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Abstract
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Since its genesis, quantum mechanics has proved to be a very accurate model for predicting the behavior
of the world below the nanoscale. However, crucial breakthroughs in technology were needed in order to
be able to effectively access and manipulate such small magnitudes.

During the last twenty years, the field of quantum information processing has experienced a growing
interest, in its many variants, both theoretically and practically. Despite being still at a very basic stage,
expectations are high.

The uniqueness of quantum phenomena (superposition of states, creation of entanglement, etc.) have
no classical analogue and allow novelties such as another paradigm of computation, more secure com-
munications, quantum teleportation, quantum dense coding, etc. which are presented and analyzed
here.

The aim of this Thesis is to present in a unified way the main mathematical methods used in quantum
information processing, as well as the state of the art of their corresponding technological implementa-
tions.

Our contributions are based in making a self-contained presentation; seeking completeness, that is,
treating the most relevant fields of research involved, focusing on their relations; and picking the most
relevant, insightful references, given the quantity of literature produced in this field. We also discuss
some of the fundamental questions that remain still unanswered, and which are the current lines of
research to shed light on them.
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Introduction

Since its genesis, quantum mechanics has been a very accurate model for the description of reality
below the nanoscale: molecules, atoms and subatomic particles behave according to quantum
physics in a very exact manner. Probability also plays a main role in quantum mechanics and
some extraordinary, counter-intuitive phenomena arise when one considers a world described
by quantum physics. For example, an atom can be in a superposition of several energy levels,
a single photon can be traveling on two different paths at the same time; a particle can pass
through a potential barrier with non-zero probability (tunnel effect); a measure performed on
a quantum system, in general, disturbs it, etc. But, perhaps, the quintessential quantum effect
would be entanglement: a measure performed on a system can affect the state of another system,
regardless of their distance. These effects have no classical analogue. In fact, classical physics,
which comprises any theory that is not quantum, including relativity, is deterministic, and it has
been proved to be highly accurate at larger scales.

Yet this convenient partitioning of the world between quantum and classical could be a myth.
Some physicists defend that the world is quantum at all scales, and classical physics is just a useful
approximation: the world looks classical because the complex interactions an object endures with
its environment tend to conceal quantum effects from our view. Over the past several years,
experimentalists have observed quantum effects in a growing number of macroscopic systems1.

In the last 20 years, technological breakthroughs have made it possible to make use of these unique
phenomena. Despite still being at an embryonic stage, technology will soon be endowed with new
tools and resources, due to the possibility of constructing, in the near future, physical realizations
of systems which exploit quantum features. Being developed within a rich interdisciplinary
context, from as varied fields as theoretical and experimental quantum mechanics, quantum field
theory, information theory, computer science or cryptography, it has become a new and active
field of interest.

The vast quantity of literature available nowadays has required an effort to summarize, as well
as the need to pick up the most relevant bibliographical sources: Classical references, such as
[48, 53], or more recent publications, such as [5, 7, 8, 36], representing the state of the art
of the current technology, are the sources that have been most widely consulted. Each chapter

1For example, the prestigious magazine Scientific American features this month at front cover the article Living

in a Quantum World : Experimental evidence, from the entanglement created among the 1020 atoms of a grain of
salt, to the achievement of a mechanical springboard of 40 microns long that oscillates at two frequencies at once
(a huge quantum harmonic oscillator) is given. Moreover, quantum effects need not be created in a laboratory:
European robins (Erithacus rubecula) have a molecule that contains two entangled electrons with total zero spin;

when it absorbs light the electrons separate and become susceptible to external influences such as Earth magnetic
field. This could be the secret of the extraordinary sense of orientation such birds possess.

1



2 INTRODUCTION

contains a brief introduction which includes general reference sources, whereas sources appearing
in a specific section concern only that part.

Although one encounters high similarity among works concerning the same subject, we have
oriented the exposition in a comprehensive, yet straightforward manner. Some parts are treated
in a top-down scheme: we present the model and then we analyze it, as one usually would do
in mathematics; but some other parts have required a bottom-up analysis in order to derive the
model and justify its choice, which is a more physical or technological approach.

The aim of this project is to present in a unified way the main mathematical methods used in
quantum information processing, as well as the state of the art of its corresponding technological
implementations. The contribution we pursue is the interconnection within our reach of all
the different subjects we treat here, to make an effort to relate the different fields quantum
information processing comprises and to give a general overview of where currently are the
frontiers of quantum information processing, both theoretical and practical.

This project has been organized in the following parts, in order to treat the subject in the most
self-contained possible way:

In the first part, we introduce the mathematical concepts which are needed to describe quantum
systems, as a foundation for the remaining chapters. These subjects include Hilbert spaces and
classical information theory.

In the second part, we focus on the physical concepts that are used to describe quantum mechan-
ics. We begin with introducing the postulates, first with an informal discussion and then with an
axiomatic description. We move to quantum probability, and analyze why classical probability
does not suffice, as well as the consequences it implies: some relevant impossibilities and novelties
due to quantum effects. Finally, we end this part with an introduction to quantum field theory,
as a bridge from the mathematical model to the experiments that we discuss in the last part.

The third part of the project contains four important areas of quantum information processing.
We begin with quantum computation, continue with quantum entropy and quantum informa-
tion, move to quantum cryptography and end with quantum coding. At the end of each of
these chapters we give a broad view of the current research lines: In which algorithms can a
quantum computer outperform a classical one; the problem of characterization of entanglement;
the possibility of certifying a sequence of numbers is random via quantum correlations; and the
use of degenerate quantum error correcting codes, which need not completely reveal the error
syndrome in order to perform a correction.

The last part focuses on some of the physical technologies that are used today to manipulate
quantum bits and produce interaction between them. We highlight quantum optics, cavity
quantum electrodynamics and ion traps, together with the Jaynes-Cummings model to analyze
them. At the end, we present the realization of the Cirac-Zoller CNOT gate, which creates
entanglement between two qubits and represents a milestone in the field of quantum information
processing.

Finally, we present our conclusions and treat the future lines of development that may exist.
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Mathematical Preliminaries





Chapter 1

Hilbert Spaces

In this chapter we will present the backbone of quantum physics, which is provided by the theory
of linear operators acting on Hilbert Spaces [8, 48, 51].

To begin with the formalism of quantum mechanics, one has to consider the Hilbert space.

Definition 1.1. A Hilbert Space is an inner product space (H, 〈·, ·〉) which is complete with
respect to the norm induced by 〈·, ·〉.

In the context of quantum computing, we consider H as a C -vector space. The completeness is
required to ensure the convergence of some linear operators acting on H, such as the Quantum
Fourier Transform.

Remark 1.1. Nevertheless, we will mostly consider finite dimension dim CH < ∞, as this is
sufficient for Quantum Information Processing purposes.

In the following chapters, we will also follow Dirac’s notation: The vectors of H will be denoted
by |v〉.

1.1. Orthogonal expansions

Let H be a complex vector space. For any λ ∈ C , we will denote its conjugate as λ∗ and its
modulus as |λ|.
Definition 1.2. A map 〈·, ·〉 : H×H −→ C is called (Hermitian) inner product if he following
properties hold:

(1) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ∀x,y, z ∈ H,
(2) 〈λx,y〉 = λ∗〈x,y〉 ∀x,y ∈ H, λ ∈ C ,
(3) 〈x,y〉 = (〈y,x〉)∗ ∀x,y ∈ H
(4) 〈x,x〉 ≥ 0 ∀x ∈ H and 〈x,x〉 = 0⇒ x = 0.

In other words, properties 1-2 say that 〈·, ·〉 is a sesquilienar form, property 3 says that it is
Hermitian and property 4 that it is positive-definite.

These conditions imply the Cauchy-Schwartz inequality |〈x,y〉|2 ≤ 〈x,x〉 · 〈y,y〉, which is the
particular case p = q = 2 of the Hölder inequality ‖xy‖1 ≤ ‖x‖p ‖y‖q.

5



6 1. HILBERT SPACES

The inner product 〈·, ·〉 also induces a norm ‖x‖ :=
√
〈x,x〉 ∀x ∈ H, which satisfies the triangle

inequality ‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x,y ∈ H, which is the special case p = 2 of the Minkowski
inequality ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Finally, the condition of completeness is that every Cauchy sequence in H must be convergent.

Definition 1.3. Two vectors x,y ∈ H are called orthogonal if 〈x,y〉 = 0 and it will be denoted
x⊥y.

For any subset H ⊂ H, the orthogonal subset is defined as

H⊥ := {x ∈ H : x⊥h ∀h ∈ H},
and it is a closed subspace.

Theorem 1.1. Let x1,x2, . . . be an orthonormal basis in a Hilbert space H. For any x ∈ H,
the expansion

x =
∑
n

〈xn,x〉xn

holds.

Theorem 1.2. Projection theorem. Let M be a closed subspace of H. Any vector x ∈ H can
be written in a unique way in the form x = x0 + y, where x0 ∈M and y ∈M⊥.

Definition 1.4. In the context of the previous theorem, the map P : x 7→ x0 is called the
orthogonal projection onto the subspace M.

P is linear and satisfies P 2 = P .

Definition 1.5. Let H, K be Hilbert spaces. The norm of a linear operator A : H −→ K is
defined as

‖A‖ := sup{‖Ax‖ : x ∈ H, ‖x‖ = 1}.
If ‖A‖ <∞, we say that A is bounded.

1.2. The adjoint operator

Definition 1.6. Let H and K be Hilbert spaces. If T : H −→ K is a bounded linear operator,
its adjoint is the only operator T † : K −→ H which satisfies

〈x, Ty〉K = 〈T †x,y〉H ∀x ∈ K,y ∈ H.
Definition 1.7. We will denote by B(H) the set of all bounded linear operators T : H −→ H.

T ∈ B(H) is called self-adjoint if T † = T .

This definition is equivalent to 〈x, Tx〉 ∈ R ∀x ∈ H.

Example 1.1. Any orthogonal projection is self-adjoint.

Properties 1.1. Let A,B be bounded linear operators and λ ∈ C . The adjoint has the following
properties:

(1) (A+B)† = A† +B†, (λA)† = λ∗A†,
(2) (A†)† = A, (AB)† = B†A†,
(3) if A is invertible, (A−1)† = (A†)−1,
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(4) ‖A‖ =
∥∥A†∥∥.

Definition 1.8. An invertible operator U ∈ B(H) is called unitary if U−1 = U†.

1.3. Tensor product of Hilbert Spaces and Operators

Definition 1.9. Let H and K be Hilbert spaces. Their algebraic tensor product consists of the
formal finite sums ∑

i,j

xi ⊗ yj xi ∈ H,yj ∈ K.

When H and K are finite-dimensional spaces, the above construction defines the tensor product
Hilbert space H ⊗ K; otherwise the algebraic tensor product should be completed in order to
obtain a Hilbert space.

The following rules are used for computation:

• (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
• x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2

• (λx)⊗ y = λ(x⊗ y)
• x⊗ (λy) = λ(x⊗ y)

And the inner product of H⊗K acts as

〈
∑
i,j

xi ⊗ yj ,
∑
k,l

zk ⊗wl〉H⊗K =
∑
i,j,k,l

〈xi, zk〉H · 〈yj ,wl〉K.

The definition of the tensor product of several Hilbert spaces extends similarly.

Proposition 1.1. If {e1, e2, . . .} and {f1,f2, . . .} are bases in H and K, respectively, then
{ei ⊗ f j}i,j is a basis in the tensor product space. This shows that

dim(H⊗K) = dim(H) · dim(K).

Notation 1.1. Let {e1, . . . ek} be a basis in H and {f1, . . . ,f l} be a basis in K.

If (Aij) is the matrix A ∈ B(H) and (Bi′j′) is the matrix B ∈ B(K), then A ⊗ B ∈ B(H ⊗ K)
acts as

(A⊗B)(ej ⊗ f j′) =
∑
i,i′

AijBi′j′ei ⊗ f i′ .

We will order the tensor product basis lexicographically:

{e1 ⊗ f1, . . . , e1 ⊗ f l, e2 ⊗ f1, . . . , e2 ⊗ f l, . . . , ek ⊗ f1, . . . , ek ⊗ f l}. With this ordering fixed,
the matrix of A⊗B can be written as (the Kronecker product of A⊗B)
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A⊗B =



A11B11 · · · A11B1l A1kB11 · · · A1kB1l

...
. . .

... · · ·
...

. . .
...

A11Bl1 · · · A11Bll A1kBl1 · · · A1kBll
...

. . .
...

Ak1B11 · · · Ak1B1l AkkB11 · · · AkkB1l

...
. . .

... · · ·
...

. . .
...

Ak1Bl1 · · · Ak1Bll AkkBl1 · · · AkkBll


,

or, in shorter notation,

A⊗B =

 A11 ·B · · · A1k ·B
...

. . .
...

Ak1 ·B · · · Akk ·B


Notation 1.2. Let H be a Hilbert space. The k-fold tensor product H ⊗ · · · ⊗ H is called the
kth tensor power of H, and noted H⊗k. If {A(i)}i ⊂ B(H), then A(1) ⊗ · · · ⊗ A(k) is a linear

transformation on H⊗k; if all A’s are the same, it is denoted A⊗k.

