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RESUM  

La aritmètica de punt flotant és, amb diferència, el mètode més utilitzat 
d’aproximació a la aritmètica amb nombres reals per realitzar càlculs numèrics 
per ordinador. 

Durant molt temps cada màquina presentava una aritmètica diferent: bases, 
mida dels significants i exponents, formats, etc. Cada fabricant implementava el 
seu propi model ,fet que dificultava la portabilitat entre diferents equips, fins que 
va aparèixer la norma IEEE 754 que definia un estàndard únic per a tothom. 

L’objectiu d’aquest projecte és, a partir del estàndard IEEE 754, implementar un 
sumador/restador binari de punt flotant de 32 bits emprant el llenguatge de 
programació hardware VHDL. 

ZHRNUTIE 

Práca s číslami s pohyblivou desatinnou čiarkou je najpoužívanejší spôsob pre 
vykonávanie aritmetických výpočtov s reálnymi číslami na moderných 
počítačoch. Donedávna, každý počítač využíval rôzne typy formátov: báza, 
znamienko, veľkosť exponentu, atď.  Každá firma implementovala svoj vlastný 
formát a zabraňovala jeho prenosu na iné platformy pokiaľ sa nevymedzil 
jednotný štandard IEEE 754.  Cieľom tejto práce je implementovanie 32-bitovej 
sčítačky/odčítačky pracujúcej s číslami s pohyblivou desatinnou čiarkou podľa 
štandardu IEEE 754 a to pomocou jazyka na opis hardvéru VHDL. 

ABSTRACT 

Floating Point arithmetic is by far the most used way of approximating real 
number arithmetic for performing numerical calculations on modern computers. 

Each computer had a different arithmetic for long time: bases, significant and 
exponents’ sizes, formats, etc. Each company implemented its own model and it 
hindered the portability between different equipments until IEEE 754 standard 
appeared defining a single and universal standard. 

The aim of this project is implementing a 32 bit binary floating point 
adder/subtractor according with the IEEE 754 standard and using the hardware 
programming language VHDL. 
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CHAPTER 1: 

INTRODUCTION 

Many fields of science, engineering and finance require manipulating real 
numbers efficiently. Since the first computers appeared, many different ways of 
approximating real numbers on it have been introduced. 

One of them, the floating point arithmetic, is clearly the most efficient way of 
representing real numbers in computers. Representing an infinite, continuous set 
(real numbers) with a finite set (machine numbers) is not an easy task: some 
compromises must be found between speed, accuracy, ease of use and 
implementation and memory cost. 

Floating Point Arithmetic represent a very good compromise for most numerical 
applications. 

1.1. Floating Point Numbers 

The floating point numbers representation is based on the scientific notation: the 
decimal point is not set in a fixed position in the bit sequence, but its position is 
indicated as a base power. 

 

All the floating point numbers are composed by three components: 

• Sign: it indicates the sign of the number (0 positive and 1 negative) 

• Mantissa: it sets the value of the number 
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• Exponent: it contains the value of the base power (biased) 

• Base: the base (or radix) is implied and it is common to all the numbers (2 
for binary numbers)  

The free using of this format caused either designed their own floating point 
system. For example, Konrad Zuse did the first modern implementation of a 
floating point arithmetic in a computer he had built (the Z3) using a radix-2 
number system with 14-bit significant, 7-bit exponents and 1-bit sign. On the 
other hand the PDP-10 or the Burroughs 570 used a radix-8 and the IBM 360 
had radix-16 floating point arithmetic. 

This led to the need for a standard which would make a clear and concise format 
to be used by all the developers. 

1.2. The Standard IEEE 754 

The first question that comes to mind is “What’s IEEE?”. The Institute of 
Electrical and Electronics Engineers (IEEE) is a non-profit professional association 
dedicated to advancing technological innovations and excellence. 

It was founded in 1884 as the AIEE (American Institute of Electrical Engineers). 
The IEEE was formed in 1963 when AIEE merged with IRE (Institute of Radio 
Engineers). 

One of its many functions is leading standards development organization for the 
development of industrial standards in a broad range of disciplines as 
telecommunications, consumer electronics or nanotechnology. 

IEEE 754 is one of these standards.  

1.2.1. Overview 

Standard IEEE 754 specifies formats and methods in order to operate with 
floating point arithmetic. 

These methods for computational with floating point numbers will yield the same 
result regardless the processing is done in hardware, software or a combination 
for the two or the implementation. 

The standard specifies: 

• Formats for binary and decimal floating point data for computation and 
data interchange 

• Different operations as addition, subtraction, multiplication and other 
operations 

• Conversion between integer-floating point formats and the other way 
around 

• Different properties to be satisfied when rounding numbers during 
arithmetic and conversions 

• Floating point exceptions and their handling (NaN, ±∞ or zero) 
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IEEE 754 specifies four different formats to representing the floating point 
values: 

• Simple Precision (32 bits) 

• Double precision (64 bits) 

• Simple Extended Precision (≥43 bits but not too used) 

• Double Extended Precision (≥79 bits, usually represented by 80) 

1.2.2. Binary Interchange Format Encodings 

Representations of floating point data in the binary interchange formats are 
encoded in k bits in the following three fields ordered as shown in Figure 1: 

 

Figure 1. Floating Point format 

If a Simple Precision format is used the bits will be divided in that way: 

• The first bit (31st bit) is set the sign (S) of the number (0 positive and 1 
negative) 

• Next w bits (from 30th to 23rd bit) represents the exponent (E) 

• The rest of the string, t, (from 22nd to 0) is reserved to save the mantissa 

The range of the enconding biased exponent is divided in three sections: 

• Every integer between 1 and 2w-2 (being w=8 � 254(10) in order to 
encode the normal numbers 

• The value 0 which encodes subnormal numbers and the zero value 

• The reserved value 2w-1 (being w=8 � 255(10) to encode some special 
cases as NaN or ±∞ 

The exponent value has a bias of 127. It means the exponent value will be 
between -126 (00000000(2) and +127 (11111110(2) being zero at the value 
(01111111(2). 

Exponent and mantissa values determine the different number r cases that it can 
be had. 

• If 12 −= wE  and 0≠T , then r is NaN regardless of S 

• If 12 −= wE  and 0=T , then r is ±infinity according with the sign bit S 

• If 221 −≤≤ wE , then r is a normal number  

• If 0=E  and 0≠T , then r is a subnormal number 

• If 0=E  and 0=T , then r is ±zero according with S 
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The mantissa value is 23 bits long but it contains an implicit bit depending on the 
type of data (1 for normal numbers and 0 for subnormal). 

