent bits are placed in its
positions.

Next step, the implicit bit is fixed according with the exponent value. The
mantissa and the guard bits are added too.

If the exponent is bigger

than 0 � Normal Number

Implicit bit � ‘1’

If the exponent is 0 �

Subnormal Number

Implicit bit � ‘0’

Arturo Barrabés Castillo

 - 46 -

Finally the e_data signal is fixed as follows:

1. Subnormal numbers � e_data := “00”

2. Normal numbers � e_data := “01”

3. Mixed numbers � e_data := “10”

 32-bits Floating Point Adder

 - 47 -

Figure 22. selector Simulation

Arturo Barrabés Castillo

 - 48 -

3.5.2. MUX/DEMUX Blocks

The operation of the demux demultiplexor is routing the A and B numbers to the
subnormal, normal or mixed block according with the e_data value.

NumberA, NumberB and the enable signal e_data are the entries and the outputs
are 3 pairs of signals but only one pair is activated in each time. The typical
demultiplexor’s behaviour.

The mux_ns multiplexor’s target is selecting which signal must be introduced in
the normal numbers block: normal numbers or a standardized numbers from the
mixed numbers block.

 32-bits Floating Point Adder

 - 49 -

The entries are the two pairs of numbers and e_data signal and the outputs are
the A and B numbers according with e_data value.

Finally mux_adder multiplexor is in charge of selecting which data are going to
be introduced in the adder.

The entries are the comp signal, the two mantissas, signs and exponents and all
of them multiplied by two: one for the subnormal numbers and another for the
normal/mixed numbers. The output is one of the pair’s members according with
e_data.

Arturo Barrabés Castillo

 - 50 -

3.5.3. preadder Block

Finally the preadder block is going to be explained. The special cases block is not
considered in this block diagram because it will be added next to adder block in a
complete block diagram.

NumberA, NumberB and enable are the inputs. A and B sign (SA and SB), the C
signal, output’s exponent Eout, and both MAout and MBout mantissas are the
outputs of the design.

 32-bits Floating Point Adder

 - 51 -

The components description is shown in this part of the code. Normal numbers
block (n_normal), subnormal numbers block (n_subn), mixed numbers block
(norm), the multiplexor and demultiplexors (mux_ns, mux_adder and demux)
and the selector entity are added there.

Finally the connection between the different components is described in the
second part of the code.

Arturo Barrabés Castillo

 - 52 -

 32-bits Floating Point Adder

 - 53 -

 Figure 23. preadder Simulation

 - 55 -

CHAPTER 4:

ADDER

This chapter will deal with the adder and the standardizing block. The first one is
in charge of operating the numbers which have been prepared in the Pre-adder
block. The second one will standardize the result according with standard IEEE
754.

The block procedure is as follows:

1. Calculating the output’s sign according to the sign numbers and the operation
symbol

2. Addition/Subtraction of the both A and B numbers

3. Standardizing the result as IEEE 754 standard says

4. Grouping sign, exponent and mantissa in a single vector

The result is reached and the last step is multiplexing this value with the other
one obtained as a special cases event explained in previous chapters.

4.1. Adder

The adder is a fundamental piece of the design because it implements the
addition/subtraction operation, main purpose of the 32 bit Floating Point Adder.

The Adder block is composed by two entities: signout and adder. Signout is
responsible for the sign operation and the adder is the adder strictly speaking.

4.1.1. Signout Block

Signout entity has six inputs: numbers A and B, both signs SA and SB, signal
A_S which indicates if we add or subtract and the bit Comp (high if A is greater
than B otherwise low).

Arturo Barrabés Castillo

 - 56 -

The outputs are the two numbers Aa and Bb, the outputs sign SO and the signal
AS that has the same function than A_S: determine the sign of the operation.

Three different parts are visible in the code.

Firstly the outputs sign will be determined using the bits A_S, Comp, SA and SB,
A’s sign and B respectively.

An exclusive OR operand performs the function that is shown in table 4.

Table 4. SB xor A_S

A_S SB SB_aux

+ + +

+ - -

- + -

- - +

Basically, it does the mathematical combination between the operation’s symbol
and the B number sign. Once the “new” B’s sign is found out, the outputs sign
SO is determined with the aid of SA and the bit Comp.