1.4. Positive Operators

Definition 1.10. The spectrum Spec(T ) of an operator T ∈ B(H) consists of all the numbers
λ ∈ C such that the operator λI− T does not have a bounded inverse.

If dimCH <∞, the definition is equivalent to

Spec(T ) = {λ ∈ C : ∃x ∈ H,x 6= 0, λx− Tx = 0}.

In this case, we say that x is an eigenvector and λ its corresponding eigenvalue.

Remark 1.2. If A is a self-adjoint matrix, its eigenvalues are real and the eigenvectors corre-
sponding to different eigenvalues are orthogonal.

As such, A can be written into the form

A =

k∑
i=1

λiEi,

where λ1, . . . , λk are the different eigenvalues and Ei is the orthogonal projection onto the sub-
space spanned by the corresponding eigenvalue λi, 1 ≤ i ≤ k.

Definition 1.11. T ∈ B(H) is positive if 〈x, Tx〉 ≥ 0 ∀x ∈ H. We will simply write T ≥ 0.

Remark 1.3. A positive operator is self-adjoint.

Theorem 1.3. (Sylvester criterion) Let T ∈ B(H) be a self-adjoint operator and e1, . . . , en be
a basis in the Hilbert space H. T is positive if, and only if, for any 1 ≤ k ≤ n, the determinant
of the k × k matrix

(〈ei, Tej〉)ki,j=1

is positive.
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Remark 1.4. The spectrum of a non-negative operator lies in R+. In particular, its eigenvalues
are non-negative. Conversely, if all the eigenvalues of a non-negative (self-adjoint) operator acting
on a finite dimensional Hilbert space lie in R+, then it is non-negative.

Notation 1.3. Positive matrices are also called positive semi-definite.

Definition 1.12. Let T ∈ B(H) and e1, . . . , en be a basis in the Hilbert space H. The trace of
H is the sum of the elements of its diagonal:

Tr(T ) =

n∑
i=1

〈ei, Tei〉.

Remark 1.5. The trace is the sum of the eigenvalues and is independent of the basis chosen to
compute it. It also satisfies the cyclicity property

Tr(AB) = Tr(BA) ∀A,B ∈ B(H). (1.1)

1.5. Spectral Theorem

In this section we extend the results of the previous one to an arbitrary self-adjoint operator A.
In this general situation, the spectra needs not to be discrete.

Definition 1.13. More formally, let X be a complete, separable, metric space and let H be a
Hilbert space. We consider the smallest σ-algebra which contains all the X -open subsets; its
measurable [28] subsets are called Borel subsets.

Now, let’s assume that for each Borel subset B ⊂ X , we can find a positive operator E(B) ∈ B(H)
which satisfies

(1) 0 ≤ E(B) ≤ I, E(∅) = 0, E(X ) = I.
(2) If {Bi}i is a sequence of pairwise disjoint Borel subsets of X , and B = ∪∞i=1Bi, then for every

e ∈ H,

(E(B))(e) =

( ∞∑
i=1

E(Bi)

)
(e).

In this case, E is called a positive operator-valued measure, which we shall denote POVM.

Remark 1.6. The comparison A ≤ B between operators should be taken as the difference
operator being positive: B −A ≥ 0.

Remark 1.7. We assume that the series

( ∞∑
i=1

E(Bi)

)
is an operator which exists and is in

B(H).

Remark 1.8. The most important cases are when X is a finite set, R, or the unit circle S1 ⊂ C .

Let’s consider a function f : X −→ C , which we want to integrate, with respect to a POVM E
on X .

For example, in the case #X <∞,∫
X
f(x)dE(x) =

∑
x∈X

f(x)E({x}),
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which is a finite sum.

In the general case, the definition of the integral can be reduced to many integrals with respect
to more common measures. More precisely, given a vector e ∈ H,

µe(B) = 〈e, (E(B))(e)〉
gives a positive measure on the Borel sets of X .

Definition 1.14. We say that the integral∫
X
f(x)dE(x) = T ∈ B(H)

if 〈e, Te〉 =
∫
X f(x)dµe(x) holds ∀e ∈ H.

Definition 1.15. A POVM E is called a projection-valued measure if E(B) is a projection

operator for every Borel set B; that is, E(B) = E(B) ◦ E(B) = E(B)2.

Theorem 1.4. Spectral Theorem for a bounded self-adjoint operator.
Let A = A† ∈ B(H). Then, there exists a unique projection-valued measure E on the real line
R, such that

A =

∫
λdE(λ).

Moreover, if B ⊂ R and the spectrum of A is disjoint, then E(B) = 0 and for every continuous
function f defined on the spectrum of A we have

f(A) =

∫
f(λ)dE(λ).

Remark 1.9. The projection-valued measure in the theorem is called the spectral measure of
the operator A. A similar result holds for unbounded self-adjoint operator A, but in this case A
and f(A) are not defined everywhere. Also, a similar result holds in the case of unitary operators;
then the spectral measure is on the unit circle.

1.6. Schmidt Decomposition

In this section, we shall demonstrate the existence of a very useful decomposition, known as the
Schmidt decomposition.

Let H1 and H2 be Hilbert spaces.

Theorem 1.5. Schmidt decomposition theorem.
For any vector ψ ∈ H = H1 ⊗ H2, there exist orthonormal states {e1

i }i ⊂ H1 and {e2
i }i ⊂ H2

such that

ψ =

k∑
i=1

√
pie

1
i ⊗ e2

i ,

with pi ∈ R+ satisfying the condition
k∑
i=1

pi = 1.

Remark 1.10. The states e1
i and e2

i depend on the particular state ψ that we wish to expand.

Remark 1.11. The Schmidt decomposition cannot be extended to tensor product spaces which
consist of more than 2 components.



Chapter 2

Classical Information Theory

In this chapter we will present the fundamentals of classical information theory: the description
of entropy, Shannon’s theorem for noiseless source coding and noisy channel coding. We will also
briefly discuss how far we are from reaching the theoretical limits imposed by these theorems
[42, 48, 58, 66, 67, 71].

For the introduction of Shannon’s Theorems, we will follow the exposition of [66]. We also give
some proofs, with the objective of showing how one manipulates the quantities that are defined
in order to announce such theorems.

2.1. Entropy

Definition 2.1. The information gained by knowing that an event A has occurred is defined by

ι(A) = − log2 P(A),

where P stands for the underlying probability distribution. The information is measured in bits.

Remark 2.1. A dual point of view of the definition is that ι(A) is the amount of uncertainty
before learning that event A has occurred. We can also say that information measures the
necessary amount of data needed to specify event A.

Definition 2.2. Let X be a discrete random variable which takes finitely many distinct values
x1, . . . , xm with probabilities p1, . . . , pm, where pi = P(X = xi). The (Shannon) entropy of X is
the expected amount of information gained when learning the value of X:

h(X) = −
m∑
i=1

pi log2 pi.

Remark 2.2. The entropy depends on the probability distribution P, but not on the values of
X.

Remark 2.3. If some of the pi = 0 we take the convention pi log2 pi = 0 (by continuity,
lim
x→0+

−x log2 x = 0).

Definition 2.3. Let X be a continuous random variable with a probability density function
p(x). The entropy is defined in this case by an integral, not a sum. More precisely,

h(X) = −
∫
p(x) log2 p(x)dx

11
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Remark 2.4. Unlike the entropy of a discrete random variable, the entropy of a continuous
one may take negative values, since the density probability function needs not take values in the
interval [0, 1].

The relative entropy is a very useful measure to determine how close are two probability distri-
butions, which we shall denote pX(x), pY (x), taking values on the same set.

Definition 2.4. If pY (x) = P(Y = x) > 0 ∀x, then the relative entropy h(X||Y ) can be defined:

h(X||Y ) = −
∑
x

pX(x) log2

pX(x)

pY (x)
.

The following proposition should motivate the fact that the relative entropy can be seen as some
kind of (asymmetric) distance measure [48]:

Theorem 2.1. Non-negativity of the relative entropy :
The relative entropy is non-negative; i.e.,

h(X||Y ) ≥ 0.

The equality holds if, and only if,

pX(x) = pY (x) ∀x.

Remark 2.5. The relative entropy is useful since other entropic quantities can be derived from
it, as special cases.

Example 2.1. For example, if X takes values on a set of d elements, it follows that

0 ≤ h(X) ≤ log2 d.

Indeed, consider pX(x) a probability distribution for X and let Y be a uniform random variable,
so that pY (x) = 1

d for all x. Then

h(X||Y ) =
∑
x

pX(x) log2

pX(x)

1/d
= −h(X)−

∑
x

pX(x) log2(1/d) = log2 d− h(X) ≥ 0.

Note that h(X) = log2 d if, and only if, X is uniformly distributed.

Let X and Y be random variables taking values xi, yj respectively. We denote its joint probability
distribution pX,Y (xi, yj) = P(X = xi, Y = yj) and its conditional probability distribution
pX|Y (xi, yj) = P(X = xi|Y = yj). We want to relate the information content of X to the
information content of Y . The following two quantities help us find their relation:

Definition 2.5. Let X,Y be random variables taking values xi, yj .
The joint entropy h(X,Y ) is defined as

h(X,Y ) = −
∑
xi,yj

pX,Y (xi, yj) log2 pX,Y (xi, yj).

The conditional entropy h(X|Y ) of X, given Y , is defined as

h(X|Y ) = −
∑
xi,yj

pX,Y (xi, yj) log2 pX|Y (xi, yj).
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Remark 2.6. To illustrate Definition 2.5, let us suppose that we know the value of Y , having
gained h(Y ) bits of information about the pair (X,Y ). The remaining uncertainty about the
pair (X,Y ) is associated with the remain lack of knowledge about X, even though we know Y .
Note that the equivalent definition would be

h(X|Y ) = h(X,Y )− h(Y ),

which is, indeed, satisfied.

Another quantity, which measures how much information X and Y have in common is given
in Definition 2.6. To understand it, suppose we add the information content of X, h(X) to Y .
Information which is common between them will be counted twice, and information not common
only once. The mutual information X and Y have in common is then h(X) + h(Y )− h(X,Y ).

Definition 2.6. The mutual information between X and Y is defined as

ι(X : Y ) =
∑
x,y

pX,Y (x, y) log2

pX,Y (x, y)

pX(x)pY (y)
= h(X) + h(Y )− h(X,Y )

Figure 2.1 shows the relationship between these quantities.

ι(X : Y )

h(Y |X)

h(Y )

h(X)

h(X|Y )

Fig. 2.1. Representation of the relationship between different entropic quantities.

2.2. Source Coding

In order to be able to compress data in an efficient manner, the main idea is to identify relatively
small sets which occur with higher probability [66].

Definition 2.7. For a given R > 0, a source generating random strings U (n) = (U1, . . . , Un),
where the symbols Ui ∈ I are taken from an alphabet I, we say that this source is reliably
encodable at rate R if, for any n, there exists a set An ⊆ In such that

#An ≤ 2nR and lim
n→∞

P(U (n) ∈ An) = 1.
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Remark 2.7. The idea of this definition is that we can label the members of the set An with a
string of length not greater than nR. Since they are nearly always in An, the average length of
a compressed string will be close below nR.

We use this definition to introduce the concept of information rate:

Definition 2.8. The information rate H of a given source is the smallest reliable encoding rate:

H = inf{R : R is reliable}.

The information rate always depends on the size of the alphabet, as the following proposition
[66] shows:

Proposition 2.1. For a source of alphabet size m,

0 ≤ H ≤ log2m,

both bounds being attainable.

Remark 2.8. The left-hand equality is attained for a source the outputs of which are always
the same. The right-hand equality is attained only for a source with uniformly, independent,
identically distributed (IID) outputs: in any other case, for any set of strings An, P(An) =
(1/mn)#An, which goes to zero when n→∞ if #An ≤ 2nR and R < log2m.

Remark 2.9. The quantity H is useful; nevertheless it is hard to compute. Introducing quan-
tities Dn and ξn, we will see how H depends on Dn and Dn depends on ξn, which is easier to
find, enabling us to calculate H.

Definition 2.9. The subset maximum is

Dn(R) = max
A: #A≤2nR

P(U (n) ∈ A).

A set A on which the maximum is attained will be called a typical subset.
The log-likelihood per source letter is

ξn(u(n)) = − 1

n
log+ pn(u(n)),

where pn(u(n)) = P(U (n) = u(n)) and log+(x) =

{
log2(x) if x > 0
0 if x = 0

.

With u(n) we denote an observation of Un.

We need the following two lemmas [66] in order to announce Shannon’s first coding theorem:

Lemma 2.1. ∀ε > 0, the information rate H satisfies

lim
n→∞

Dn(H + ε) = 1.

Moreover, if H > 0, then Dn(H − ε) 6→n 1.

Proof: R = H + ε is a reliable encoding rate, by Definition 2.8. So, there exists a sequence of
sets An ⊂ In, with #An ≤ 2nR and lim

n→∞
P(U (n) ∈ An) = 1. Definition 2.9 assures Dn(R) ≥

P(U (n) ∈ An)⇒ lim
n→∞

Dn(R) = 1.

On the other hand, if H > 0, we can find an ε such that H − ε > 0, but with H − ε not reliable,
by Definition 2.8. We choose Cn the typical subsets in Definition 2.9, which have cardinality
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#Cn ≤ 2nR; then, according to Definition 2.7, P(U (n) ∈ Cn) 6→n 1 is the only remaining
possibility. ut.