A number can be represented by different ways. As an example, the number 
0.11�25 can be described as 110�22 or 0.011�26. 

It is desirable to require unique representations. In order to reach this goal the 
finite non-zero floating point numbers may be normalized by choosing the 
representation for which the exponent is minimum. 

To cope with this problem the standard provides a solution. The numbers will be 
standardized in two ways: 

• Subnormal numbers will start with a zero an it has a form like 02·.0 XX±  

• Normal numbers MSB will be high ( EXX 2·.1± ) where 0<E<255 

Both normal and subnormal numbers MSB will be implied but taken into account 
in order to get the proper value in decimal. 

To calculate the value of the binary bit sequence in decimal this formula will be 
used: 

 ∑
=

+−
− ⋅=

22

0

)1(
22 2

k

k
kmM  (1) 

Finally the different format parameters for simple and double precision are 
shown in table 1: 

Table 1. Binary interchange format parameters 

 

1.2.3. Precision and Rounding 

The number of values which can be represented by floating point arithmetic is 
finite because it has a finite number of bits.  
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Figure 2. Floating Point values range 

As it can be seen in the figure 2, the standardized numbers range is described as 
the values between the higher exponent and mantissa value and the lower ones. 
The subnormal numbers are between zero and the lowest number (positive or 
negative) which could be represented by normal numbers. However, these 
ranges are discontinuous because between two numbers there are also infinite 
real ones. The quantities of numbers, which can be represented, are the same 
than in fixed point but at the expense of increasing the distance between 
numbers a higher range is achieved. 

The standard IEEE 754 requires that the operation result must be the same 
which would obtain if a calculation with absolute precision and rounded had been 
done. 

Four types of rounding are described by the standard: 

• Rounding to the nearest (to even number in case of tie) is the floating 
point number that is the closest to x.  

• Rounding to +∞ is the smallest floating point number (possibly +∞) 
greater than or equal to x. 

• Rounding to -∞ is the largest floating point number (possibly -∞) less 
than or equal to x. 

• Rounding to zero is the closest floating point number to x that is no 
greater in magnitude than x (it is equal to rounding to -∞ if 0≥x  and to 
+∞ if 0≤x  
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Figure 3. Rounding Modes 

The finite number of representing values and the rounding cause the appearance 
of errors in the result. This topic should be discussed when the results will be 
analyzed. 
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CHAPTER 2: 

CODE DEVELOPMENT 

Once the standard IEEE 754 has been explained it is time to start with the 
implementation of the code. First of all thinking about the different steps we 
should do to perform the operation required is compulsory. It is because of this 
that this section will talk about the procedure in addition/subtraction operations 
and a first look at the code design in block diagram way. 

A complete description will be done first and the subblocks will be explained 
immediately afterwards at successive subsections. 

2.1. 32-bits Floating Point Adder Design 

The main goal of this project is the implementation of a 32-bit Floating Point 
Adder with VHDL code. The format and the main features of the standard have 
been described before but nothing about the steps to achieve the target has 
been said. 

The first logical step is trying to specify what operations should be done to obtain 
a proper addition or subtraction. Once the idea will be clear the block diagram of 
the entire code will be designed. 

2.1.1. Addition/Subtraction Steps 

Following the established plan, the way to do the operations 
(addition/subtraction) will be set. 

This point will be also used to try to explain why these steps are necessary in 
order to make clearer and easier the explanation of the code in the next section. 

The different steps are as follows: 

1. Extracting signs, exponents and mantissas of both A and B numbers. As it has 
been said, the numbers format is as follows: 
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Figure 4. Floating Point Number format 

 Then the first step is finding these values. 

2. Treating the special cases: 

• Operations with A or B equal to zero 

• Operations with ±∞ 

• Operations with NaN 

3. Finding out what type of numbers are given: 

• Normal 

• Subnormal 

• Mixed 

4. Shifting the lower exponent number mantissa to the right [ ]21 ExpExp −  bits. 
Setting the output exponent as the highest exponent. 

A’s Exponent � 3   B’s Exponent � -1  Difference (A-B) � 4 

       Number B: 

            1 1 0 1 0 0 1    �    0 0 0 0 1 1 0 1 0 0 1 

5. Working with the operation symbol and both signs to calculate the output sign 
and determine the operation to do. 

Table 1. Sign Operation 

A’s Sign Symbol B’s Sign Operation 

+ + + + 

+ + - - 

+ - + - 

+ - - + 

- + + - 

- + - + 

- - + + 

- - - - 

6. Addition/Subtraction of the numbers and detection of mantissa overflow 
(carry bit) 
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Figure 5. Example 

7. Standardizing mantissa shifting it to the left up the first one will be at the first 
position and updating the value of the exponent according with the carry bit 
and the shifting over the mantissa. 

                0.1010101�23    �    1.010101�22 

8. Detecting exponent overflow or underflow (result NaN or ±∞) 

This is the way forward to proper operation. Obviously there are some parts 
which have to be discussed because there will be more aspects to be taken into 
account but this will happen in next sections where the code will be explained. 

2.1.2. Block Diagram 

The main idea has been described before. Once the different steps to follow have 
been explained it is time to start to think in the code implementation. 

In this subsection a first block diagram –as a draft- will be made. It still does not 
go into the most difficult points because in the next section, once a division of 
the project in three parts will be done, a complete description of each step will be 
performed. 

These three parts are as follows: 

• Pre-Adder Block 

• Adder Block 

• Standardizing Block 

They make reference to the three main processes of the project. First the 
numbers should be treated (pre-adder) in order to perform the operation 
properly (adder) and finally, standardizing the result according with the standard 
IEEE 754 (standardizing). 

In figure 6, a first approximation of the design has been done:  

 

 

 

 

 

 

 

Carry bit � 

 



Arturo Barrabés Castillo  

 - 16 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Block Diagram Code 
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2.2. Blocks Design 

In this section the main blocks described in the previous block diagram will be 
explained.  

The diagram has two branches: 

• The special cases one is quiet simple because only the combination of the 
different exceptions are taken into account. This will be explained in the 
next chapter over the code directly 

• The second one is more interesting. It includes the main operation of the 
adder. The different operations that should be done are divided in three 
big blocks: pre-adder, adder and normalizing block. 

During the next subsections a first description of each block will be done. A block 
diagram will be designed to support the explanation and facilitate the 
comprehension. Moreover it will be used to design the different blocks in VHDL 
which form the 32-bit Floating Point Adder. 