Table 5. SO determined

SA SB_aux Comp SO

+ + 0 +

+ + 1 +

+ - 0 -

+ - 1 +

- + 0 +

- + 1 -

- - 0 -

- - 1 -

First of all, the two vectors A and B are reordered according with their original
value (remember the numbers have been exchanged –or not- in preadder block
when the exponents have been made equal)

 32-bits Floating Point Adder

 - 57 -

When A is greater than B, the outputs sign SO will be equal to A’s sign, SA.
Otherwise, if B is greater than A, the output will keep the sign of the number B
(the “new B’s sign” one, SB_aux).

Secondly, if both SA and SB signs are equal is realized that both number A and
number B will be added with the only difference of the sign. On the other hand, if
SA and SB are different, what number is the negative one will be determined in
order to simplify the adder implementation.

As it is seen in the code, the negative number when we have two different signs
always will be in the vector B called Bb setting the positive one in vector Aa. In
another way it does not care: Aa will be A and Bb will be B.

Finally a bit indicating when a subtraction is produced is needed in order to
achieve a properly operation in the adder. If A and B signs are equal that means
an addition will be calculated (AS low). In the other hand, if A and B are
different, the number A Aa and the negative number B, which had being moved
to the vector Bb, are going to be subtracted (AS high).

Arturo Barrabés Castillo

 - 58 -

 Figure 24. signout Simulation

 32-bits Floating Point Adder

 - 59 -

4.1.2. Adder Block

The Adder block is in charge of the addition/subtraction operation. The two
numbers A and B and the bit A_S which indicates the operation’s symbol are the
entries. The outputs are the result vector S and the Carry bit Co which shows if
there was an overflow.

First of all the type of adder will be explained. A Carry Look Ahead structure has
been implemented. This structure allows a faster addition than other structures.
It improves by reducing the time required to determine carry bits. This is
achieved calculating the carry bits before the sum which reduces the wait time to
calculate the result of the large value bits.

Figure 25. 1-bit Carry Look Ahead Structure

The implementation of the Carry Look Ahead structure is shown at the figure
above. The idea is to obtain the carry generation and the carry propagation
independently of each bit in order to obtain last carry faster.

The code has been designed implementing a 1-bit CLA structure and generating
the other components up to 28 (the number of bits of the adder) by the function
generate. Before that the A_S signal is used to determine if the second operand
should be in complement to 1 (subtraction) or not (addition) using an exclusive
or gate.

Arturo Barrabés Castillo

 - 60 -

Finally the Co bit is fixed by the carry of the last component.

 32-bits Floating Point Adder

 - 61 -

 Figure 26. adder Simulation

Arturo Barrabés Castillo

 - 62 -

4.1.3. Block_Adder Block

Finally the Block_Adder block joins both signout and adder entities to implement
the complete adder. The inputs are the signs and the value of A and B (SA-SB
and A-B respectively), the bit Comp and A_S. Moreover the outputs are the
result S, the carry CO and the outputs sign SO.

The code is quite brief. Basically the connection of the different blocks is done in
this block.

 32-bits Floating Point Adder

 - 63 -

The most interesting part is on the bottom: if a subtraction operation is done and
the outputs sign is set (that means negative number is greater than the positive)
that means a complement to 2 is needed over the result because as it has been
explained the negative number always is moved to the vector B and the result is
“negative” (C to 2) when truly it is not. An example is shown:

Table 6. Example correct operation

SA A SB B A_s SO Result

- 101 + 100 + - 001

At the table 6 it is shown the correct and theoretical operation of the adder. The
signs are not taken into account because they have their own bits. The result is
1-decimal positive with SO negative.

Table 7. Example wrong operation

Aa Bb AS SO’ Result

100 101 - - 111

At table 7 the operation of the adder is shown without the complement to 2 part.
The negative vector is move to Bb then a negative binary result (-1) is obtained
not being correct according to the IEEE 754 standard. AS is recalculated in
signout according to the sign values. Then if AS (subtraction) and SO (negative)
are set a complement to 2 is necessary to reach a correct result.

Note the complement to 2 is not necessary when we have two negative numbers
because it has been considered like an addition of two positive numbers.

Finally the carry value is also corrected in the same circumstances: when a
subtraction is operated and we have a negative number at the output it will
always have a carry out high. If the complement to 2 is needed that implies a
carry low to obtain a proper result.

Arturo Barrabés Castillo

 - 64 -

 Figure 27. Block_Adder Simulation

 32-bits Floating Point Adder

 - 65 -

4.2. Standardizing Block

The Standardizing block, as its name suggest, is responsible for displaying the
addition/subtraction operation value according to the IEEE 754 standard.