Lemma 2.2. ∀R,∀ε > 0,

P(ξn ≤ R) ≤ Dn(R) ≤ P(ξn ≤ R+ ε) + 2−nε.

For a proof of this lemma, see [66].

Definition 2.10. A sequence of random variables {ηn}n converges in probability to a constant
r if, ∀ε > 0,

lim
n→∞

P(|ηn − r| ≥ ε) = 0.

Notation 2.1. Convergence in probability is denoted by ηn
P−→ r.

Theorem 2.2. (Shannon’s first coding theorem)
If ξn converges in probability to a constant γ, then γ = H.

Proof: Let ξn
P−→ γ. Since ξn ≥ 0 ∀n, its limit γ ≥ 0. Then Lemma 2.2 assures that ∀ε > 0 we

have Dn(γ+ε) ≥ P(ξn ≤ γ+ε) ≥ P(γ−ε ≤ ξn ≤ γ+ε) = P(|ξn − γ| ≤ ε) = 1−P(|ξn − γ| > ε).
This means that lim

n→∞
Dn(γ + ε) ≥ 1. Hence, H ≤ γ, by Lemma 2.1.

In particular, γ = 0 ⇒ H = 0. If γ > 0, by the rightmost inequality in Lemma 2.2 (which
holds for all R and ε > 0; in particular, for γ − ε and ε/2, respectively): Dn(γ − ε) ≤ P(ξn ≤
γ − ε/2) + 2−nε/2 ≤ P(|ξn − γ| ≥ ε/2) + 2−nε/2, which does not tend to 1. By Lemma 2.1,
H ≥ γ. ut

Remark 2.10. Convergence ξn
P−→ γ = H can be interpreted in the following way:

∀ε > 0, lim
n→∞

P
(

2−n(H+ε) ≤ pn(u(n)) ≤ 2−n(H−ε)
)

= 1,

which is called asymptotic equipartition property (AEP). In other words, for any ε > 0, there

exists an n0(ε) ∈ N such that, for any n > n0(ε), we can identify a typical set Tn with the
properties that

1. P(u(n) /∈ Tn) < ε,
2. ∀u(n) ∈ Tn, we have 2−n(H+ε) ≤ P(U (n) = u(n)) ≤ 2−n(H−ε).

Thus, for a source with the AEP, we will encode the typical strings with codewords of length
n(H + ε) and the atypical ones with an arbitrary encoding. We will obtain an effective encoding
rate H + o(1) bits per symbol.

We finish this section by particularizing this result for the binary case (when Ui ∈ U (n) are
distributed as a Bernoulli):

Theorem 2.3. For a Bernoulli source, the information rate equals the entropy of a source
producing single letters; that is

H = h(Uj) = −
∑
u∈I

p(u) log2 p(u).
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Proof: For an IID sequence U1, U2, . . . we have

pn(u(n)) =

n∏
i=1

p(ui)⇒ − log2 pn(u(n)) =

n∑
i=1

− log2 p(ui).

Thus,

ξn = − 1

n
log2 pn(u(n)) =

1

n

n∑
i=1

σi,

where σi = − log2 P(Ui = ui) are IID random variables. The expectation value of each σi is

E σi = −∑
j

p(j) log2 p(j) = h. So, E ξn = 1
n

n∑
i=1

E σi = h. The weak law of large numbers yields

the convergence in probability ξn
P−→ h. ut

2.3. Channel Coding

Formally, we characterize a channel by a conditional distribution

Pch(y(N) is received|x(N) is sent),

where y(N) = y1 . . . yN is a word and x(N) = x1 . . . xN is a codeword. We shall omit the super
index N if it is understood from the context. We suppose this distribution is known to both
sender and receiver, as well as the code (which converts the random text u(n) into codewords x(N)

and is to recover u(n) from y(N). The goal of channel encoding is to successfully perform this
recovery, despite the possible damage the information may have taken while traveling through
the channel).

Definition 2.11. We say that a channel is memoryless if

Pch(y(N)|x(N)) =

N∏
i=1

Pch(yi|xi).

Here, Pch(x|y) are the symbol-to-symbol channel probabilities. If the rows of the channel matrix
P are permutations of each other, we say that the channel is symmetric.

Example 2.2. A memoryless binary symmetric channel where x, y ∈ {0, 1} has a transition
probability 2× 2 matrix (Pch(y|x))xy of the form

Pch =

(
1− p p
p 1− p

)
and p is called the symbol error probability or row error probability.

Definition 2.12. The two natural decoding rules are

(1) The ideal observer rule: Here, the receiver knows the probability distribution Psrc of the
source and hence the probabilities pN (x) of the codewords x ∈ {0, 1}N . We decode a
received codeword y by a codeword x∗ that maximizes the probability a posteriori :

P(x sent|y received).

(2) The maximum likelihood rule: Here, the receiver does not know pN (x). We decode a
received codeword y by a codeword x∗ that maximizes the probability a priori :

P(y received|x sent).
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Definition 2.13. The rate R of a block encoding-decoding scheme is given by the ratio of the
size of the message to the size of the corresponding codeword (both measured in bits):

R =
log #M
N

,

where M is the space of messages (#M = 2NR).

R is equal to the number of bits of message transmitted per use of the channel. We say a rate
R is achievable or reliable if there exists a sequence of encoding-decoding pairs (fN : M −→
{0, 1}N , f̂N : {0, 1}N −→ M) such that the error probability p(fN , f̂N ) := max

M∈M
P(f̂N (y) 6=

M |x = fN (M)) is such that

p(fN , f̂N ) −→ 0 as N −→∞.

Finally, we define a channel’s capacity:

Definition 2.14. The channel capacity is defined as

C = sup{R : R is a reliable transmission rate}.

Theorem 2.4. (Shannon’s second coding theorem)
For a memoryless channel, the capacity equals the maximum of the mutual entropy between a

single input and a single output symbol. That is

C = sup
pX

ι(X : Y ),

where pX stands for the distribution of the input symbol X and pY for the distribution of the
output symbol Y :

pY (y) =
∑
x′

pX(x′)Pch(y|x′)

The proof of this theorem can be found in [66].

2.4. Current status of Coding Theory

In this last section we briefly discuss how can different kinds of codes approach Shannon’s limit
of channel capacity.

Definition 2.15. The channel rate is a measure in bits/s of the capacity [54]

C = W · log2

(
1 +

S

N

)
, (2.1)

where W is a frequency in Hz called bandwidth of the channel, and S and N are the average
power of the signal and the noise at the receiver, respectively.

The noise spectral-power density is the average energy of the noise per Hz, N0 = N/W .

The quantity S/N is called SNR −signal to noise ratio− and is usually expressed in dB. This
magnitude is often given via the energy per bit/power-spectral density ρ = Eb/N0.

Both magnitudes are related via the spectral efficiency η = C/W :

S

N
=

C

W
· Eb
N0

= η · ρ
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We denote by p the bit error probability. In order to relate it with the S/N ratio [54], one should

first consider the function Q(x) = 1√
2π

∫∞
x
e−τ

2/2dτ : p = Q(
√

2Eb/N0). The average energy per

bit can also be found via Eb = S/C.

Remark 2.11. The channel rate (2.1) is closely related to the channel capacity (Definition
2.14), which is a number C ∈ [0, 1] that measures the maximum fraction of the information sent
through the channel which is available at the receiving end, expressed in bits per transmission.

In Fig. 2.2, we have shown a plot of η vs. ρ and Shannon’s limit, taken from (2.1), as the
inequality for the suboptimal case, which can be rewritten as

C ≤W log2

(
1 +

S

N

)
⇐⇒ ρ ≥ 1

η
(2η − 1).

Above the line, no reliable encoding exists, according to Shannon’s theorem. Under it, we have
represented seven points [71] (the channel considered is binary symmetric):

• B corresponds to no encoding (9, 6dB deficit, which is the horizontal distance from the
point to the plotted line; note that the horizontal axis is plotted in logarithmic scale (dB),
whereas the vertical axis, in linear scale),
• H corresponds to the Hamming [7, 4, 3] code (7, 8dB deficit),
• R corresponds to the repetition code [3, 1, 3] (7, 3dB deficit),
• G corresponds to the binary Golay code [23, 12, 7] (5, 8dB deficit),
• V corresponds to Voyager, 1986,
• G′ corresponds to Galileo, 1989,
• T corresponds to a state of the art turbo-code

T
G’ V G R

H
B

Fig. 2.2. Shannon’s limit: ρ > 10 log10

(
2η−1
η

)
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Chapter 3

Postulates of Quantum Mechanics

In this chapter we present the postulates of quantum mechanics and their mathematical de-
scription. We introduce the concept of qubit and its Bloch Sphere representation. We discuss
the implications of performing measurements on a quantum system and the generalization to
multi-qubit systems, as well as how a system evolves in time [7, 8, 51, 46, 48].

The mathematical model of von Neumann [46] is which has prevailed. To describe it, we begin
this section with a bottom-up approach, in order to justify the axioms we state lately and interpret
them in a top-down analysis.

3.1. Informal description

In classical mechanics, the state of a system of n particles at a time t0 is completely determined
by the positions {x1(t0), x2(t0), . . . , xn(t0)} and the velocities {ẋ1(t0), ẋ2(t0), . . . , ẋn(t0)} of its
particles at the time t0. Given these initial conditions, Newton’s laws of classical mechanics allow
us to know the state of the system at any time t. Indeed, they are governed by a first-order
differential equation in the variables xi, ẋi and, given a set of initial conditions, its solution is
unique (Picard’s theorem).
Quantum mechanics is based on a different framework:

To a physical quantum system Σ we associate a Hilbert space H = HΣ; a state of Σ is completely
described by a unit vector |ψ〉 (also called state vector or wave function) which resides in H. The
evolution in time of the state vector |ψ〉 is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, (3.1)

where Ĥ is a self-adjoint operator, also known as Hamiltonian of the system, and ~ = h/2π,
where h is Planck’s constant1.

The term self-adjoint is equivalent to Hermitian, so we will use any of them indistinctly.

Notation 3.1. It is customary in quantum mechanics the use of Dirac’s notation, also known
as bra-ket notation, in which the vectors of a Hilbert space are denoted by |ψ〉 (kets) and the
corresponding covectors are denoted by 〈ψ| (bras). Note that with this notation we are implicitly

1Planck’s constant is a physical magnitude h ≈ 6, 626 · 10−34 Joule·second, experimentally determined.

21
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identifying a Hilbert space with its dual. The main connection between a Hilbert space and its
dual is given by the Riesz-Fréchet Representation Theorem. However, unless otherwise stated,
we will work with finite-dimensional Hilbert spaces, in which we can do this identification. Note
that the two spaces are then isomorphic, yet not canonically; for example, with a choice of basis
we can explicit the identification.

Since Schrödinger equation is a linear differential equation of first order in time, the state |ψ(t)〉 is
uniquely determined given the initial state |ψ(t0)〉. Also, linearity implies that the superposition
principle can be applied: α|ψ1(t)〉 + β|ψ2(t)〉, α, β ∈ C is a solution if both |ψi(t)〉 are. Hence,

the time-evolution operator Û , defined by

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉
is also linear.
When the Hamiltonian Ĥ is time independent, the solution to (3.1) reads

|ψ(t)〉 = e−
i
~ Ĥ(t−t0)|ψ(t0)〉,

where the exponential of the operator is defined as follows:

Û(t, t0) = e−
i
~ Ĥ(t−t0) ≡

∞∑
n=0

1

n!

(
− i
~

(t− t0)

)n
Ĥn.

Remark 3.1. Given an Hermitian operator Â, Û = eiÂ is unitary, with inverse Û† = e−iÂ.

Conversely, any unitary operator Û can be written as Û = eiÂ, where Â is an Hermitian operator.
This is known as Cayley’s formula.

We associate with any observable A a self-adjoint operator Â, acting on the Hilbert space HΣ.
The only possible outcome of a measurement of the observable A is one of the eigenvalues of the
operator Â. By the spectral theorem, the eigenvalue equation for Â, Â|i〉 = ai|i〉, where {|i〉}i
form an orthonormal basis of eigenvectors of A lets us expand the state vector |ψ(t)〉 =

∑
i

ci(t)|i〉
over this basis. Then, the probability that a measurement of the observable A at time t results in
outcome ai is given by

pi(t) = p(A = ai|t) = |〈i|ψ(t)〉|2 = |ci(t)|2 . (3.2)

Several remarks need to be made about this postulate:

Remark 3.2. Observables are the quantum analogue o dynamical variables in classical mechan-
ics (e.g., position, linear and angular momentum, . . . ). In contrast, other characteristics of the
system (mass, electric charge) are not in the set of observables; they enter as parameters in the
Hamiltonian of the system.

Remark 3.3. It could seem rather odd the association of physical observables with self-adjoint
operators. This argument should help grasp its reason: The eigenvalues of a self-adjoint operator
are real (just like the possible outcomes of a measurement) and its eigenvectors form a complete
orthonormal set in the Hilbert space HΣ associated with the system, each one uniquely deter-
mined up to a phase, if there is no degeneracy. Since we required |φ(t)〉 to have unit norm, the
probabilities are normalized: ∑

i

pi(t) =
∑
i

|ci(t)|2 = 1,
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which means that the total probability of obtaining an outcome from the measurement of ob-
servable A is precisely 1.