2.2.1. Pre-Adder Design 

The first subblock is the Pre-Adder. The goals are: 

1. Distinguishing between normal, subnormal or mixed (normal-subnormal 
combination) numbers. 

2. Treating the numbers in order to be added (or subtracted) in the adder block. 

• Setting the Output’s exponent 

• Shifting the mantissa  

• Standardizing the subnormal number in mixed numbers case to be treated 
as a normal case 

The block diagram which display this behaviour is shown (figure 7) in the next 
page. 

2.2.2. Adder Design 

Adder is the easiest part of the blocks. This block only implements the operation 
(addition or subtraction). It can be said the adder block is the ALU (Arithmetic 

Logic Unit) of the project because it is in charge of the arithmetic operations. 

Two functions are implemented in this part of the code: 

1. Obtaining the output’s sign 

2. Implementing the desired operation 

In this block two related problems should be taken into account. Firstly, the 
calculation symbol (+ or -) depends on itself and the A and B’s signs. Secondly, 
positive or negative numbers addition gives the same result. The problem will 
appear when the signs are different. In these cases the positive number will be 
kept in the first operand and the negative one in the second operand. All these 
problems will be explained in detail in next sections. 
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As it is normal the easiest block has the easiest block diagram (figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Pre-Adder Block Diagram 
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Figure 8. Adder Block Diagram 

 

2.2.3. Standardizing Design 

Finally the Standardizing Block takes the result of the addition/subtraction and 
gives it an IEEE 754 format. 

The procedure is as follows: 

1. Shifting the mantissa to standardize the result 

2. Calculating the new exponent according with the addition/subtraction 
overflow (carry out bit) and the displacement of the mantissa. 

The exponent value must be controlled when these steps are going to be made 
because it could be the number of positions the mantissa must be shifted are 
higher than the exponent value. In this case the result becomes subnormal. 
Another exception is when exponent and number of displacements are equal: 
mantissa will be shifted and exponent will be one. 
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As the previous subsections a block diagram with this description has been 
made. It can be seen in the figure 8 where the different steps to standardize the 
value are shown. 

 

Figure 9. Standardizing Block Diagram 
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CHAPTER 3: 

PRE-ADDER 

The first block is the Pre-adder. It is in the charge of distinguishing the type of 
numbers which are introduced as an input.  

Four different cases are possible: 

1. One of the different combinations which have been explained and labeled as 
special cases: NaN-Infinity, Infinity-Normal, Zero-Subnormal, etc. 

2. A two subnormal numbers introduction. 

3. A mixed option between normal and subnormal numbers. 

4. A two normal numbers introduction 

All this cases must be treated separately because of the process to achieve a 
successful operation must be different. 

3.1. Special Cases 

The adder is not always necessary to operate the numbers: there are some 
special cases which can be solved without it. 

As it has been said, in addition to normal and subnormal numbers, infinity, NaN 
and zero are represented in IEEE 754 standard. Some possible combinations 
have a direct result, for example, if a zero and a normal number are introduced 
the output will be the normal number directly. Time and resources are saved 
implementing this block. The n_case block has been designed to run this 
behaviour.  

3.1.1. n_case Block 

Both number A and number B are introduced as inputs. Vector S is one of the 
outputs and it contains the result when there is a special case, otherwise 
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undefined. Finally, enable signal enables or disables the adder block if it is 
needed or not. 

  

Firstly the possible number values are coded (zero, infinity, NaN, normal and 
subnormal numbers) in two signals outA and outB according to the mantissa and 
exponent value as it can be seen in table 2. 

 

Table 2. Data coded 

Exponent Mantissa Output Output Coded 

= 0 = 0 Zero 000 

= 0 > 0 Subnormal 001 

0<E<255 > 0 Normal 011 

= 255 = 0 Infinity 100 

= 255 > 0 NaN 110 

 

Once both A and B numbers have been coded the different signals combinations 
are taken into account. 

Sign, mantissa and exponent are calculated depending on outA and outB values. 
For example, if outA is a zero and outB is a normal number, the result is the 
normal number coded in outB.  

All the possible values are shown in table 3 and also in the VHDL code added. 
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Table 3. Output coded 

Sign Out A Out B Sign Output Output 

X Zero Number B SB Number B 

X Number A Zero SA Number A 

X Normal / Subnormal Infinity SB Infinity 

X Infinity Normal / Subnormal SA Infinity 

SA=SB Infinity Infinity SX Infinity 

SA≠SB Infinity Infinity 1 NaN 

X NaN Number B 1 NaN 

X Number A NaN 1 NaN 

            X: do not care  SA: Number A’s sign  SB: Number B’s sign  SX: Sign A or B (it is the same) 

 

Finally an enable signal has been made. If any normal or subnormal combination 
is had the enable signal is high, otherwise low. 
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Figure 10. n_case Simulation 
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3.2. Subnormal Numbers 

The operation using subnormal numbers is the easiest one. 

It is designed in just one block and the procedure is as follows: 

1. Obtaining the two sign bits and both mantissas 

2. Making a comparison between both A and B numbers in order to acquire the 
largest number 

3. Fixing the result exponent in zero 

3.2.1. n_subn Block 

Obviously Number A and B are the entries. The outputs are six. SA-MA and SB-
MB contain the sign and mantissa of A and B respectively. Comp signal is 
referred to the result comparison and EO is the result exponent. 

 

 

The code is so simply. Sign and mantissa of both numbers are obtained directly 
from the entries NumberA and NumberB. The outputs exponent EO is always 
zero because the input exponents are zero as well and Comp signal is high when 
A is bigger than B and low in the opposite case.  

The comparison operation does not take into account the sign of the numbers. If 
the result is negative or positive it will be calculated in the Adder block using SA, 
SB and Comp signals. 
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Figure 11. n_subn Entity 
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3.3. Mixed Numbers 

When there is a mixed combination of numbers (one subnormal and other 
normal) the subnormal one must have a special treatment in order to be added 
or subtracted to the normal one. 

The subnormal number treatment is going to be discuss in this block because 
once both numbers will be standardized the next block (normal numbers block) 
will be in charge of the operation between normal ones. 

 

Figure 12. Mixed numbers block diagram 

The work operation can be summarized in the following points: 

1. Finding out what the subnormal number is 

2. Counting the number of zeros the subnormal number has on the beginning 

3. Shifting the vector and calculating the new exponent 

This block is formed by three entities and each one is responsible for one of the 
points described. 

3.3.1. comp Block 

First block is comp entity. The block entries are both numbers and the outputs 
are the same numbers ordered as normal NA and subnormal NB. 

  

The code is not very extensive. A and B Mantissas are ordered according to the 
exponent: null exponent indicates what the subnormal number is and then this 
number is fixed in NB, leaving the normal one in NA. 
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Figure 13. comp Simulation 
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3.3.2. zero Block 

Counting zeros is the zero block target. The mantissa which is needed to shift is 
introduced as an entry in T vector and the output Zcount contains the number of 
zeros the mantissa has on the beginning which corresponds with the number of 
positions the vector must be shifted. 