This block is composed of four entities. Shift_left and zero blocks have been
explained in the previous chapter. Round and vector are the two new ones.
Basically they are in charge of dealing with the result obtained from the adder
and showing it in the same format as the numbers had been introduced

4.2.1. round Block

Round block provides more accuracy to the design. Four bits at the end of the
vector had been added in the Pre-Adder block. Now it is time to use these bits in
order to round the result.

1 0 0 1 0 0 0 � 2 4 1 0 0 1 0 0 0 � 2 5

1 1 0 1 0 0 1 � 2 1 0 0 0 0 1 1 0 1 0 0 1 � 2 5

This block has only one input and one output. The input is the vector Min and the
output Mout. Note Min is larger than Mout (27 bits against 22). The reason is Min
contains the implicit and round bits that will be treated during the round code
execution.

The process to round is chosen arbitrarily: if the round bits are greater than the
value “1000” the value of the mantissa will be incremented by one. Otherwise
the value keeps the same value.

4.2.2. shift_left/zero Block

Both shift_left and zero blocks are completely reused from the mixed number
block. It has been explained in the last chapter and it is not going to be
commented again.

Guard Bits

Arturo Barrabés Castillo

 - 66 -

Figure 28. Round Simulation

 32-bits Floating Point Adder

 - 67 -

4.2.3. block_norm Block

The block_norm implement the standardizing function. It is composed by the
entities signout, shift_left and zero_counter. The entries are the result’s mantissa
(MS) and exponent (ES) and the add’s carry Co. The outputs will be the
standardized result (its mantissa (M) and exponent (E)).

The first part of the code implements the connection between the different
components which compose the block. Zero, shift_left and round are connected
as shown in the code and the block diagram.

The second part of the code refers to the exponent treatment. Three different
cases have been taken into account:

1. If the exponent is larger than the number of zeros (number of positions the
vector should be shifted) it means the number is normal and the standardized
exponent will be the exponent minus the positions shifted plus the carry.

2. If the exponent is shorter than the number of zeros it means the output will
be subnormal, only the value which marks the exponent could be shifted and
the final exponent will be zero.

3. Last case referred when the exponent is equal to the number of zeros. On this
occasion the vector will be shifted the number of positions the exponent
marks (or the signal zero_counter) and the result will be normal with
exponent one.

Arturo Barrabés Castillo

 - 68 -

 32-bits Floating Point Adder

 - 69 -

Figure 29. norm_block Simulation

Arturo Barrabés Castillo

 - 70 -

4.2.4. vector Block

This block has an easy function: regrouping the sign, exponent and mantissa in a
single vector to be consistent with the format adopted for data entry.

It has three inputs: sign S which it comes from the adder block, mantissa M and
exponent E. The output is the vector N which keeps the format of numbers A and
B (the main entries of the system).

The code is so simple. Sign, mantissa and exponent are set in the proper position
as follows:

Table 8. Bit positions

31 30..23 22..0

Sign Exponent Mantissa

Note this entity will be out of the standardizing block because it uses signals
from two different blocks. However it is part of the standardizing process and it is
clearer to be explained in this chapter.

Two simulations are added: the first one test the entity operation and the second
one perform the behaviour when it is joined to the block_norm entity.

 32-bits Floating Point Adder

 - 71 -

Figure 30. vector Simulation

Arturo Barrabés Castillo

 - 72 -

Figure 31. block_norm + vector Simulation

 - 73 -

CHAPTER 5:

32-BITS FLOATING

POINT ADDER

Finally all the different entities and sub-blocks has been described and explained.
In this chapter the blocks will be joined in order to test totally the Floating Point
Adder. The procedure will be as follows:

1. n_case Entity sort the data type according with the standard IEEE 754 and
enable the adder if it is needed to operate the numbers. Otherwise (special
cases) the result is done by it.

2. If the numbers are normal, subnormal or a mix, the Pre-Adder sub-block
deals with the treatment of the numbers in order to be added / subtracted.

3. The Adder Block adds or subtracts the two numbers given

4. It is time to standardize the result according with the standard: shifting the
mantissa and recalculating the new exponent.

5. Finally the result will be choose between the special case or the operated one
depending on the input values

Two more entities will be explained in this section: the multiplexor which takes
care of the last step of the list and the fpadder grouping all this points and
making them work together.