So, an observable consists of giving a list of real values λi and a list of associated subspaces
in which the corresponding value is satisfied. This is what determines an operator: a sum of
projectors onto these subspaces, weighed by λi. The converse is given by Spectral Theorem
(Theorem 1.4).

Example 3.1. Let G ⊆ H be a linear subspace. The orthogonal projection PG : H −→ G is an
observable with eigenvalues 1 and 0, with associated eigenspaces H1 = G and H0 = G⊥.

Remark 3.4. If we consider the particular case |ψ(t0)〉 = |i〉, the measurement of A will yield
the outcome ai with probability 1. Thus, we will also call the eigenvectors of A eigenstates.

Remark 3.5. If |ψ1〉, |ψ2〉 are different normalized eigenvectors of A of respective eigenvalues
a1, a2, the superposition principle tells us that |ψ〉 = λ1|ψ1〉+ λ2|ψ2〉 is also an allowed state for

the system (with the normalization condition |λ1|2 + |λ2|2 = 1 and λ1, λ2 ∈ C ). Therefore, if
we perform a measurement of A on a system described by the state |ψ〉, we will obtain, with

probability |λi|2, the outcome ai.

This is not equivalent to a naive statistical mixture of the states |ψ1〉 taken with probability |λ1|2
and |ψ2〉 with probability |λ2|2.
We shall prove that a large number of N systems, all in the same state |ψ〉, is indeed not

equivalent to an ensemble of |λ1|2N systems in the state |ψ1〉 and |λ2|2N systems in the state
|ψ2〉:

Indeed, let us assume that we wish to calculate the probability p(bj) of obtaining outcome bj
for some observable B, with eigenvectors |j〉, in the system described by the state |ψ〉. This
probability is

p(bj) = |〈j|ψ〉|2 = |λ1〈j|ψ1〉+ λ2〈j|ψ2〉|2 ,
which can be expressed as

p(bj) = |λ1|2 |〈j|ψ1〉|2 + |λ2|2 |〈j|ψ2〉|2 + 2<{λ1λ
∗
2〈j|ψ1〉〈j|ψ2〉∗}.

If we consider the statistical mixture described above, its result leads to

pmix(bj) = |λ1|2 |〈j|ψ1〉|2 + |λ2|2 |〈j|ψ2〉|2 .

The term 2<{λ1λ
∗
2〈j|ψ1〉〈j|ψ2〉∗} is called interference term.

With this example we have proved that the probability of obtaining bj as the outcome of a
measurement of B in a quantum-mechanical system, depends not only on the moduli |λ1| and
|λ2|, but on the relative phase between the complex numbers λ1 and λ2, which affects the product
λ1λ

∗
2.

Remark 3.6. There may be cases in which we have degeneracies: Multiple eigenvectors
{|ns〉}s=1...gn for the same eigenvalue an. In this case it is convenient to introduce the
projection operator

Pn =

gn∑
s=1

|ns〉〈ns|,

where 〈ns| is the dual of the vector |ns〉 (Hermitian transposed in the matrix representation).

When applied to a state, Pn operates as Pn|ϕ〉 =

(
gn∑
s=1
|ns〉〈ns|

)
|ϕ〉 =

gn∑
s=1

(〈ns|ϕ〉)|ns〉. Thus,

|ϕ〉 is projected onto the subspace generated by {|ns〉}s=1...gn eigenvectors.
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The postulate says in this case that the probability of outcome an is 〈ψ|Pn|ψ〉. Observe that

for the non-degenerate case gs = 1 and 〈ψ|Pn|ψ〉 = 〈ψ|n〉〈n|ψ〉 = 〈n|ψ〉〈n|ψ〉∗ = |〈n|ψ〉|2 as we
expected, recovering the rule from (3.2).

Remark 3.7. The density matrix.
In a practical situation, the state of a physical system is often not perfectly determined. For
instance, a beam of atoms emitted by a thermal source: we do not know the kinetic energy of
every atom, but only the distribution of their kinetic energies. We say that the information we
have about the system is incomplete. We just know that the system is in a state taken from the
ensemble

{(p1, |ψ1〉), (p2, |ψ2〉), . . . , (pl, |ψl〉)},
with the probabilities satisfying

∑
i pi = 1. We say that we have a statistical mixture or a

mixed state of the states |ψk〉, which are pure states. Observe that |ψk〉 need not to be orthogonal.
The previous remark should suffice to convince ourselves that the statistical mixture of states
|ψk〉 with weights pk is not the same as the linear superposition

|ψ〉 =
∑
k

ck|ψk〉, |ck| 2 = pk.

The question which arises is how do we describe such mixture? Can it be described by means
of some ‘average state vector’? The answer is no. However it is possible to describe it using an
‘average operator’: the density operator, as we shall see:

The probability p(i) that a measurement of the observable A yields outcome ai is given by

p(i) =

l∑
k=1

pk〈ψk|Pi|ψk〉,

where Pi is the projector onto the subspace associated with the eigenvalue ai of A.

We can compute the mean value of the observable A, which we shall denote 〈A〉:

〈A〉 =

n∑
i=1

aip(i) =

l∑
k=1

pk

n∑
i=1

ai〈ψk|Pi|ψk〉 =

l∑
k=1

pk〈ψk|A|ψk〉.

Thus, we have probabilities appearing twice:

• In the initial lack of information on the system, characterized by weights pk.
• In the measurement process, the probabilities 〈ψk|Pi|ψk〉 to obtain outcomes ai from the

measurement of observable A when the system is described by the state ψk. These proba-
bilities are intrinsically quantum mechanical.

To take into account both, we introduce the density operator ρ̂, defined as

ρ̂ ≡
∑
k

pk|ψk〉〈ψk|

Given a generic orthonormal basis {|i〉}i=1...n, where n = dimHΣ, we can give ρ̂ a matrix
representation, known as the density matrix:

ρ = (ρij)ij = (〈i|ρ̂|j〉)ij .
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The mean value of the operator A can also be computed by means of the density operator

Tr(ρ̂A) =

n∑
i=1

〈i|ρA|i〉 =

l∑
k=1

n∑
i=1

pk〈i|ψk〉〈ψk|A|i〉 =

l∑
k=1

n∑
i=1

pk〈ψk|A|i〉〈i|ψk〉,

taking into account the completeness relation
n∑
i=1

|i〉〈i| = I, we obtain

Tr(ρ̂A) =

l∑
k=1

pk〈ψk|A|ψk〉 = 〈A〉.

The mean value of A depends on the density operator and thus we will denote it 〈A〉ρ. A similar
argument proves that the probability p(i) that a measurement of the observable A gives outcome
ai is equal to

p(i) = Tr(ρ̂Pi).

We have showed that the density operator ρ completely characterizes the system, as we can
predict the probabilities of the possible outcomes of any experiment performed on the system.

Properties 3.1. The density operator ρ̂ has the following properties [8]:

• ρ̂ is Hermitian.
• ρ̂ has unit trace.
• ρ̂ is a non-negative operator: For any vector |ψ〉 in H we have 〈ψ|ρ̂|ψ〉 ≥ 0.

Remark 3.8. For a mixed state, one has Trρ2 < 1, while for a pure state Trρ2 = 1, enabling
us to identify whether a state is pure or mixed given its density matrix.

Remark 3.9. Let us discuss the physical interpretation of the matrix elements of ρ:

Let us expand the pure state |ψk〉 =
n∑
i=1

c
(k)
i |i〉 over an orthonormal basis {|i〉} ofH. The diagonal

term

ρii = Tr(ρ̂Pi) =
∑
k

pk

∣∣∣c(k)
i

∣∣∣2 , Pi = |i〉〈i|,

is the probability that the system is left in the state |i〉 after measuring the observable whose
eigenstates are {|i〉}. Hence, we say that ρii represents the population of the state |i〉.
The off-diagonal terms ρij , called coherences, represent the interference between the states |i〉
and |j〉. This interference appears for any state |ψk〉 of the statistical mixture that contains a
linear superposition of |i〉 and |j〉. Since

ρij =
∑
k

pkc
(k)
i c

(k)∗
j ,

ρij may cancel despite individual terms may not. If ρij 6= 0, it means that even after averaging
over the statistical mixture, a quantum coherence effect will remain between the states |i〉 and
|j〉.
Remark 3.10. The distinction between populations and coherences depends on the basis {|i〉}
we choose. Since ρ is Hermitian, non-negative and normalized (unit trace), via spectral decom-
position, it is always possible to find an orthonormal basis {|m〉} such that

ρ =
∑
m

αm|m〉〈m|, 0 ≤ αm ≤ 1,
∑
m

αm = 1.
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This means that the density matrix ρ can always be seen as a statistical mixture of the states
{|m〉}, without coherences between them, although these states are not -in general- eigenstates
of a physical observable.
This Schmidt decomposition is unique if the spectrum is non-degenerate (there is no multiple
eigenvalue).

Remark 3.11. The density matrix corresponding to a pure state has rank 1 and in this case we
can identify every unitary state vector with its corresponding density operator

|ψ〉 ←→ ρ̂ = |ψ〉〈ψ|.

3.2. Axiomatic description

After this introduction, we can state the axioms in a more precise way:

Axiom 1. To any isolated quantum mechanical system Σ we associate a Hilbert space H, called
state space, and describe it completely with a unit vector in H, the state vector2.

The non-zero vectors x ∈ H represent the pure states of Σ and two vectors x,y ∈ H represent
the same state if, and only if, there exists ξ ∈ C such that y = ξx.

In particular, x and the unit vector x/ ‖x‖ represent the same state. Moreover, two unit vectors
represent the same state if and only if they differ in a unit factor (usually called a phaser). This
means that the state space of Σ is PH, the projective space associated to H.

Notation 3.2. Following Dirac’s notation, we will write |u〉 the state corresponding to [u] ∈ PH.
Given two states |u〉, |u〉′ ∈ H and two complex numbers λ, λ′ ∈ C , one can form the state
|λu+ λ′u′〉 if λλ′ 6= 0. Such states are said to be in quantum superposition of the states |u〉 and
|u′〉. By abuse of notation, such states are usually denoted as λ|u〉+ λ′|u′〉.
Example 3.2. State of the spin (1/2).
A state of the spin of 1

2 can be represented by the 2× 2 matrix

1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
, xi ∈ R, (3.3)

which is a density matrix if, and only if, x2
1 + x2

2 + x2
3 ≤ 1.

Axiom 2. The observables of a quantum mechanical system Σ are described by self-adjoint
operators acting on the Hilbert space.

Example 3.3. Pauli matrices.
For a quantum spin 1/2 the matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ0 =

(
1 0
0 1

)
are called Pauli matrices and are used o describe the spin of directions x, y, z with respect to a
coordinate system.

2 We already showed the technical need of introducing density matrices to describe states, so Axiom 1 can be
reformulated as The physical states of a quantum mechanical system Σ are described by density operators acting
on a Hilbert space H.
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Any self-adjoint matrix is of the form Ax0,x := x0σ0 +x1σx +x2σy +x3σz. Denoting the vectors
x = (x1, x2, x3),σ = (σx, σy, σz) we can write the density matrix of the previous example as

1

2
(σ0 + x · σ), ‖x‖ ≤ 1.

This suggests a correspondence (a diffeomorphism) between 2× 2 density matrices and the unit
ball in R3. The extreme points of the ball correspond to pure states and any mixed state is the
convex combination of pure states (with infinite possibilities).

3.3. The Qubit

The states of a spin-1/2 particle can be viewed as points lying on the unit sphere S2. According
to axiom 1, H = C 2 (spinor space).
The interpretation of this is as follows:

We begin by identifying a point ξ = x+ iy ∈ C with the point (x, y, 0) ∈ R3.

In R3, we consider the manifold S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} ⊂ R3 and we associate to
ξ the point P (ξ) obtained by means of the stereographic projection from N = (0, 0, 1):

P (ξ) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

If we formally set P (∞) = N , there is a bijection between S2 and C = C ∪{∞}, the completion
of C . More precisely, this bijection is given by (x, y, z) 7−→ x

1−z + i y
1−z , for z < 1, and N 7−→ ∞.

We can view C as the projectivization of C 2; this is the complex projective space of dimension
1:

C ∼= P(C 2) = P1
C .

Since any vector (ξ0, ξ1) ∈ C 2 is proportional to a unique vector of the form (1, ξ), where
ξ = ξ1/ξ0 if ξ0 6= 0, and to (0, 1) if ξ0 = 0, we have the bijective map

P1
C

∼= C

[ξ0 : ξ1] 7−→
{
ξ = ξ1/ξ0 if ξ0 6= 0
∞ if ξ0 = 0

[1 : ξ] ←− ξ
[0 : 1] ←− ∞

This is what justifies that we take H = C 2.

Definition 3.1. The sphere S2, with the structure of P1
C , is called the Riemann sphere, which

is the simplest compact Riemann surface.
However, in quantum contexts, it is often called the (Poincaré) Bloch sphere.