  

A zero vector is created (Zero_vector) and compared with the T vector. The 
Zcount value depends on the number of matches. 
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Figure 14. zero Simulation 
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3.3.3. shift_left/shift Block 

Shifting is required to match the normal and mixed mantissas to perform the 
addition/subtraction properly. 

A logarithmic shift schematic as the figure 15 is used but with some differences. 

28 bits (1 implicit bit + 23 mantissa’s bits + 4 guard bits) is had in the Floating 
point Adder design then up to 28 positions must be able to shift. Because of the 
fact that this shifter consists of 5 stages: the first stage shift one position, the 
second stage 2, the third one 4, the fourth one 8 and the last one 16. Using any 
combination 32 positions are able to shift which is big enough to the design 
purpose. 

Both shifting left and shifting right are used in the Floating Point Adder 
implementation. In this chapter, the first one is explained but the code is quite 
similar to the second one. There is only a difference: the T vector order. If the 
bits order is changed from 0-27 to 27-0 a shifting right is achieved. 

 

Figure 15. Logarithmic shift 

The T vector and the number of positions to shift (Shft) are the entries of the 
shift entity. The shifted signal is set in S. 

 
 

The code is implemented as follows. A multiplexor has been designed and 
exported to this block. Afterwards a loop for has been used to generate the 
different 5 stages. Following the cascade design which has been shown before a 
32 positions logarithmic shifter is implemented. 
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Figure 16. shift_left/shift Simulation 

 

 



 32-bits Floating Point Adder 

 - 35 - 

3.3.4. norm Block 

Finally, the rest of the entities are all included in the norm block. It also performs 
the output exponent treatment. 

The inputs are the numbers A and B. Once the subnormal one has been shifted it 
is fixed in MB. The normal number is set in MA. 

 

 

The code could be divided in two parts. The first one implements the connection 
between the different blocks which the mixed numbers entity works with. The 
block diagram is coherent with the VHDL code. 

 

The second one is pretty interesting. As it has been explained before, negative 
prebiased exponents are not considered by the standard IEEE 754 but there is a 
possibility a normal and subnormal number may be operated. The number of 
positions the vector MB is shifted could be saved as a positive exponent but 
introducing a mark in the last guard bit which indicates the positive exponent is 
actually “negative”.  

So if a normal number with a quite small exponent is had it is possible that 
normal and subnormal numbers are able to be operated. 
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Figure 17. norm Simulation 
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3.4. Normal Numbers 

Two normal numbers are the most common operation mode because it 
represents the main operation without any exception. 

The procedure is as follows: 

1. Making a comparison between both A and B numbers and obtaining the 
largest number 

2. Obtaining the output exponent (the largest one) 

3. Shifting the smallest mantissa to equal both exponents 

  

Figure 18. Normal numbers block diagram 

3.4.1. comp_exp Block 

The comp_exp entries are the two introduced numbers again. There are several 
outputs: SA and SB are the sign of A and B respectively, EMax is the output 
exponent, MMax the largest mantissa, Mshft the mantissa to shift, Dexp the 
number of positions Mshft must be shifted and Comp indicates what number is 
the largest one. 

 

 

Exponents and signs are obtained from the introduced numbers directly. Once 
the exponents are fixed in EA and EB signals, these values are used to determine 
the largest number: if A is larger than B or number B’s LSB (negative exponent 
mark) is high, Comp will be ‘1’, otherwise ‘0’. 

Using this signal the output exponent could be determined. 
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Next step is determining the difference between both exponents. Once more time 
comp signal fixes the largest exponent and determines the subtraction order. 

If B’s LSB is high a negative exponent is had. In this case EA and EB are added. 

 

The mantissa to shift corresponds with the smallest number (using comp again). 

Finally a maximum value is set if the difference between exponents is greater 
than 28 which is the maximum number of bits that the mantissa has. 
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Figure 19. comp_exp Simulation 
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3.4.2. shift Block 

A shifter is needed to match the exponents. The entity is the same than in the 
mixed case. The vector T is the input which contains the mantissa to shift, shft 
fix the number of positions to move and S is the output with the result of the 
operation. 

 
 

The code is quite similar. Only a part is added because it is enough to see its 
operation. 

 

Changing the order of the vector, a displacement in the other direction is 
achieved. The simulation is not required because the result is the same but on 
the right. 

3.4.3. n_normal Block 

The n_normal block includes the two blocks which have been explained above. 
The entries are NumberA and NumberB and the outputs are both sign A (SA) and 
sign B (SB), the result exponent (EO), the Comp signal and the two mantissas 
(MA and MB). 
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The VHDL code implements just the interconnection between the different blocks. 

Comp_exp fix the mantissa which has to been shifted and the number of 
positions it must be displaced. 

Shift block collects these two signals and gives the mantissa in order to be 
operated in the next block: the Adder block. 
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Figure 20. n_normal Simulation 
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3.5. Pre-Adder  

Finally a complete Pre-Adder block diagram will be shown and explained. As it 
could be seen there are some blocks which are not discussed. These blocks are 
4: 

1. The first one is so important: Selector block 

2. A demultiplexor (demux) to route the signal in the correspondent block 

3. A multiplexor (mux_ns) to choose between the mixed numbers or the normal 
ones 

4. A multiplexor (mux_adder) to choose between the normal or subnormal 
numbers 

 

 Figure 21. preadder block diagram 

These blocks are going to be grouped in two different chapters. First one includes 
only the selector block which is more important and has more complexity. 

The second group contains the different multiplexors and demultiplexors. They 
are going to be treated all together because of code’s simplicity. 

3.5.1. selector Block 

Selector block prepares the numbers: the entries are shorter than outputs 
because the implicit bit (high if the number is normal and low in subnormal’s 
case) and the guard bits are added in this block. Enable signal enables this block 
(and therefore the entire preadder block) when we do not have a special case. 

The outputs are the two numbers with the added bits and the e_data signal 
which distinguish between normal, subnormal and mixed numbers. 
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If enable signal is high it means we do not have a special case. Then the outputs 
signals NA and NB are made: first the sign and exponent bits are placed in its 
positions. 

Next step, the implicit bit is fixed according with the exponent value. The 
mantissa and the guard bits are added too. 