On this occasion, the simulations will not be added to the code. Being the
complete Floating Point Adder it is considered make another point in this chapter
to demonstrate the proper functioning.

Moreover a table will be used to collect the different binary values, convert to
decimal and as similar or different the results are.

Arturo Barrabés Castillo

 - 74 -

5.1. Floating Point Adder

As it has been said, this first section will contain two entities: the multiplexor
that is in charge of setting the correct result in the output (special cases or
operated result) and the entity which groups all the blocks.

Continuing with the format used before, the ports and the block diagram are
explained at the beginning and immediately afterwards the behaviour.

5.1.1. Mux_fpadder Block

The multiplexor is not so complicated. It has three inputs: N1, N2 and enable.
The first signal refers to the n_case result and the second one to the vector
obtained in the adder block. Enable decides which one will be at the output.

Finally, the output is Result which contains the 32 bits (Sign, exponent and
mantissa) result.

The code is pretty simple. If enable is high it means the numbers were normal,
subnormal or mixed and then the vector which comes from the adder is the
correct result. Otherwise, if enable is low, a special case combination is had and
the block n_case is who has the proper value.

5.1.2. fpadder Block

Finally, the entire Floating Point Adder is designed. The last entity is fpadder
which joins all the different blocks previously described.

The inputs are both NumberA and NumberB numbers and the operand A_S.
Obviously, the output is the final result of the operation according with the
standard.

On the next page a complete block diagram is shown:

 32-bits Floating Point Adder

 - 75 -

Figure 32. Block Diagram

Arturo Barrabés Castillo

 - 76 -

The first part of the code includes all the component declarations. As it can be
seen all the main blocks are here: n_case, preadder, block_adder, norm_vector
(norm + vector blocks) and mux_fpadder.

The second part of the code is responsible for connecting the different blocks
properly as it is represented in the block diagram.

 32-bits Floating Point Adder

 - 77 -

5.2. Simulations

At this point the simulations to test the operation will be comment. As it has
been done before four different cases could happen: special case, normal,
subnormal or mixed numbers.

 All the different possibilities must be tested and this is the reason why the
different data types will be treated separately.

The procedure will be as follows:

1. Enough different cases for each data type to demonstrate the correct working
will be taken into account. The binary values of the entries and the output will
be grouped in a table.

2. Using the simulation the result will be obtained and added to the table.

3. Decimal value of the numbers and the result will be calculated with the
formula which had been explained at the standard IEEE 754 chapter.

4. Simulation value will be compared with the arithmetic value in order to see as
similar or different the numbers will be.

The discussion about the accuracy of the 32-bit Floating Point Adder and the
general standard IEEE 754 will be carried out in the next chapter.

5.2.1. Special Cases

Recovering the table added in the second chapter, 8 different cases are possible.

Zero-NumberX, NaN-NumberX and Normal/Subnormal-Infinity cases can be
taken into account only one time (Zero-NumberX or NumberX-Zero tests the
same result). Then the simulation will contain 5 combinations.

Table 9. Special Cases combination

Sign Out A Out B Sign Output Output

X Zero Number B SB Number B

X Number A Zero SA Number A

X Normal / Subnormal Infinity SB Infinity

X Infinity Normal / Subnormal SA Infinity

SA=SB Infinity Infinity SX Infinity

SA≠SB Infinity Infinity 1 NaN

X NaN Number B 1 NaN

X Number A NaN 1 NaN

 X: do not care SA: Number A’s sign SB: Number B’s sign SX: Sign A or B (it is the same)

Arturo Barrabés Castillo

 - 78 -

Figure 33. Special Cases Simulation

 32-bits Floating Point Adder

 - 79 -

The results are collected in the next table:

Table 10. Special Cases Results

 SX: Sign Number X EX: Exponent Number x MX: Mantissa Number X XS: Result X(10: Base-10 Number

As it can be seen the results are consistent with the theoretical explanation.

Arturo Barrabés Castillo

 - 80 -

5.2.2. Normal Numbers

n_case block is only a combination between the entries and no more blocks are
involved in this operation. Normal numbers have more complexity.

In this section the blocks which are responsible for normal numbers are tested.

Figure 34. Normal Numbers Simulation

 32-bits Floating Point Adder

 - 81 -

5.2.3. Subnormal Numbers

Turn to the subnormal numbers. Different possibilities with the sign of the
numbers and the operation symbol will be treated in order to test more
combinations.