Remark 3.12. It is natural to analyze the discussion above in spherical coordinates. Let
P = (x, y, z) ∈ S2 ⊂ R3, ϕ = arg (x+ iy) and θ be the angle between OP and ON , where O is
the center of the sphere (0, 0, 0).
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Given the change of coordinates from spherical to Cartesian coordinates

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

one obtains the following expression for P (x, y, z) ∈ C :

ξ =
x

1− z + i
y

1− z =
sin θ cosϕ

1− cos θ
+ i

sin θ sinϕ

1− cos θ
=

sin θ

1− cos θ
eiϕ

This can be written in the more compact expression

ξ = eiϕ cot
θ

2
.

In P1
C , this corresponds to the point

[1 : eiϕ cot
θ

2
] ∼ [e−iϕ/2 sin

θ

2
: eiϕ/2 cos

θ

2
] ∈ P1

C ;

thus, we shall write in the chosen notation

P ←→ |p〉 = e−iϕ/2 sin
θ

2
|0〉+ eiϕ/2 cos

θ

2
|1〉 ∈ P1

C
∼= S2. (3.4)

In Fig. 3.1 we can see the representation of the Bloch sphere3.

Remark 3.13. Equation (3.4) allows for the following geometric interpretation of unitary ma-

trices U and rotations of S2: A unitary matrix U =

(
u0 u1

−u∗1 u∗0

)
can be viewed as a linear

map C 2 −→ C 2 such that the row vector ξ = [ξ0, ξ1] is transformed as ξ = ξUT .

In P1
C , it induces a projective map given by

[ξ0, ξ1] 7−→ [u0ξ0 + u1ξ1 : −u∗1ξ0 + u∗0ξ1],

Hence, we have a map U : C −→ C defined by

ξ 7→ u∗0ξ − u∗1
u1ξ + u0

, ∞ 7→ u∗0/u1,

where ξ = ξ1/ξ0. In turn, this corresponds to the map Ũ : S2 −→ S2 such that Ũ(P (ξ)) =
P (U(ξ)).

For instance, if UT is one of the following matrices,

Rz(α) =

(
e−i

α
2 0

0 ei
α
2

)
, Ry(β) =

(
cos(β2 ) − sin(β2 )

sin(β2 ) cos(β2 )

)
, Rx(γ) =

(
cos(γ2 ) i sin(γ2 )
i sin(γ2 ) cos(γ2 )

)

Then, R̃z(α), R̃y(β), R̃x(γ) are the rotations of angles α, β, γ around axis z, y, x, respectively
(positively-oriented, or following the right-hand rule).

3Any physical quantum system which can take two states can be a qubit. For example, we can choose a single
photon as our qubit and use its polarization as a degree of freedom to represent its states: If we say that |0〉 means

horizontally polarized and |1〉 vertically polarized (we have chosen a basis), then the points |0〉 + i|1〉, |0〉 − |1〉,
|0〉 − i|1〉 and |0〉+ |1〉 would be right circular polarization, 45o linear polarization, left circular polarization and
-45o linear polarization, respectively.
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|1〉

|0〉

|0〉+ i|1〉

x

y

z

|0〉 − i|1〉

|0〉 − |1〉

|0〉+ |1〉

θ

ϕ

Fig. 3.1. Bloch sphere for the representation of a qubit.

Finally, we recover Equation (3.4) from the transformation

|1〉 Rz(ϕ)Ry(θ)−→ |p〉 = e−iϕ/2 sin
θ

2
|0〉+ eiϕ/2 cos

θ

2
|1〉,

which, in S2, corresponds to

P = R̃z(ϕ)R̃y(θ)N.

3.4. Measurements

Axiom 3. Let X be a finite set and for x ∈ X an operator Vx ∈ B(H) such that∑
x∈X

V †x Vx = I.

This sum is also called a resolution of the identity. Such an indexed family of operators is a
model of a measurement with values in X . If the measurement is performed in a state ρ, then
the outcome x ∈ X appears with probability Tr(VxρV

†
x ) and, after the measurement, the state

of the system is

VxρV
†
x

Tr(VxρV
†
x )
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Remark 3.14. As a particular case, one can consider the measurement of an observable de-
scribed by a self-adjoint operator A with spectral decomposition

∑
i λiEi. In this case, X = {λi}

is the set of eigenvalues and Vi = Ei. We have already shown that the expectation of the random
outcome is Tr(ρA).

In the case of pure state vectors, if the wave function of the system, which immediately before the
measurement of observable A was in the state |ψ〉, immediately after the measurement collapses

onto the state Pn|ψ〉/
√
〈ψ|Pn|ψ〉, where Pn is the projection operator over the subspace corre-

sponding to an. All subsequent measurements of A will lead to the same result with probability
1 as the state has already collapsed [46, 47].

3.5. Composite systems

Axiom 4. The composite system of subsystems with associated Hilbert spaces H1 and H2 is
described by the tensor product Hilbert space H1 ⊗H2.

When Ai ∈ B(Hi), the action of the tensor product operator A1 ⊗A2 is determined by

(A1 ⊗A2)(|η1〉 ⊗ |η2〉) = A1|η1〉 ⊗A2|η2〉.
When A = A† is an observable of the first system, its expectation value in the vector state
|ψ〉 ∈ H1 ⊗H2 is

〈ψ|A⊗ I2|ψ〉,
where I2 is the identity operator acting on H2.
So, when we want to consider an observable acting on the total system, extending it by tensorizing
with identity operators on the rest of subsystems will suffice.

Notation 3.3. It is common the abuse of notation |e〉 ⊗ |f〉 ≡ |e〉|f〉 ≡ |e, f〉 ≡ |ef〉.
Lemma 3.1. If H1,H2 are finite dimensional Hilbert spaces, with respective basis {|ej〉} and
{|fi〉}. Let

|ϕ〉 =
∑
i,j

wij |ej〉 ⊗ |fi〉

be the expansion of a unit vector |ϕ〉 ∈ H1 ⊗H2 and W the matrix (wkl)kl. Then [51] W †W is
a density matrix and

〈ϕ|(A⊗ I2)|ϕ〉 = Tr(AW †W ).

This lemma shows a natural way from state vectors to density matrices. Given a density matrix
ρ in H1 ⊗H2, there exist density matrices ρi ∈ B(Hi) such that

〈A⊗ I2〉ρ = Tr((A⊗ I2)ρ) = Tr(Aρ1) = 〈A〉ρ1
and

〈I1 ⊗B〉ρ = Tr((I1 ⊗B)ρ) = Tr(Bρ2) = 〈B〉ρ2 .
The matrices ρ1 and ρ2 are called reduced density matrices and they are the quantum analogue
of marginal distributions. We also say that we have obtained the partial trace of one of the
subsystems or that we have ’traced out’ the rest of the subsystems. More precisely:

Tr2 : B(H1)⊗ B(H2) −→ B(H1)
A⊗B 7−→ A · Tr(B)
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Tr1 : B(H1)⊗ B(H2) −→ B(H2)
A⊗B 7−→ B · Tr(A)

so that we have
ρ1 = Tr2(ρ), ρ2 = Tr1(ρ)

3.6. State transformations

Axiom 5. If Σ lies in a non-reactive environment (i.e., the environment is not affected by Σ) in

the interval [0, t], there exists a unitary operator Û : H −→ H such that |ut〉 = Û |u0〉.
Example 3.4. Conservative systems.

When the Hamiltonian H of a system does not depend explicitly on time, we say that the system
is conservative. It is a result from classical mechanics that the energy E of the system is constant
in time (it is a constant of motion). In quantum mechanics context, the solution to Schrödinger
equation (3.1) can be written easily, once we know the eigenvalues En and the eigenvectors |n〉 of
the Hamiltonian operator H: H|n〉 = En|n〉; and they are time-independent too. The eigenstates
are called stationary states and if a system Σ is described by such states, its physical properties
do not change in time.

3.7. Entanglement: an introductory description

Let us consider the Hilbert space of two spins 1/2, which is C 2 ⊗C 2. In this space the vectors

|e1〉 := |↑〉 ⊗ |↑〉, |e2〉 := |↑〉 ⊗ |↓〉, |e3〉 := |↓〉 ⊗ |↑〉, |e4〉 := |↓〉 ⊗ |↓〉
form a basis. The vector state (known as EPR pair)

|φ〉 =
|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉√

2
(3.5)

has the following property:
If we consider the observable

A :=

4∑
i=1

i|ei〉〈ei|,

which has eigenvalues 1, 2, 3, 4 and the basis vectors are its eigenvectors.
When we perform a measure of the observable A on the system prepared in the state |φ〉 we
obtain the results 1, 2, 3, 4 with respective probabilities 0, 1

2 ,
1
2 , 0. Therefore, in the vector state

|ϕ〉 the spins are anti-correlated. This4 will be explained more precisely in Section 4.1.1.

We will treat this phenomenon, known as entanglement, in following chapters.

4If we perform a measurement on Hilbert space 1 and, say, it collapses to state |↑〉, the EPR pair will have

collapsed onto the state |↑〉⊗ |↓〉, so when performing a measurement on Hilbert space 2, we will measure |↓〉 with
probability 1. Similarly, if we measure Hilbert space 2 and the EPR pair collapses onto |↑〉, then |φ〉 will have
collapsed to state |↓〉 ⊗ |↑〉 (global phase is irrelevant) and in Hilbert space 1 we will be measuring state |↓〉 with
probability 1.

One could ask what happens if the measurements are performed simultaneously, or in causally disconnected
environments. This paradox will be solved in the next section, with Theorem 4.2.





Chapter 4

Quantum Probability

In this chapter is described how quantum probability is essentially different from classical prob-
ability (Kolmogorov’s axioms). We show how Hidden Variable Theories do not differ from quan-
tum mechanics via the CHSH inequality and a counterexample based on Aspect’s experiment.
We also introduce the need of *-algebras of operators and states to devise a non-commutative
probability theory [40].

We discuss the quantum impossibilities which arise when making probability non-commutative
(no cloning theorem, no-classical-coding theorem, or that information cannot travel faster than
light) as well as several quantum novelties which appear, such as quantum teleportation or
quantum dense coding.

4.1. Bell inequalities

Perhaps the most spectacular, counter-intuitive manifestation of quantum mechanics is the phe-
nomenon known as entanglement, which can be observed in composite quantum systems. Let us
discuss the problem. In the simplest case of a bipartite quantum system, we have

H = H1 ⊗H2

Definition 4.1. A pure state |ψ〉 ∈ H is said to be entangled or non-separable if it cannot be
written as a simple tensor product of a state |α〉1 ∈ H1 and |β〉2 ∈ H2. Otherwise, if we can
write

|ψ〉 = |α〉1 ⊗ |β〉2
the state |ψ〉 is separable (composite, or product state are names which can also be found in the
literature).

When two systems are entangled, we cannot assign them individual state vectors |α〉1 and |β〉2.
The intriguing non-classical properties of entangled states were illustrated by Einstein, Podolsky
and Rosen [23] in 1935, showing that quantum theory leads to a contradiction with the two
-apparently natural- assumptions below:

(i) Reality principle: If we can predict with certainty the value of a physical quantity, then
this value has physical reality, independently of our observation. E.g., if a system’s wave
function |ψ〉 is an eigenstate of an operator A: A|ψ〉 = a|ψ〉, then the value a of the

33
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observable A is an element of physical reality, as it will be the outcome of the measurement
of A with probability 1.

(ii) Locality principle: If two systems are causally disconnected, the result of any measurement
on one system cannot influence the result of a measurement performed on the second system.
According to relativity theory, two events are causally disconnected if (∆x)2 > c2(∆t)2,
where the inequality terms are separation in space, speed of light and separation in time,
respectively, in some inertial reference frame.

In quantum mechanics, if two operators Â, B̂ do not commute, then the two physical quantities
corresponding to the operators Â and B̂ cannot have simultaneous reality (we cannot predict

with certainty the outcome of a simultaneous measurement of both Â and B̂), since due to

Heisenberg’s principle, a measurement of Â destroys knowledge of B̂.

4.1.1. The CHSH inequality. A natural question arises: if we cannot predict with certainty
the outcome of measurements, maybe quantum mechanics is not complete, in the sense that
there may exist a hidden variable λ such that there is a well-defined characterization, in terms
of λ, of the probabilities associated to O(λ): the result obtained from the measurement of the
physical observable O, for all λ. This framework is known as ”Hidden Variable Theory”. In this
section we will show that, even with this assumption, local realism leads to a contradiction:

The distribution probability ρ(λ) of the variable λ needs to be such that the average values
predicted by quantum mechanics are recovered:

〈O〉 =

∫
O(λ)ρ(λ)dλ.

Now let us consider the EPR gedanken experiment:

We have a source S that emits pairs of spin-1/2 particles between Alice (A) and Bob (B) in the
entangled EPR state:

|φ〉 =
|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉√

2
=

1√
2

(|01〉 − |10〉)

The first particle is sent to Alice and the second is sent to Bob. According to Quantum mechanics,

if Alice measures the z component of the spin of her particle and obtains, let us say, σ
(A)
z = +1

then |φ〉 will collapse to |01〉 (|0〉 is the eigenstate of σz with +1 eigenvalue and |1〉 corresponds

to −1) and Bob will measure σ
(B)
z = −1 with probability 1. However, |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉) are the eigenstates of σx with respective eigenvalues +1,−1 and we can also

write |φ〉 = 1√
2
(|+−〉 − |−+〉); this means that if Alice measures, for instance, σ

(A)
x = +1, then

|φ〉 will collapse to |+−〉 and the state of the Bob’s particle collapses onto an eigenstate of σ
(B)
x .