 

 

 

 

 

 

 

 

If the exponent is bigger 

than 0 � Normal Number  

Implicit bit � ‘1’ 

If the exponent is 0 � 

Subnormal Number  

Implicit bit � ‘0’ 



Arturo Barrabés Castillo  

 - 46 - 

Finally the e_data signal is fixed as follows: 

1. Subnormal numbers � e_data := “00” 

2. Normal numbers � e_data := “01” 

3. Mixed numbers � e_data := “10” 
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Figure 22. selector Simulation 
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3.5.2. MUX/DEMUX Blocks 

The operation of the demux demultiplexor is routing the A and B numbers to the 
subnormal, normal or mixed block according with the e_data value. 

NumberA, NumberB and the enable signal e_data are the entries and the outputs 
are 3 pairs of signals but only one pair is activated in each time. The typical 
demultiplexor’s behaviour. 

 
 

 

 

The  mux_ns multiplexor’s target is selecting which signal must be introduced in 
the normal numbers block: normal numbers or a standardized numbers from the 
mixed numbers block. 
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The entries are the two pairs of numbers and e_data signal and the outputs are 
the A and B numbers according with e_data value. 

 

 

 

 

 

Finally mux_adder multiplexor is in charge of selecting which data are going to 
be introduced in the adder. 

The entries are the comp signal, the two mantissas, signs and exponents and all 
of them multiplied by two: one for the subnormal numbers and another for the 
normal/mixed numbers. The output is one of the pair’s members according with 
e_data. 
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3.5.3. preadder Block 

Finally the preadder block is going to be explained. The special cases block is not 
considered in this block diagram because it will be added next to adder block in a 
complete block diagram. 

NumberA, NumberB and enable are the inputs. A and B sign (SA and SB), the C 
signal, output’s exponent Eout, and both MAout and MBout mantissas are the 
outputs of the design. 

 

 



 32-bits Floating Point Adder 

 - 51 - 

The components description is shown in this part of the code. Normal numbers 
block (n_normal), subnormal numbers block (n_subn), mixed numbers block 
(norm), the multiplexor and demultiplexors (mux_ns, mux_adder and demux) 
and the selector entity are added there. 

 

 

 

Finally the connection between the different components is described in the 
second part of the code. 
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 Figure 23. preadder Simulation  
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CHAPTER 4: 

ADDER  

This chapter will deal with the adder and the standardizing block. The first one is 
in charge of operating the numbers which have been prepared in the Pre-adder 
block. The second one will standardize the result according with standard IEEE 
754. 

The block procedure is as follows: 

1. Calculating the output’s sign according to the sign numbers and the operation 
symbol 

2. Addition/Subtraction of the both A and B numbers 

3. Standardizing the result as IEEE 754 standard says 

4. Grouping sign, exponent and mantissa in a single vector 

The result is reached and the last step is multiplexing this value with the other 
one obtained as a special cases event explained in previous chapters. 

4.1. Adder 

The adder is a fundamental piece of the design because it implements the 
addition/subtraction operation, main purpose of the 32 bit Floating Point Adder. 

The Adder block is composed by two entities: signout and adder. Signout is 
responsible for the sign operation and the adder is the adder strictly speaking.  

4.1.1. Signout Block 

Signout entity has six inputs: numbers A and B, both signs SA and SB, signal 
A_S which indicates if we add or subtract and the bit Comp (high if A is greater 
than B otherwise low). 
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The outputs are the two numbers Aa and Bb, the outputs sign SO and the signal 
AS that has the same function than A_S: determine the sign of the operation. 

 
 

Three different parts are visible in the code.  

Firstly the outputs sign will be determined using the bits A_S, Comp, SA and SB, 
A’s sign and B respectively.  

 

An exclusive OR operand performs the function that is shown in table 4. 

Table 4. SB xor A_S 

A_S SB SB_aux 

+ + + 

+ - - 

- + - 

- - + 

Basically, it does the mathematical combination between the operation’s symbol 
and the B number sign. Once the “new” B’s sign is found out, the outputs sign 
SO is determined with the aid of SA and the bit Comp. 

Table 5. SO determined 

SA SB_aux Comp SO 

+ + 0 + 

+ + 1 + 

+ - 0 - 

+ - 1 + 

- + 0 + 

- + 1 - 

- - 0 - 

- - 1 - 

First of all, the two vectors A and B are reordered according with their original 
value (remember the numbers have been exchanged –or not- in preadder block 
when the exponents have been made equal) 
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When A is greater than B, the outputs sign SO will be equal to A’s sign, SA. 
Otherwise, if B is greater than A, the output will keep the sign of the number B 
(the “new B’s sign” one, SB_aux). 

Secondly, if both SA and SB signs are equal is realized that both number A and 
number B will be added with the only difference of the sign. On the other hand, if 
SA and SB are different, what number is the negative one will be determined in 
order to simplify the adder implementation. 

 

 

As it is seen in the code, the negative number when we have two different signs 
always will be in the vector B called Bb setting the positive one in vector Aa. In 
another way it does not care: Aa will be A and Bb will be B. 

Finally a bit indicating when a subtraction is produced is needed in order to 
achieve a properly operation in the adder. If A and B signs are equal that means 
an addition will be calculated (AS low). In the other hand, if A and B are 
different, the number A Aa and the negative number B, which had being moved 
to the vector Bb, are going to be subtracted (AS high). 
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 Figure 24. signout Simulation 
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4.1.2. Adder Block 

The Adder block is in charge of the addition/subtraction operation. The two 
numbers A and B and the bit A_S which indicates the operation’s symbol are the 
entries. The outputs are the result vector S and the Carry bit Co which shows if 
there was an overflow. 

  

First of all the type of adder will be explained. A Carry Look Ahead structure has 
been implemented. This structure allows a faster addition than other structures. 
It improves by reducing the time required to determine carry bits. This is 
achieved calculating the carry bits before the sum which reduces the wait time to 
calculate the result of the large value bits. 

 

 

Figure 25. 1-bit Carry Look Ahead Structure 

The implementation of the Carry Look Ahead structure is shown at the figure 
above. The idea is to obtain the carry generation and the carry propagation 
independently of each bit in order to obtain last carry faster. 

The code has been designed implementing a 1-bit CLA structure and generating 
the other components up to 28 (the number of bits of the adder) by the function 
generate. Before that the A_S signal is used to determine if the second operand 
should be in complement to 1 (subtraction) or not (addition) using an exclusive 
or gate. 
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Finally the Co bit is fixed by the carry of the last component. 
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 Figure 26. adder Simulation 
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4.1.3. Block_Adder Block 

Finally the Block_Adder block joins both signout and adder entities to implement 
the complete adder. The inputs are the signs and the value of A and B (SA-SB 
and A-B respectively), the bit Comp and A_S. Moreover the outputs are the 
result S, the carry CO and the outputs sign SO. 