Figure 35. Subnormal Numbers Simulation

Arturo Barrabés Castillo

 - 82 -

5.2.4. Mixed Numbers

Finally, the mixed numbers. The other combinations will be tried.

Figure 36. Mixed Numbers Simulation

 - 83 -

CHAPTER 6:

RESULTS

Finally in the last chapter the results, they have been obtained before, will be
evaluated.

Firstly a theorical and brief introduction about floating point errors is compulsory
because this information is important to understand the behaviour of the results
achieved.

At last, the report will finished with a conclusion where the main goals of the
adder will be discussed.

6.1. Errors

There is a lot of literature which speaks about errors in a floating point system.
The most of these errors are produced in the conversion between the internal
binary format and the external decimal one or conversely.

Usually the computers use a fixed quantity of memory to represent each sort of
number. This representation makes the electronic design easier but it involves
rounding and it can lead to erroneous values.

This project focuses on the design of the binary floating point adder. Hence this
type of errors will not be taken into account unless when a decimal
representation with MATLAB is used (we will see it later).

The floating point format is discontinuous. It means not all real numbers have
representation and this is another error source especially important with high
numbers where the gap between them is largest.

6.1.1. Gap between Numbers

Once again, the real numbers could have an infinite number of digits and the
floating point format is used to represent it with a computer.

The accuracy of the number is represented by the number of digits of the
mantissa. A 24bits mantissa could be represented by 7 decimal digits.

Arturo Barrabés Castillo

 - 84 -

In numerical analysis, errors are very often expressed in terms of relative errors.
And yet, when errors of “nearly atomic” function are expressed, it is more
adequate and accurate to express errors in terms of the last bit of the significant:
the last significant weight give us the precision of the system. Let us define that
notion more precisely. William Krahan coined the term ulp (unit in the last place)
in 1960 and its definition was as follows:

Ulp(x) is the gap between the two floating point numbers nearest to x, even if x

is one of them.

Mathematically the ulp could be defined as follows:

epulp +−= β (2)

The value in our system will be (when e=emin)
7124 101921.12 −+− ⋅==ulp

As it has been said, the floating point format is discontinuous that means not all
the real numbers have a representation in this format. The ulp represents the
step between two consecutive numbers. Using MATLAB with p=6, β=2 and
0<e<3 (simplifying results) a representation of this discontinuous format has
been obtained:

Figure 37. ulp representation

The ulp is doubled as the exponent increases by one because of the base (power
of two).

 32-bits Floating Point Adder

 - 85 -

Figure 38. ulp increase

6.1.2. Rounding or Truncation

To represent a real number in a computer an adequate floating point number
must be chosen. At first glance it seems the nearest one will be the best choice
but sometimes this will not be an option unless all the number digits are known.

We need a procedure which requires only one digit more to represent the
number. Using this condition rounding and truncation are our two possibilities.

Truncation consists of chosen the m more significant bits/digits of a number x.
On the other hand, rounding needs to know the next bit/digit too and according
with it add one to the LSB/last digit (5, 6, 7, 8 and 9 cases) or not (1, 2, 3, 4).

We use an example to find out what method is better and why.

Rounding (2/3) = (0.666….) � 0.667

Truncation 2/3) = (0.666….) � 0.666

If a mantissa of 3 bits is considered we have a maximum truncation error when
the number ends with a periodic 9 as 0.66699999. The error is 0.999�10-4≈10-4
which matches up with the bit error (or the ulp).

The maximum rounding error is produced when the numbers have a decimal part
ended in 4 plus infinity 9 digits as 0.66649999. The error is calculated rounding
the maximum error 4.9999�10-4≈5�10-4. Then the relative error is equal to half
the last digit (½ulp).

In conclusion we have demonstrated the relative error caused by truncation is
equal to the ulp and the rounding one ½ulp.

As it has said the error increases according with the exponent of the number.

Arturo Barrabés Castillo

 - 86 -

6.1.3. Floating Point Addition

Finally a brief comment about the floating point addition/subtraction will be done.

The basic arithmetic operations have their equivalent in floating point format.
The goal is noting these operations always have errors.

Let see an example:

Being x=1867=0.1867�104 and y=0.32=0.3200�100, then:

yxflyxfl +=≠⋅=⋅+⋅=+ 32.1867101867.0)10000032.0101867.0()(444

The floating point representation is correct but anyway we have an error. A
mantissa shifting is necessary to add two numbers with different exponents and
we can lose some “information” during the procedure.