This means that we cannot simultaneously assign an element of physical reality with both observ-
ables, and the reason is that they don’t have the same eigenstates; hence, they don’t commute:

[σ
(B)
x , σ

(B)
z ] 6= 0. Since Alice can choose which observable to measure, even after the particles

have separated an arbitrary distance, this contradicts the locality principle: she should not be
able to modify Bob’s particle. If we want to accept locality, then realism has to be dropped:
the wave function is not seen as a physical object, but just a mathematical tool to predict
probabilities for the outcome of experiments.
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Let’s now introduce a hidden variable to our model: We call A(a, λ) and B(b, λ) the results of
the measurements of the spin polarizations σ(A) · a and σ(B) · b along the directions a and b,
performed by Alice and Bob, respectively.

According to the locality principle, the outcome of Alice’s measurements cannot depend on the
outcome of Bob’s measurements. This means that the mean value of the correlations between
their polarization measurements is given by

C(a, b) =

∫
A(a, λ)B(b, λ)ρ(λ)dλ.

For instance, quantum mechanics predicts perfect anticorrelation for the Bell state when a = b
and therefore C(a,a)quantum = −1.

We will compute C(a, b)− C(a, b′) and bound this quantity:

C(a, b)− C(a, b′) =

∫
(A(a, λ)B(b, λ)−A(a, λ)B(b′, λ))ρ(λ)dλ =∫

A(a, λ)B(b, λ)(1±A(a′, λ)B(b′, λ))ρ(λ)dλ−
∫
A(a, λ)B(b′, λ)(1±A(a′, λ)B(b, λ))ρ(λ)dλ

Observe that |A(a, λ)| = |B(b, λ)| = 1, since they are polarization measurements; also, ρ(λ) ≥
0∀λ. Thus,

|C(a, b)− C(a, b′)| ≤
∫

(1±A(a′, λ)B(b′, λ))ρ(λ)dλ+

∫
(1±A(a′, λ)B(b, λ))ρ(λ)dλ,

which can be rewritten as

|C(a, b)− C(a, b′)| ≤ ±(C(a′, b′) + C(a′, b)) + 2

∫
ρ(λ)dλ.

Therefore,

|C(a, b)− C(a, b′)| ≤ − |C(a′, b′) + C(a′, b)|+ 2

∫
ρ(λ)dλ,

Using the normalization
∫
ρ(λ)dλ = 1 we arrive at the

Clauser, Horne, Shimony and Holt (CHSH) inequality [16]:

|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)| ≤ 2. (4.1)

Remark 4.1. The main point is that there exists a set of directions (a, b,a′, b′) such that,
considering entangled states, quantum mechanics violates the CHSH inequality.

An example of such set of directions is represented in Fig. 4.1.

Example 4.1. For the set of directions shown in Fig. 4.1, and the EPR state |φ〉, quantum
mechanics predicts that C(a, b) = −a ·b = − cos(θab), being θab the angle between the directions
a and b; thus we have

{|C(a, b)− C(a, b′)|+ |C(a′, b′) + C(a′, b)|}quantum =

|− cos θ + cos 3θ|+ |− cos θ − cos θ| = 2
√

2 6≤ 2

when θ = π/4.
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Fig. 4.1. Choice of directions that lead to a violation of the CHSH inequality
with θ = π/4. With two polarizers oriented according to a and b we obtain the
correlation function C(a, b).

4.2. Classical-quantum probability

In classical probability, according to Kolmogorov’s axioms (∼ 1930) a probability space (Ω, σ,P)
is determined by giving a set Ω of outcomes ω, a σ-algebra σ which specifies which subsets
S ⊂ Ω, S ∈ σ, which are to be considered as events, and by associating a probability function
P(S) ∈ [0, 1] to each one of these events.

Remark 4.2. The σ−algebra of events σ is a collection of sets closed with respect to all possible
(countable) unions and intersections of its elements, which are called measurable.
The probability measure P must be σ-additive; namely, the probability of any union S =

⋃
j Sj of

disjoint measurable subsets Sj∩Sk = ∅, must be the sum of the probabilities of the corresponding
subsets, P(S) =

∑
j P(Sj) and normalized P(Ω) = 1.

Remark 4.3. This is a special case of measure theory, in which the measure P is not restricted
to be between 0 and 1.

In quantum probability, we will weaken this scheme. We abandon the notion that a point ω ∈ Ω
decides about the occurrence or non-occurrence of all events in a simultaneous way. It should be
natural by now if we take as events certain closed subspaces of a Hilbert Space or, equivalently,
a set of projections to which we will associate probabilities.

More precisely,
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(1) The set E of all events of a quantum model must be the set of projections in some ∗-algebra
A of operators on H.

(2) The probability function P : E −→ [0, 1] must be σ-additive.

4.3. *-algebras of operators and states

Definition 4.2. By a (unital) *-algebra of operators on H we mean a subspace A ⊂ B(H) of
the space of all linear maps A : H −→ H such that I ∈ A and

A,B ∈ A ⇒ λA,A+B,A ·B,A† ∈ A.

A state on A is a linear functional ϕ : A −→ C satisfying

(1) ∀A ∈ A, ϕ(A†A) ≥ 0,
(2) ϕ(I) = 1.

A pair (A, ϕ) is a quantum probability space.

Example 4.2. Let P1, P2, . . . , Pk be mutually orthogonal projections on H, with sum I.

Their linear span

A =


k∑
j=1

λjPj | λj ∈ C


forms a unital *-algebra of operators on H. If ψ is some unit vector in H, it determines a state
ϕ by ϕ(A) := 〈ψ, Aψ〉H. The probabilities of this model are pj := ϕ(Pj) = ‖Pjψ‖2, and they
correspond to classical probabilities, since mutually orthogonal projections commute.

Example 4.3. Let A be the *-algebra of all complex n× n matrices, A = Mn(C ). Let A ∈ A
and ϕ(A) := Tr(ρA), where ρ ≥ 0 and Tr(ρ) = 1.

A is thought as an observable if A = A† and the expected value of the observable A, given
that the system is in the state ϕ, is ϕ(A). This corresponds to the purely quantum mechanical
situation.

As particular cases, n = 2 corresponds to the qubit described in Section 3.3. If the state is pure,
that is, ρ = |ψ〉〈ψ|, for some unit vector |ψ〉 ∈ H, then the expected value of the observable A
is ϕ(A) = Tr(ρA) = Tr(|ψ〉〈ψ|A) = Tr(〈ψ|A|ψ〉) = 〈ψ|A|ψ〉; moreover, if all the matrices in A
commute, we are in the previous example situation.

4.4. Quantum impossibilities

Theorem 4.1. (No-cloning)
Let |s〉 ∈ H. There does not exist a unitary evolution U such that

|ψ〉 ⊗ |s〉 U7−→ U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉
for all |ψ〉 ∈ H.
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Proof: If this procedure works for two particular pure states, |ψ〉, |ϕ〉 ∈ H, then we have

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

and

U(|ϕ〉 ⊗ |s〉) = |ϕ〉 ⊗ |ϕ〉.

Since U is unitary and |s〉 is a pure state, taking the scalar product of the previous equations
implies

〈ψ|ϕ〉 = (〈ψ|ϕ〉)2,

which means that, either |ψ〉 = |ϕ〉 or |ψ〉 and |ϕ〉 are orthogonal states. ut

Remark 4.4. If a quantum device were to clone quantum states, it could only clone states
orthogonal to one another. For example, it could not copy |0〉 and 1√

2
(|0〉 − |1〉) since they are

not orthogonal states.

Theorem 4.2. (No faster than light communication)
Information cannot travel faster than light’s speed c.

The non-locality of quantum entangled states does not allow any transmission of information
faster than light; thus, it does not conflict with special relativity [23, 26, 48].

Before discussing the general theorem, let us discuss a simple example.

Example 4.4. Let an entangled pair be shared between two observers, Alice and Bob. Alice
performs on her particle a spin test along the z-direction. She obtains perfectly random outcomes
in {−1, 1}, each with the same probability, forming a sequence. If Bob (sufficiently separated)
performs the same test, he will obtain perfectly correlated results. However, his results are also
perfectly random and Bob has no way to know if Alice performed a measurement unless they
use classical communication.
If Bob were able to clone each particle he receives, the situation changes: Creating 4N copies of
Bob’s particle, suppose Alice chooses to perform a test along the z-direction or along a direction
at 45o with respect to z. Bob then sends N copies to 4 different apparatuses, measuring in the
directions z,−z or the two conjugate of the second basis.
Let us assume the entangled pair corresponds to the Bell state described by (3.5). When Alice
gets outcome 1 (−1) in the z basis, Bob’s results will be N (0) giving outcome −1 and 0 (N)
giving outcome −1, in the same basis. In the other basis, the results will be completely random
(since the state and the measurement basis are not orthonormal) and he will expect to get N/2
particles per result. When Alice measures in the second basis, an analogous result applies for
Bob.
Therefore, by simply inspecting which detector counts 0 events, Bob can know which basis Alice
used to measure her state, a knowledge that could be easily used to implement faster than light
communication.
Nevertheless, Theorem 4.1 does not allow for such scheme.

Let us now sketch the proof of Theorem 4.2:

Suppose we perform a POVM on the subsystem Σ1 of a composed system Σ1 + Σ2 described by
the statistical operator ρ12. This corresponds to projecting onto an eigenstate |s〉, an operation
which we can describe with the projection operator P 1

s = |s〉〈s|.
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Alice performs a measurement on Σ1; thus, the state becomes now

ρ12 = ρ′12 =
∑
s

P 1
s ρ12P

1
s .

All information on Σ2 is contained in the reduced statistical operator ρ2, which we obtain tracing
out Σ1:

ρ2 = Tr1(ρ′12) = Tr1

(∑
k

P 1
k ρ12P

1
k

)
=
∑
k

Tr1

(
P 1
k ρ12P

1
k

)
.

By using the properties of the Trace (1.1), it follows that

ρ2 =
∑
k

Tr1

(
P 1
k ρ12P

1
k

)
=
∑
k

Tr1

(
P 1
k ρ12

)
= Tr1

(∑
k

P 1
k ρ12

)
= Tr1ρ12,

which is the exact reduced density operator one would have obtained if no measurement on Σ1

had been performed.

Remark 4.5. It is not possible to distinguish whether a measurement on Σ1 has been made by
performing measurements only on Σ2.

The following theorem [40] is closely related to 4.1: It is not possible to operate on a quantum
system, extract some information from it, and then reconstruct the quantum system to its original
state by using this information.

Theorem 4.3. (No classical coding)
Let A and B be *-algebras and let C : B −→ A and D : A −→ B be operations (coding and

decoding), such that C ◦D = idA. Then,

B is Abelian⇒ A is Abelian.

4.5. Quantum novelties

In the previous section, we have seen certain -somewhat strange- limitations that quantum oper-
ations are subject to. Let us now treat the other side of the coin: quantum mechanics allows for
new surprising possibilities. In this section, we will not treat the really sensational novelties, such
as very fast computation and secure cryptography. Here we shall treat quantum teleportation
and quantum dense coding.

Example 4.5. Quantum dense coding
Quantum dense coding is a quantum communication protocol addressed to transmit 2 bits of
information in a single qubit. The idea is the use of an entangled Bell state, e.g.,

|ψ+〉 =
|0〉|1〉+ |1〉|0〉√

2
.

Alice keeps one particle, whereas the other is sent to Bob, who can perform one of the following
actions:

1. an identity operation;
2. a state flip; namely, |0〉 ←→ |1〉;



40 4. QUANTUM PROBABILITY

3. a state-dependent phase shift; namely, a phase shift differing by π for the two qubits;
4. the two previous steps together.

This allows for the generation of all Bell states; namely,

|φ+,−〉 =
|0〉|0〉 ± |1〉|1〉√

2
, |ψ+,−〉 =

|0〉|1〉 ± |1〉|0〉√
2

.

Thus, if Bob sends back his particle to Alice, she can obtain two bits, by measuring the Bell
state of the pair [2, 40, 48].

Example 4.6. Quantum teleportation
Suppose that Alice wishes to send to Bob the quantum state ρ over a (classical) telephone line.
Theorem 4.3 states that, without further tools, this is impossible.

If Alice and Bob share an entangled pair, then Alice is indeed able to transfer her qubit to Bob
[2, 40, 48, 49]. The destruction of the original state ρ cannot be avoided; otherwise Alice and
Bob would have copied the state ρ, contradicting Theorem 4.1. This is the main reason for the
name teleportation.



Chapter 5

Field Theoretical Methods

In this chapter, we consider the main lines that involve Field Theoretical Methods, as a bridge
from theory to practical implementations (which physics are involved in the control of a quantum
procedure and how they can be applied to perform it) [3, 21, 41, 69].

The exposition one can find in the literature of this subject is quite standard and slightly varies
from different authors. We have chosen to base it on [3] for its simplicity and straightforwardness.

This chapter aims to set up the basis for comprehending the experiments described in Part 4, as
well as to give a more applied justification of the axioms presented in the previous chapter (For
example, compare Axiom 4 and Equation (5.11)).