 

 

The code is quite brief. Basically the connection of the different blocks is done in 
this block. 
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The most interesting part is on the bottom: if a subtraction operation is done and 
the outputs sign is set (that means negative number is greater than the positive) 
that means a complement to 2 is needed over the result because as it has been 
explained the negative number always is moved to the vector B and the result is 
“negative” (C to 2) when truly it is not. An example is shown: 

Table 6. Example correct operation 

SA A SB B A_s SO Result 

- 101 + 100 + - 001 

At the table 6 it is shown the correct and theoretical operation of the adder. The 
signs are not taken into account because they have their own bits. The result is 
1-decimal positive with SO negative. 

Table 7. Example wrong operation 

Aa Bb AS SO’ Result 

100 101 - - 111 

At table 7 the operation of the adder is shown without the complement to 2 part. 
The negative vector is move to Bb then a negative binary result (-1) is obtained 
not being correct according to the IEEE 754 standard. AS is recalculated in 
signout according to the sign values. Then if AS (subtraction) and SO (negative) 
are set a complement to 2 is necessary to reach a correct result. 

Note the complement to 2 is not necessary when we have two negative numbers 
because it has been considered like an addition of two positive numbers. 

Finally the carry value is also corrected in the same circumstances: when a 
subtraction is operated and we have a negative number at the output it will 
always have a carry out high. If the complement to 2 is needed that implies a 
carry low to obtain a proper result. 
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 Figure 27. Block_Adder Simulation 
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4.2. Standardizing Block 

The Standardizing block, as its name suggest, is responsible for displaying the 
addition/subtraction operation value according to the IEEE 754 standard. 

This block is composed of four entities. Shift_left and zero blocks have been 
explained in the previous chapter. Round and vector are the two new ones. 
Basically they are in charge of dealing with the result obtained from the adder 
and showing it in the same format as the numbers had been introduced  

4.2.1. round Block 

Round block provides more accuracy to the design. Four bits at the end of the 
vector had been added in the Pre-Adder block. Now it is time to use these bits in 
order to round the result. 

1 0 0 1 0 0 0 � 2 4                                       1 0 0 1 0 0 0             � 2 5 

1 1 0 1 0 0 1 � 2 1           0 0 0 0 1 1 0 1 0 0 1 � 2 5 

 

This block has only one input and one output. The input is the vector Min and the 
output Mout. Note Min is larger than Mout (27 bits against 22). The reason is Min 
contains the implicit and round bits that will be treated during the round code 
execution. 

  

The process to round is chosen arbitrarily: if the round bits are greater than the 
value “1000” the value of the mantissa will be incremented by one. Otherwise 
the value keeps the same value. 

 

4.2.2. shift_left/zero Block 

Both shift_left and zero blocks are completely reused from the mixed number 
block. It has been explained in the last chapter and it is not going to be 
commented again. 

 

Guard Bits 

 



Arturo Barrabés Castillo  

 - 66 - 

 

 

Figure 28. Round Simulation 
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4.2.3. block_norm Block 

The block_norm implement the standardizing function. It is composed by the 
entities signout, shift_left and zero_counter. The entries are the result’s mantissa 
(MS) and exponent (ES) and the add’s carry Co. The outputs will be the 
standardized result (its mantissa (M) and exponent (E)). 

 

 

The first part of the code implements the connection between the different 
components which compose the block. Zero, shift_left and round are connected 
as shown in the code and the block diagram. 

 

The second part of the code refers to the exponent treatment. Three different 
cases have been taken into account: 

1. If the exponent is larger than the number of zeros (number of positions the 
vector should be shifted) it means the number is normal and the standardized 
exponent will be the exponent minus the positions shifted plus the carry. 

2. If the exponent is shorter than the number of zeros it means the output will 
be subnormal, only the value which marks the exponent could be shifted and 
the final exponent will be zero. 

3. Last case referred when the exponent is equal to the number of zeros. On this 
occasion the vector will be shifted the number of positions the exponent 
marks (or the signal zero_counter) and the result will be normal with 
exponent one. 
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Figure 29. norm_block Simulation 
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4.2.4. vector Block 

This block has an easy function: regrouping the sign, exponent and mantissa in a 
single vector to be consistent with the format adopted for data entry. 

It has three inputs: sign S which it comes from the adder block, mantissa M and 
exponent E. The output is the vector N which keeps the format of numbers A and 
B (the main entries of the system). 

 
 

The code is so simple. Sign, mantissa and exponent are set in the proper position 
as follows: 

 

Table 8. Bit positions 

31 30..23 22..0 

Sign Exponent Mantissa 

 

Note this entity will be out of the standardizing block because it uses signals 
from two different blocks. However it is part of the standardizing process and it is 
clearer to be explained in this chapter.  

Two simulations are added: the first one test the entity operation and the second 
one perform the behaviour when it is joined to the block_norm entity. 
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Figure 30. vector Simulation 
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Figure 31. block_norm + vector Simulation 
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CHAPTER 5: 

32-BITS FLOATING 

POINT ADDER 

Finally all the different entities and sub-blocks has been described and explained. 
In this chapter the blocks will be joined in order to test totally the Floating Point 
Adder. The procedure will be as follows:  

1. n_case Entity sort the data type according with the standard IEEE 754 and 
enable the adder if it is needed to operate the numbers. Otherwise (special 
cases) the result is done by it. 

2. If the numbers are normal, subnormal or a mix, the Pre-Adder sub-block 
deals with the treatment of the numbers in order to be added / subtracted. 

3. The Adder Block adds or subtracts the two numbers given 

4. It is time to standardize the result according with the standard: shifting the 
mantissa and recalculating the new exponent. 

5. Finally the result will be choose between the special case or the operated one 
depending on the input values 

Two more entities will be explained in this section: the multiplexor which takes 
care of the last step of the list and the fpadder grouping all this points and 
making them work together. 

On this occasion, the simulations will not be added to the code. Being the 
complete Floating Point Adder it is considered make another point in this chapter 
to demonstrate the proper functioning. 

Moreover a table will be used to collect the different binary values, convert to 
decimal and as similar or different the results are. 
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5.1. Floating Point Adder 

As it has been said, this first section will contain two entities: the multiplexor 
that is in charge of setting the correct result in the output (special cases or 
operated result) and the entity which groups all the blocks. 

Continuing with the format used before, the ports and the block diagram are 
explained at the beginning and immediately afterwards the behaviour. 

5.1.1. Mux_fpadder Block 

The multiplexor is not so complicated. It has three inputs: N1, N2 and enable. 
The first signal refers to the n_case result and the second one to the vector 
obtained in the adder block. Enable decides which one will be at the output. 