6.2. Results analysis

Once a small introduction to the errors is done we are going to use the values
from last section tables.

To show the result we have implemented a simple program using MATLAB. First,
inside the for loop we calculate the mantissa value and set its value in Aux. Then
according with the data type (normal or subnormal) we use the appropriate
formula for each case.

6.2.1. Subnormal Numbers

In the table 14 we have grouped all the results obtained during a new simulation
with subnormal numbers.

As it can be seen the relative error is always zero. The error for a subnormal bits
is () 4512623 104012.12 −−− ⋅= . The number is small enough. In addition there is not any
shifting and the double precision format of MATLAB provides this great accuracy.

Mantissa size

Mantissa value

Normal or Subnormal?

Subnormal Number

Normal Number

 32-bits Floating Point Adder

 - 87 -

Table 11. Subnormal Numbers Results

Arturo Barrabés Castillo

 - 88 -

6.2.2. Mixed Numbers

Table 12. Mixed Numbers Results

 32-bits Floating Point Adder

 - 89 -

The smaller the number, the greater the relative errors we have because each
time, we are nearer to the bit error value.

Figure 39. Relative error

The reason to get this error is that using mixed numbers we have to shift the
subnormal number, first to standardize it and later to make equal the exponents
causing a big displacement because the other number is normal and its exponent
will be greater.

6.2.3. Normal Numbers

Finally the normal numbers turn. The results have been grouped in the table 13.

The relative error is not so big in most cases but there are two values where it
increase so much. Two possible causes: the first one, as we have said, the
greater the number, the greater the error we can have. The second one, as in
the mixed numbers, we must shift one of the numbers losing some bits in the
operation and increasing the error if the exponents are very different.

Arturo Barrabés Castillo

 - 90 -

Table 13. Normal Numbers Results

 32-bits Floating Point Adder

 - 91 -

6.3. Conclusions

The importance and usefulness of floating point format nowadays does not allow
any discussion. Any computer or electronic device which operates with real
numbers implements this type of representation and operation.

During this report I have tried to explain the operation and benefits of using this
notation against the fixed point. The main feature is that it can represent a very
large or small numbers with a relatively small and finite quantity of memory.

The clear utility of the floating point format was the main reason why I decide to
do this work. The other reason was the possibility of implementing it in VHDL. I
could work on something that I like as programming and design something which
has a current use. What is the result?

The reached goal is the implementation of a 32bits adder/subtractor based on
floating point arithmetic according with the IEEE 754 standard.

This design works with all the numbers defined by the standard: normal and
subnormal. Furthermore, all the exceptions are taken into account as NaN, zero
or infinity.

The VHDL code has been implemented so that all the operations are carried out
with combinational logic which reaches a faster response because there are not
any sequential devices as flip-flops which delays the execution time.

If I have to defend this project I will appoint two features.

The first one deals with type of architecture used. For example, the adder or the
shifter is implemented with a known structure. Predetermined operations as
addition (+) or shifting (SLL or SLR) are allow but I decided using a generate
function and designing my own device which improves the time response.

Finally the mixed numbers option. IEEE 754 does not say anything about the
operations between subnormal and normal numbers. I have designed a trick
which allows the operation. I standardize the subnormal number and set a “false
positive subnormal exponent” (truly it is negative but IEEE 754 does not allow
negative exponent prebiased). Adding the normal exponent and the false
subnormal one I know the number of positions I must shift the mantissa and
then the operation is done properly.

Obviously the design is not perfect. The accuracy is not optimal. In the future
using a double precision format would be an improvement. The execution time
would increase but the accuracy also would be better.

Maybe a complete FPU design would be another good improvement.
Multiplication and division have an easier implementation than the
addition/subtraction and it would do the project more complete.

Finally using the code over a FPGA and testing it physically over a board would
be the last aim which would leave the design completely finished.

 - 93 -

CHAPTER 7:

BIBLIOGRAPHY

Muller, Jean-Michel; Brisebarre, Nicolas; De Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre,
Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien and Serge Torres. "Handbook
of Floating-Point Arithmetic” Birkhäuser Boston, 2010.

Lu, Mi. Texas A&M University “Arithmetic and Logic in Computer Systems” Hoboken, New Jersey,
Wiley-Interscience, 2004.