5.1. Quantum Harmonic Oscillator

In quantum optics, a quantum harmonic oscillator provides a good model for a single mode of
radiation confined in an optical cavity −the classical variables q and p corresponding to position
and momentum, respectively, can be seen as the amplitudes of the magnetic and electric fields,
respectively, in the quantum case−.

The Hamiltonian of a classical harmonic oscillator, described in terms of canonical position and
momentum variables q and p, is

H(q, p) =
1

2
(
p2

m
+mω2q2),

where ω is its angular frequency and m is its mass.

We can safely make the assumption that m = 1 by choosing the appropriate units of measure.

Thus, the Hamiltonian becomes

H(q, p) =
1

2
(p2 + ω2q2). (5.1)

The solution of the Hamilton’s equations of motion, which are

dq

dt
=

∂

∂p
H(q, p) = p,

dp

dt
= − ∂

∂q
H(q, p) = −ω2q,

41
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can be written in a more convenient form using a complex amplitude z = ωq + ip:

dz

dt
= −iωz, z(t) = z(0)e−iωt.

The Heisenberg approach to quantization consists in replacing the classical variables q, p by
non-commuting self-adjoint operators, q̂ and p̂, acting on a Hilbert space H.

Remark 5.1. q̂ = q corresponds to the position operator and p̂ = −i~ ∂
∂q corresponds to the

momentum operator. Also, note that the first term in (5.1) is the kinetic energy of the particle
and the second term is the potential energy.

We want to find the energy levels E and its corresponding energy eigenstates |ψ〉, such that

1

2
(p̂2 + ω2q̂2)|ψ〉 = E|ψ〉.

The differential equation can be solved by standard means, leading to a family of solutions

|ψn〉 = ψn(q) =

√
1

2nn!
· 4

√
ω

π~
· e−ωq

2

2~ Hn

(√
ω

~
q

)
, n ∈ N ∪ {0}, (5.2)

whereHn(x) is the Hermite polynomial Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

. The corresponding energy

levels are En = ~ω(n+ 1
2 ).

Although straightforward, this spectral method solution is rather tedious. We will use the ladder
operator method, which is due to Paul Dirac, and enables us to extract the energy eigenvalues
without directly solving the differential equation. Moreover, it can be easily generalized to more
complicated problems in Quantum Field Theory.

We want p̂ and q̂ to satisfy the following canonical commutation relation:

Definition 5.1. A canonical commutation relation (CCR) is of the form

[q̂, p̂] := q̂p̂− p̂q̂ = i~.

A normalized quantum complex amplitude is

â =
1√
2~ω

(ωq̂ + ip̂).

Its hermitian conjugate â† satisfies the CCR [â, â†] = 1.

We also define the operator n̂ = â†â, and consider its set of normalized eigenvectors |n〉 satisfying
[3]:

n̂|n〉 = n|n〉, n = 0, 1, 2, . . . , 〈n|n′〉 = δn,n′ .

The CCR implies the following formulas:

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, n = 0, 1, 2, . . . , (5.3)

which justify the names annihilation, creation and particle number for the respective operators

â, â†, n̂.
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Thus, one has the quantum Hamiltonian

Ĥ = ~ω
(
â†â+

1

2

)
, (5.4)

which corresponds to the quantization of (5.1) by a simple calculation. However, the constant
~ω/2 is irrelevant and we normally use as Hamiltonian for the harmonic oscillator the operator

Ĥ0 = ~ωâ†â. (5.5)

Its eigenstates are |n〉 and its eigenvalues correspond to En = ~ωn. The ground state |0〉 is called
the vacuum.

Any classical observable F (q, p) can be thought as F (q, p) ≡ F (α, α∗) =
∑
k,l

ckl(α
∗)kαl, where

α = 1√
2~ω (ωq + ip).

In order to define its quantum counterpart

F̂ =
∑
k,l

ckl(â
†)kâl,

one has to consider the normal ordering that Wick’s theorem [21, 70] guarantees, and which
states that a string of creation and annihilation operators can be expressed as a sum of normal
ordered terms using contractions.

The time evolution of â in Heisenberg picture is given by

â(t) = e(
i
~ Ĥ0t)âe(−

i
~ Ĥ0t).

Differentiating both sides of the previous equation and using the CCR [Ĥ0, â] = −~ωâ one
obtains [3]

â(t) = e−iωtâ.

Therefore, all quantum observables written in terms of the normal ordering evolve in Heisenberg
picture in a similar way to their classic counterparts:

F̂ (t) =
∑
k,l

ckle
iωt(k−l)(â†)kâl.

5.1.1. The Weyl Unitary Operators. The position and momentum operators q̂, p̂ define a
quantum phase space (in this case, a plane). There is a natural notion of translation operators,
which are called displacement operators or Weyl unitaries.

Definition 5.2. A Weyl unitary operator is

Ŵ (α) = eαâ
†−α∗â, α ∈ C .

Remark 5.2. The notion of displacement comes from the fact that, using CCR, one can easily
prove [3]

Ŵ (α)âŴ (α)† = â− α,
which means that a shift in position and momentum occurs such that α = (ωq + ip)/

√
2~ω.

Properties 5.1. The Weyl unitaries have the following properties:
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• Ŵ (0) = I
• Ŵ (−α) = Ŵ (α)†

• Ŵ (α)Ŵ (β) = ei=(αβ∗)Ŵ (α+ β), where =(a) is the imaginary part of a ∈ C .

In order to prove the third property one can use the operator identity

eÂeB̂ = e(
1
2 [Â,B̂])eÂ+B̂ ,

which is valid if the following condition holds:

[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0.

Finally, one has the formal composition formulas

Ŵ (α) = e−
|α|2
2 eαâ

†
e−α

∗â = e
|α|2
2 e−α

∗âeαâ
†
. (5.6)

5.1.2. Coherent States. Now, shifting the vacuum vector |0〉 by Weyl unitaries, we can obtain
the following:

Definition 5.3. A family of coherent states (or exponential vectors) is defined as

|α〉 = Ŵ (α)|0〉, α ∈ C .

Properties 5.2. Coherent vectors possess the following properties, which makes them interest-
ing:

• They are linearly independent, yet not orthogonal eigenvectors of the operator â, which is
non-self-adjoint:

â|α〉 = α|α〉, 〈α|β〉 = e−
|α|2
2 −

|β|2
2 +α∗β , (5.7)

forming an over-complete set, i.e.,

I =
1

π

∫
C
d2α|α〉〈α|.

• The representation of |α〉 in terms of particle number eigenvectors is

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉.

Note this implies that the probability distribution of the particle number is Poissonian with
parameter |α|2:

|〈n|α〉|2 = e−|α|
2 |α|2n
n!

= p(n, |α|2).

• The mean value of a normally ordered operator F̂ coincides with its classical counterpart:

〈α|F̂ |α〉 = F (α∗, α) =
∑
k,l

(α∗)kαl.

Furthermore, a coherent state evolves into a coherent state, following the classical trajectory

e(−
i
~ Ĥ0t)|α〉 = |α(t)〉, α(t) = e−iωtα.
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• Considering the Hilbert space H = L2(R) and the position and momentum operators given
by

(q̂ψ)(x) = xψ(x) (p̂ψ)(x) = −i~ d
dx
ψ(x),

one can write the condition (5.7) â|α〉 = α|α〉 and immediately obtain the linear differential
equation (for |α〉 = ψ(x) ∈ H):

d

dx
ψ(x) =

1

~
(ip− ω(x− q))ψ(x),

with normalized solution (which has a similar form to (5.2), as expected)

φα(x) = (π~)−1/4e(
i
~px)e(−

ω
2~ (x−q)2),

which is the wave function for the coherent state |α〉. This is called the Schrödinger position
representation.
One can obtain the momentum representation of the coherent state via the Fourier trans-
form of φα(x):

φ̃α(v) = (π~)−1/4e(
i
~ q(p−v))e

(
− (v−p)2

2ω~

)
.

• If we compute the corresponding Gaussian probability distributions |φα(x)|2 and
∣∣∣φ̃α(v)

∣∣∣2,

then for coherent states the Heisenberg uncertainty relation ∆q̂∆p̂ ≥ ~/2 reaches the equal-

ity when there is symmetry between position and momentum, i.e., ∆q̂ =
√
~/2ω,∆p̂ =√

~ω/2. This means that the coherent vector gives the best quantum analogue of the
classical state which is located at the point (q, p) in the phase-space.

As an example of the operativity involved, we shall indicate the proofs of the first two points:
The parametrization α = ReiΘ, d2α = R dR dΘ and then integrating first over Θ leads to the
desired result.
It is easy to obtain

(â†)|0〉 =
√
n!|n〉 (5.8)

and then

|α〉 = Ŵ (α)|0〉 = e−
|α|2
2 e(αâ†)|0〉,

where we used the formal composition formulas (5.6) applied to the state |0〉 using (5.3). Thus,
one finally arrives at

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉.

5.2. Quantum Bosonic Fields

The theory of quantum bosonic fields has two interpretations: The first treats it as a quantization
of the classical macroscopic field theory (e.g. classical electrodynamics or acoustic waves in
solids); the second, as a theory of many-body systems consisting of quantum particles, each of
which is described by a suitable wave equation −this is called second quantization−. In this case
Maxwell equations are treated as the Schrödinger equation for a single photon.
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5.2.1. Quantization of Classical Fields. To begin with the theory of quantum bosonic fields
from the first point of view, we will introduce the formalism of classical field theory, which is
convenient for describing macroscopic properties and fundamental interactions (gravitational,
electromagnetic, etc.) and for providing simplified continuous models of many-body systems
(acoustic waves).
A classical field is a (generally multi-component) function φ(x; t) which satisfies some linear
wave equation. For mathematical simplicity, we shall consider a real scalar field in a finite region
Ω ⊂ Rn, n = 1, 2, 3 with specific boundary conditions.
The particular solutions (complex-valued) of the wave equation with periodic time dependence
may be written as

uk(x, t) = e−iω(k)tuk(x),

where k is a certain multi-index identifying the modes uk. These modes satisfy the orthogonality
conditions for some normalization constants ck:∫

Ω

dx u∗k(x)ul(x) = ckδkl.

Remark 5.3. Applying the superposition principle, any solution f of the wave equation can be
written in terms of modes and amplitudes αk ∈ C

f(x, t) =
∑
k

(αk(t)uk(x) + α∗k(t)u∗k(x)), αk(t) = αke
−iω(k)t.

Remark 5.4. As the wave equation is assumed to be linear, this suggests a quadratic dependence
of the corresponding energy.
The energy of the field f(x, t) is given by the quadratic form

E(f) =

∫
Ω

drxf(x, t)D̂f(x, t), x ∈ Rr,

where D̂ is a differential operator whose form depends on the wave equation.

Remark 5.5. The modes uk are eigenfunctions of D̂:

D̂uk = λkuk.

If we choose as normalization constants ck =
√

~ω(k)
2λk

and use the superposition principle, then

the energy can be written in terms of the complex amplitudes as

E(f) =
∑
k

~ω(k)α∗kαk.

The step to quantization now is to replace the complex amplitudes αk, α
∗
k by a set of independent

annihilation and creation operators âk, â
†
k satisfying a general form of CCR

[âk, â
†
l ] = δkl, [âk, âl] = [â†k, â

†
l ] = 0 (5.9)

Thus, one defines the quantum Hamiltonian for the field in the bounded region as follows:

ĤF =
∑
k

~ω(k)â†kâk

and the oscillations of the quantum amplitudes are

âk(t) = e(
i
~ ĤF t)âke

(− i
~ ĤF t) = e−iω(k)tâk,

and similarly for the case of a simple quantum harmonic oscillator with Hamiltonian Ĥ0.
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Remark 5.6. This shows that a quantum field in a finite space region is equivalent to a possibly
infinite family of independent quantum harmonic oscillators.

Now, the quantum analogue of the classical field is the operator-valued function

f̂(x, t) =
∑
k

(âke
−iω(k)tuk(x) + â†ke

iω(k)tu∗k(x)).

5.2.2. The Fock Space. For the quantized field, its Hilbert space can be treated formally as
the Hilbert space of a family of harmonic oscillators; this is a tensor product of single-oscillator
Hilbert spaces

⊗
kHk. When there is an infinite number of modes, the mathematical problem

becomes subtle, so one constructs explicitly the appropriate Hilbert space, denoted by F and
called Fock space.

Definition 5.4. The Fock Space F is spanned by a countable family of vectors which form an
orthonormal basis denoted by |{nk}〉 = |nk1 , . . . , nkm〉. That is, nk is an arbitrary sequence of
non-negative integer numbers with finitely many non-zero elements denoted by nkj .

Remark 5.7. The interpretation of this vector is a quantum state of the field, for which we
observe nk particles (excitations) corresponding to mode uk. In this picture, called particle
number representation, the modes uk span the single-particle Hilbert space H1 and the particles
are indistinguishable.

Formula (5.8) motivates

|nk1 , . . . , nkm〉 =
(â†k1)nk1√

nk1 !
·

(â†k2)nk2√
nk2 !

· · ·
(â†km)nkm√

nkm !
|0〉, (5.10)

which can be used as a consistent definition of the creation operators â†k, which increase by one
the number of particles in the state (mode) uk.