Finally, the output is Result which contains the 32 bits (Sign, exponent and 
mantissa) result. 

 

 

The code is pretty simple. If enable is high it means the numbers were normal, 
subnormal or mixed and then the vector which comes from the adder is the 
correct result. Otherwise, if enable is low, a special case combination is had and 
the block n_case is who has the proper value. 

 

5.1.2. fpadder Block 

Finally, the entire Floating Point Adder is designed. The last entity is fpadder 
which joins all the different blocks previously described.  

The inputs are both NumberA and NumberB numbers and the operand A_S. 
Obviously, the output is the final result of the operation according with the 
standard. 

 

On the next page a complete block diagram is shown: 
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Figure 32. Block Diagram 
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The first part of the code includes all the component declarations. As it can be 
seen all the main blocks are here: n_case, preadder, block_adder, norm_vector 
(norm + vector blocks) and mux_fpadder. 

 

 

The second part of the code is responsible for connecting the different blocks 
properly as it is represented in the block diagram. 
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5.2. Simulations 

At this point the simulations to test the operation will be comment. As it has 
been done before four different cases could happen: special case, normal, 
subnormal or mixed numbers.  

 All the different possibilities must be tested and this is the reason why the 
different data types will be treated separately. 

The procedure will be as follows: 

1. Enough different cases for each data type to demonstrate the correct working 
will be taken into account. The binary values of the entries and the output will 
be grouped in a table. 

2. Using the simulation the result will be obtained and added to the table. 

3. Decimal value of the numbers and the result will be calculated with the 
formula which had been explained at the standard IEEE 754 chapter. 

4. Simulation value will be compared with the arithmetic value in order to see as 
similar or different the numbers will be. 

The discussion about the accuracy of the 32-bit Floating Point Adder and the 
general standard IEEE 754 will be carried out in the next chapter. 

5.2.1. Special Cases 

Recovering the table added in the second chapter, 8 different cases are possible.  

Zero-NumberX, NaN-NumberX and Normal/Subnormal-Infinity cases can be 
taken into account only one time (Zero-NumberX or NumberX-Zero tests the 
same result). Then the simulation will contain 5 combinations. 

Table 9. Special Cases combination 

Sign Out A Out B Sign Output Output 

X Zero Number B SB Number B 

X Number A Zero SA Number A 

X Normal / Subnormal Infinity SB Infinity 

X Infinity Normal / Subnormal SA Infinity 

SA=SB Infinity Infinity SX Infinity 

SA≠SB Infinity Infinity 1 NaN 

X NaN Number B 1 NaN 

X Number A NaN 1 NaN 

            X: do not care  SA: Number A’s sign  SB: Number B’s sign  SX: Sign A or B (it is the same) 
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Figure 33. Special Cases Simulation 
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The results are collected in the next table: 

Table 10. Special Cases Results 

 
           SX: Sign Number X EX: Exponent Number x MX: Mantissa Number X XS: Result X(10: Base-10 Number 

As it can be seen the results are consistent with the theoretical explanation. 
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5.2.2. Normal Numbers 

n_case block is only a combination between the entries and no more blocks are 
involved in this operation. Normal numbers have more complexity. 

In this section the blocks which are responsible for normal numbers are tested.  

 

Figure 34. Normal Numbers Simulation 
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5.2.3. Subnormal Numbers 

Turn to the subnormal numbers. Different possibilities with the sign of the 
numbers and the operation symbol will be treated in order to test more 
combinations. 

 

Figure 35. Subnormal Numbers Simulation 
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5.2.4. Mixed Numbers 

Finally, the mixed numbers. The other combinations will be tried. 

 

Figure 36. Mixed Numbers Simulation
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CHAPTER 6: 

RESULTS 

Finally in the last chapter the results, they have been obtained before, will be 
evaluated. 

Firstly a theorical and brief introduction about floating point errors is compulsory 
because this information is important to understand the behaviour of the results 
achieved. 

At last, the report will finished with a conclusion where the main goals of the 
adder will be discussed. 

6.1. Errors 

There is a lot of literature which speaks about errors in a floating point system. 
The most of these errors are produced in the conversion between the internal 
binary format and the external decimal one or conversely. 

Usually the computers use a fixed quantity of memory to represent each sort of 
number. This representation makes the electronic design easier but it involves 
rounding and it can lead to erroneous values. 

This project focuses on the design of the binary floating point adder. Hence this 
type of errors will not be taken into account unless when a decimal 
representation with MATLAB is used (we will see it later). 

The floating point format is discontinuous. It means not all real numbers have 
representation and this is another error source especially important with high 
numbers where the gap between them is largest. 

6.1.1. Gap between Numbers 

Once again, the real numbers could have an infinite number of digits and the 
floating point format is used to represent it with a computer.  

The accuracy of the number is represented by the number of digits of the 
mantissa. A 24bits mantissa could be represented by 7 decimal digits.  
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In numerical analysis, errors are very often expressed in terms of relative errors. 
And yet, when errors of “nearly atomic” function are expressed, it is more 
adequate and accurate to express errors in terms of the last bit of the significant: 
the last significant weight give us the precision of the system. Let us define that 
notion more precisely. William Krahan coined the term ulp (unit in the last place) 
in 1960 and its definition was as follows: 

Ulp(x) is the gap between the two floating point numbers nearest to x, even if x 

is one of them. 

Mathematically the ulp could be defined as follows: 

 
epulp +−= β   (2) 

The value in our system will be (when e=emin) 
7124 101921.12 −+− ⋅==ulp  

As it has been said, the floating point format is discontinuous that means not all 
the real numbers have a representation in this format. The ulp represents the 
step between two consecutive numbers. Using MATLAB with p=6, β=2 and 
0<e<3 (simplifying results) a representation of this discontinuous format has 
been obtained: 

 

Figure 37. ulp representation 

The ulp is doubled as the exponent increases by one because of the base (power 
of two).  
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Figure 38. ulp increase 

6.1.2. Rounding or Truncation 

To represent a real number in a computer an adequate floating point number 
must be chosen. At first glance it seems the nearest one will be the best choice 
but sometimes this will not be an option unless all the number digits are known. 

We need a procedure which requires only one digit more to represent the 
number. Using this condition rounding and truncation are our two possibilities. 

Truncation consists of chosen the m more significant bits/digits of a number x. 
On the other hand, rounding needs to know the next bit/digit too and according 
with it add one to the LSB/last digit (5, 6, 7, 8 and 9 cases) or not (1, 2, 3, 4). 

We use an example to find out what method is better and why. 