Floating Point book. Wikibooks, 2012. en.wikibooks.org/wiki/Floating_Point

Overton, Michael L. “Numerical Computing with IEEE Floating Point Arithmetic”. Cambridge
University Press, 2001.

Mozos, Daniel; Sánchez-Elez, Marcos and José Luis Risco. “Aritmética en coma flotante: Ampliación
de estructura de computadoras”. Valencia, Spain: Facultad de Informática, 2008.

Floating Point book. Wikibooks, 2012. en.wikibooks.org/wiki/Floating_Point

Overton, Michael L. “Numerical Computing with IEEE Floating Point Arithmetic”. Cambridge
University Press, 2001.

Altera. “Floating-Point Adder/Subtractor”. San José, CA, 1996

Carrera, Manuel; López, Efrén O. and Juan Naranjo. “ALU Logarítmica”. Pontificia Universidad
Javeriana, Facultad de ingeniería electrónica, Bogotá DC, 2005.

Pardo, Fernando, and José A. Boluda. “VHDL. Lenguaje para síntesis y modelado de circuitos” Ra-
ma Ed.

Universidad Tecnológica de la Mixteca. “Lenguaje VHDL: Código para representar sistemas digitales
en VHDL”, 2009.

Madrenas, Jordi. “Disseny de subsistemes”. Disseny Microelectrònic II, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2010.

 - 95 -

ANNEX:

VHDL CODE

Arturo Barrabés Castillo

 - 96 -

PRE-ADDER BLOCK: n_case Block

 32-bits Floating Point Adder

 - 97 -

Arturo Barrabés Castillo

 - 98 -

PRE-ADDER BLOCK: Select Block

 32-bits Floating Point Adder

 - 99 -

Arturo Barrabés Castillo

 - 100 -

PRE-ADDER BLOCK: Normal Numbers: Comp_Exp Block

 32-bits Floating Point Adder

 - 101 -

PRE-ADDER BLOCK: Normal Numbers: Shift Block: MUX Entity

Arturo Barrabés Castillo

 - 102 -

PRE-ADDER BLOCK: Normal Numbers: Shift Block

 32-bits Floating Point Adder

 - 103 -

PRE-ADDER BLOCK: Normal Numbers: n_normal Block

Arturo Barrabés Castillo

 - 104 -

PRE-ADDER BLOCK: Subnormal Numbers: n_subn Block

 32-bits Floating Point Adder

 - 105 -

PRE-ADDER BLOCK: Mixed Numbers: Comp Block

Arturo Barrabés Castillo

 - 106 -

PRE-ADDER BLOCK: Mixed Numbers: Zero Block

 32-bits Floating Point Adder

 - 107 -

PRE-ADDER BLOCK: Mixed Numbers: shift_left Block

Arturo Barrabés Castillo

 - 108 -

PRE-ADDER BLOCK: Mixed Numbers: norm Block

 32-bits Floating Point Adder

 - 109 -

Arturo Barrabés Castillo

 - 110 -

PRE-ADDER BLOCK: MUX/DEMUX

 32-bits Floating Point Adder

 - 111 -

Arturo Barrabés Castillo

 - 112 -

 32-bits Floating Point Adder

 - 113 -

PRE-ADDER BLOCK: preadder Block

Arturo Barrabés Castillo

 - 114 -

 32-bits Floating Point Adder

 - 115 -

ADDER BLOCK: Signout Block

Arturo Barrabés Castillo

 - 116 -

ADDER BLOCK: Adder Block: CLA Entity

 32-bits Floating Point Adder

 - 117 -

ADDER BLOCK: Adder Block

Arturo Barrabés Castillo

 - 118 -

ADDER BLOCK: Block_Adder Block

 32-bits Floating Point Adder

 - 119 -

STANDARDIZING BLOCK: Round Block

STANDARDIZING BLOCK: Vector Block

Arturo Barrabés Castillo

 - 120 -

STANDARDIZING BLOCK: Block_norm Block

 32-bits Floating Point Adder

 - 121 -

STANDARDIZING BLOCK: norm+vector Block

Arturo Barrabés Castillo

 - 122 -

 32-bits Floating Point Adder

 - 123 -

32bit Floating Point Adder BLOCK: MUX

32bit Floating Point Adder BLOCK:

Arturo Barrabés Castillo

 - 124 -

 32-bits Floating Point Adder

 - 125 -