Rounding (2/3) = (0.666….)  � 0.667 

Truncation 2/3) = (0.666….)  � 0.666 

If a mantissa of 3 bits is considered we have a maximum truncation error when 
the number ends with a periodic 9 as 0.66699999. The error is 0.999�10-4≈10-4 
which matches up with the bit error (or the ulp). 

The maximum rounding error is produced when the numbers have a decimal part 
ended in 4 plus infinity 9 digits as 0.66649999. The error is calculated rounding 
the maximum error 4.9999�10-4≈5�10-4. Then the relative error is equal to half 
the last digit (½ulp). 

In conclusion we have demonstrated the relative error caused by truncation is 
equal to the ulp and the rounding one ½ulp. 

As it has said the error increases according with the exponent of the number. 
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6.1.3. Floating Point Addition 

Finally a brief comment about the floating point addition/subtraction will be done. 

The basic arithmetic operations have their equivalent in floating point format. 
The goal is noting these operations always have errors. 

Let see an example: 

Being x=1867=0.1867�104 and y=0.32=0.3200�100, then: 

yxflyxfl +=≠⋅=⋅+⋅=+ 32.1867101867.0)10000032.0101867.0()( 444  

The floating point representation is correct but anyway we have an error. A 
mantissa shifting is necessary to add two numbers with different exponents and 
we can lose some “information” during the procedure. 

6.2. Results analysis 

Once a small introduction to the errors is done we are going to use the values 
from last section tables. 

To show the result we have implemented a simple program using MATLAB. First, 
inside the for loop we calculate the mantissa value and set its value in Aux. Then 
according with the data type (normal or subnormal) we use the appropriate 
formula for each case.  

 

6.2.1. Subnormal Numbers 

In the table 14 we have grouped all the results obtained during a new simulation 
with subnormal numbers. 

As it can be seen the relative error is always zero. The error for a subnormal bits 
is ( ) 4512623 104012.12 −−− ⋅= . The number is small enough. In addition there is not any 
shifting and the double precision format of MATLAB provides this great accuracy. 

 

 

 

 

Mantissa size 

Mantissa value 

Normal or Subnormal? 

Subnormal Number 

Normal Number 
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Table 11. Subnormal Numbers Results 
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6.2.2. Mixed Numbers 

Table 12. Mixed Numbers Results 
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The smaller the number, the greater the relative errors we have because each 
time, we are nearer to the bit error value. 

 

Figure 39. Relative error 

The reason to get this error is that using mixed numbers we have to shift the 
subnormal number, first to standardize it and later to make equal the exponents 
causing a big displacement because the other number is normal and its exponent 
will be greater.  

6.2.3. Normal Numbers 

Finally the normal numbers turn. The results have been grouped in the table 13.  

The relative error is not so big in most cases but there are two values where it 
increase so much. Two possible causes: the first one, as we have said, the 
greater the number, the greater the error we can have. The second one, as in 
the mixed numbers, we must shift one of the numbers losing some bits in the 
operation and increasing the error if the exponents are very different. 
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Table 13. Normal Numbers Results 
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6.3. Conclusions 

The importance and usefulness of floating point format nowadays does not allow 
any discussion. Any computer or electronic device which operates with real 
numbers implements this type of representation and operation. 

During this report I have tried to explain the operation and benefits of using this 
notation against the fixed point. The main feature is that it can represent a very 
large or small numbers with a relatively small and finite quantity of memory. 

The clear utility of the floating point format was the main reason why I decide to 
do this work. The other reason was the possibility of implementing it in VHDL. I 
could work on something that I like as programming and design something which 
has a current use. What is the result? 

The reached goal is the implementation of a 32bits adder/subtractor based on 
floating point arithmetic according with the IEEE 754 standard.  

This design works with all the numbers defined by the standard: normal and 
subnormal. Furthermore, all the exceptions are taken into account as NaN, zero 
or infinity. 

The VHDL code has been implemented so that all the operations are carried out 
with combinational logic which reaches a faster response because there are not 
any sequential devices as flip-flops which delays the execution time. 

If I have to defend this project I will appoint two features. 

The first one deals with type of architecture used. For example, the adder or the 
shifter is implemented with a known structure. Predetermined operations as 
addition (+) or shifting (SLL or SLR) are allow but I decided using a generate 
function and designing my own device which improves the time response. 

Finally the mixed numbers option. IEEE 754 does not say anything about the 
operations between subnormal and normal numbers. I have designed a trick 
which allows the operation. I standardize the subnormal number and set a “false 
positive subnormal exponent” (truly it is negative but IEEE 754 does not allow 
negative exponent prebiased). Adding the normal exponent and the false 
subnormal one I know the number of positions I must shift the mantissa and 
then the operation is done properly. 

Obviously the design is not perfect. The accuracy is not optimal. In the future 
using a double precision format would be an improvement. The execution time 
would increase but the accuracy also would be better. 

Maybe a complete FPU design would be another good improvement. 
Multiplication and division have an easier implementation than the 
addition/subtraction and it would do the project more complete. 

Finally using the code over a FPGA and testing it physically over a board would 
be the last aim which would leave the design completely finished. 
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ANNEX: 

VHDL CODE 
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PRE-ADDER BLOCK: n_case Block 
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PRE-ADDER BLOCK: Select Block 
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PRE-ADDER BLOCK: Normal Numbers: Comp_Exp Block 
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PRE-ADDER BLOCK: Normal Numbers: Shift Block: MUX Entity 
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PRE-ADDER BLOCK: Normal Numbers: Shift Block 

 

 



 32-bits Floating Point Adder 

 - 103 - 

PRE-ADDER BLOCK: Normal Numbers: n_normal Block 
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PRE-ADDER BLOCK: Subnormal Numbers: n_subn Block 
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PRE-ADDER BLOCK: Mixed Numbers: Comp Block 
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PRE-ADDER BLOCK: Mixed Numbers: Zero Block 
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PRE-ADDER BLOCK: Mixed Numbers: shift_left Block 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Arturo Barrabés Castillo  

 - 108 - 

 

 

PRE-ADDER BLOCK: Mixed Numbers: norm Block 
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PRE-ADDER BLOCK: MUX/DEMUX 
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PRE-ADDER BLOCK: preadder Block 
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ADDER BLOCK: Signout Block 
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ADDER BLOCK: Adder Block: CLA Entity 
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ADDER BLOCK: Adder Block 
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ADDER BLOCK: Block_Adder Block 
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STANDARDIZING BLOCK: Round Block 

 

STANDARDIZING BLOCK: Vector Block 
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STANDARDIZING BLOCK: Block_norm Block 
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STANDARDIZING BLOCK: norm+vector Block 
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32bit Floating Point Adder BLOCK: MUX 

  

32bit Floating Point Adder BLOCK:  
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