Computing its adjoint one arrives at

âk|. . . , nk, . . .〉 =
√
nk|. . . , nk − 1, . . .〉.

Remark 5.8. It is easy to check that the CCR (5.9) are fulfilled and the states |{nk}〉 are joint

eigenvectors for the particle number operators n̂k = â†kâk:

n̂k|{nk}〉 = nk|{nk}〉.
Definition 5.5. We shall denote by HN the subspace of F spanned by the vectors |{nk}〉, where
N = Σknk.

Then, the Fock space can be decomposed into a direct sum

F =

∞⊕
N=0

HN .

The subspace H0 is a one-dimensional ray generated by the vacuum |0〉.
The single-particle Hilbert space H ≡ H1 is a complex space spanned by the vectors â†k|0〉.
This single-particle Hilbert space can be identified with a complex Hilbert space containing the
linear combinations of the normalized modes ek(x):
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φ(x) =
∑
k

φkek(x), ek(x) =

√
2λk
~ω(k)

uk(x),

and its scalar product is given by

〈φ|ψ〉 =

∫
Ω

dxφ∗(x)ψ(x) =
∑
k

φ∗kψk.

Finally, the N -particle Hilbert space HN is spanned by the vectors uk1uk2 · · ·ukN −note that
the same mode can appear many times and the order in which we perform the multiplication is
irrelevant−. Therefore, the structure of HN is the same as the N -fold symmetric tensor product.
More precisely, if we introduce the permutation operator

Sπφ1(x1)φ2(x2) · · ·φN (xN ) = φπ(1)(x1)φπ(2)(x2) · · ·φπ(N)(xN ), π ∈ SN ,

then we have

HN =
1

N !

∑
π∈SN

Sπ(H⊗N ).

Remark 5.9. Thus, the Fock space can be viewed as an exponential of the underlying single-
particle Hilbert space H:

F(H) =

∞⊕
N=0

1

N !

∑
π∈SN

Sπ(H⊗N ).

5.2.3. Local Structure of Quantum Fields. By comparison of orthonormal bases of the
Hilbert spaces which appear on both sides of the following equation can be seen that the following
relation holds:

F(H⊕K) = F(H)⊗F(K).

Now, let’s consider that the single-particle Hilbert space H possesses a natural local structure,
due to the x-dependence of its elements, which are complex wave functions φ(x), as stated in
the previous section.

If we decompose the space region Ω into pairwise disjoint subsets

Ω = Ω1 t Ω2 t · · · t Ωk,

then any wave function can be written as an orthogonal sum of wave functions, each one localized
in the corresponding Ωj .

This generates a corresponding decomposition of the wave function:

φ(x) = φ1(x)⊕ φ2(x)⊕ · · · ⊕ φk(x)

and, consequently, of the Hilbert space:

H = K1 ⊕K2 ⊕ · · · ⊕ Kk.
Thus, we obtain the following decomposition of the Fock space:

F(H) = F(K1)⊗F(K2)⊗ · · · ⊗ F(Kk). (5.11)

Remark 5.10. The physical meaning of equation (5.11) is that the quantum field, localized in
a certain subset Ωj ⊂ Ω, is a physical subsystem of the total system, which is localized in Ω.
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Example 5.1. Photons, phonons, spin and statistics.
The most important example of a quantized field is an electromagnetic field in vacuum.
We will begin by considering Maxwell’s classical field equations for the electric and magnetic
fields E(x, t),B(x, t), which we shall write in a more compact notation using a complex vector
field Z(x, t) = E(x, t) + iB(x, t).

Maxwell equations then are

∇ ·Z = 0,
∂

∂t
Z = −ic∇×Z.

Introducing periodic boundary conditions in a cubic box L3, we can find solutions of Maxwell
equations in terms of plane waves:

Z(x, t) = Z0e
i(k·x−ω(k)t),

with k and Z0 satisfying the orthogonality conditions

k ·Z0 = 0, ick ×Z0 = ω(k)Z0.

The values that k can take are discrete: k = 2π
L (m1,m2,m3),ml ∈ Z and the dispertion law

ω(k) = c |k| holds.
As the wave vector k, the electric field and the magnetic field are mutually orthogonal, we have
two possible polarizations of the plane wave, which we shall denote by the index λ = ±1.
Finally, the energy is given by the quadratic form

E =
1

8π

∫
dx(E2 +B2) =

1

8π

∫
dxZ∗ ·Z,

so that we can apply the quantization procedure mentioned above and introduce annihilation

and creation operators âk,λ, â
†
k,λ for plane waves with given wave vectors and polarizations.

The quantized electric field we obtain is

Ê(x) = i
∑
k,λ

(
2π~c |k|
L3

)1/2

ek,λ(eik·xâk,λ − e−ik·xâ†k,λ).

Remark 5.11. In order to quantize the oscillations of interacting atoms, ions, or molecules in a
solid state, we associate with any normal oscillation mode (described by the wave vector k and
the index α corresponding to the possible kinds of oscillations e.g. three polarizations of acoustic

modes, different branches of optical modes...) annihilation and creation operators âk,α and â†k,α
and a dispersion law ω(k, α). Note that in contrast to electromagnetic waves, the number of
modes is finite and proportional to the volume. The particles corresponding to this picture are
called phonons.

Remark 5.12. The multi-particle structure of the Fock space suggests its direct application to
the description of many-body systems which consist of particles not associated with macroscopic
classical fields in an obvious way.
However, from relativistic quantum field theory, it follows that only particles with an integer
spin S = 0, 1, 2, . . . called bosons can be described with the mentioned formalism. Examples of
such particles are photons, pions, W ,Z-bosons.
For particles with a spin S = 1/2, 3/2, . . ., called fermions (e.g. electrons, protons, neutrons),
Pauli’s exclusion principle must be satisfied, and this implies that the possible eigenvalues of the
particle number operators n̂k should be equal to 0 or 1.
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In order to fit this requirement into our theory, a second quantization procedure must be made,
this time involving canonical anti-commutation relations instead of CCR.

Remark 5.13. We say that bosons obey Bose-Einstein statistics, while fermions are subjected
to Fermi-Dirac statistics.

5.3. 2nd Quantization of Fermions

Remark 5.14. Pauli exclusion principle.
In contrast to bosons, two or more fermions cannot macroscopically occupy a single quantum
state. Therefore, a wave function of a fermion has no classical meaning of a measurable macro-
scopic field. However, we can describe many fermion systems in terms of the second quantization,
which is very similar to the Bosonic one. The procedure is as follows:
Choosing again a certain collection of modes {uk}, which are solutions of a single-fermion

Schrödinger equation, we can define the corresponding annihilation and creation operators ĉk, ĉk
†.

To fulfill the requirement that the particle number operators must have only 0, 1 eigenvalues that
can be achieved imposing the following canonical anti-commutation relations (CAR):

{ĉk, ĉ†l } = δkl, {ĉk, ĉl} = {ĉ†k, ĉ
†
l } = 0,

being {Â, B̂} = ÂB̂ + B̂Â. Therefore, paricle number operators satisfy the relations

n̂2
k = n̂k, [n̂k, n̂l] = 0.

Example 5.2. Fock Space
The minimal Hilbert space, called Fermionic Fock space and denoted by Fa, that supports the
structure of operators described in this section is spanned by the Fock vectors that are the joint
eigenvectors of all n̂k:

n̂k|{nk}〉 = nk|{nk}〉, nk ∈ {0, 1}.

Now, for any N = 0, 1, 2, . . . we define a subspace of Fa, spanned by the vectors |{nk}〉 with∑
k nk = N and we shall denote it HaN .

De decomposition of the Fock space into a direct sum reads

Fa =

∞⊕
N=0

HaN .

However, HaN is the antisymmetric tensor product spanned by the antisymmetrization of the
formal products uk1uk2 · · ·ukN and now each mode can only appear once.

The subspace Ha0 is a one-dimensional ray generated by the vacuum |0〉. The single-particle
Hilbert space H = Ha1 is spanned by the modes uk.

Its local structure is described by the same relation as for the bosonic case:

F(Ha ⊕Ka) = F(Ha)⊗F(Ka).

Remark 5.15. Thus, we have seen that the structure is similar for Bosons and Fermions: The
Fock space of a direct sum turns into the tensor product of Fock spaces.

However, note that Symmetric Algebra corresponds to Bosonic particles, whereas Exterior Al-
gebra corresponds to Fermions.
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Chapter 6

Quantum Algorithms and Computing

In this chapter we introduce a circuit model to support the representation of a quantum com-
puter and present some examples. We present algorithms which are subroutines used in many
(more specific) algorithms, like the Quantum Fourier Transform, and we also give some complete
algorithms, i.e., programs which end with a measurement process. We make the distinction be-
tween categoric algorithms (which give always the same result with certainty) and probabilistic
algorithms (which may not always give the same result) and analyze it consequences.

In particular, we present the algorithms which have had the most serious implications (Deutsch-
Josza, Simon, Shor, Grover, Phase estimation) and we treat the more general framework of the
Hidden Subgroup Problem. We finally analyze the dependencies of the main quantum algorithms
known. [31, 32, 48, 44, 50, 51, 56, 65].

6.1. Introduction

In the 1980s, Feynman was the first to consider quantum mechanics from a computational point
of view [24]; he observed that the simulation of quantum mechanical systems on a classical
computer seemed to require an increase in complexity which was exponential in the size of the
system. To circumvent this exponential overhead, he asked if it was possible to design a universal
quantum computer [25]. Deutsch [18] was the first to exhibit a concrete computational task
which admitted a quantum algorithm strictly more efficient than the best classical algorithm
solving the same problem, as we shall see in this chapter. The most striking demonstration
of the computational power of quantum computers was given by Peter Shor [60] in 1994, who
exhibited efficient quantum algorithms for factoring integers and for computing the discrete
logarithm and has definitely marked a milestone in this field, since many cryptographic systems
nowadays rely on the difficulty of these problems.

6.2. Circuit Model

One can describe a classical computer by means of a circuit which takes as input a string of bits
from {0, 1}n, processes them by a succession of logical gates such as NOT, OR, AND, NAND...
and produces output bits, which can be viewed as Boolean functions f : {0, 1}n −→ {0, 1}.
According to Feynman’s model, a quantum computer obeys quantum mechanics, rather than
Maxwell physics. This has important implications in the context of computation:

53



54 6. QUANTUM ALGORITHMS AND COMPUTING

• The states describing the machine are wave functions: Each basic unit of computation -
qubit- can be thought as a two-dimensional complex vector of norm 1 in a Hilbert space
with basis {|0〉, |1〉}. The basis states can be thought as the states of a classical bit, 0, 1.
• The dynamics governing the evolution of the state in time is unitary. A unitary matrix

transforms the state at a certain time to the state at a later time.
• A second dynamical ingredient is measurement. The observation of a system changes it. In

the context of a quantum algorithm a measurement can be thought of as a projection onto
the computational basis.

We will denote by U (n) the set of unitary matrices of dimension 2n (UU† = I2n). With the stan-

dard multiplication of matrices, U (n) is a group, and its elements can be viewed as q-computations
of order n: Transformations of n qubits into n qubits.

The group structure of U (n) determines the following properties of q-computations:

• Identity. I2n ∈ U (n). The identity matrix of dimension 2n is a q-computation of order n.

• Composition. If U, V ∈ U (n), then V · U ∈ U (n). The composition of two q-computations
of order n is a q-computation of order n.

• Reversibility. If U ∈ U (n), then U−1 = U† ∈ U (n). The inverse of a q-computation of order
n is a q-computation of order n.

Given this model, it is not even clear if such quantum computer is able to perform classical
computations. For instance, some elementary gates (NAND, OR...) are not reversible (2 inputs,
a single output). Nevertheless, the question of reversibility in classical computation has been
studied and has been established that with a polynomial overhead in the number of gates and
bits used, classical computation can be made reversible [32].

Remark 6.1. q-computations of order n are vastly more abundant than classical reversible
computations of the same order. This is already clear for n = 1, where the only classical reversible
computation is NOT, whereas q-computations of 1 qubit depend on continuous parameters:

It is easy to see that they must be of the form

U = eiα
(

u0 u1

−u∗1 u∗0

)
, α ∈ R, u0, u1 ∈ C , |u0|2 + |u1|2 = 1.

In fact, any U ∈ U (1) has this form and detU lies on the unit circle. Hence, omitting the global

phase factor, we can assume a q-computation to be represented by

(
u0 u1

−u∗1 u∗0

)
.

Note that the constraint |u0|2 + |u1|2 = 1 implies that ∃!θ ∈ [0, π] such that |u0| = cos θ2 and

|u1| = sin θ
2 . For further convenience, we shall represent them as u0 = e−iλ cos θ2 , u1 = −eiµ sin θ

2 ,
λ, µ ∈ R.

Example 6.1. In this example we consider several particular cases of q-computations involving
1 qubit:

(a) Pauli matrices.
They are self-adjoint, σ2

x = σ2
y = σ2

z = I2. The Pauli matrix σx corresponds to classical
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NOT operator1:

σx|0〉 = |1〉 σx|1〉 = |0〉.
In terms of arithmetic modulo 2, we have σx|j〉 = |j + 1〉

(b) Hadamard matrix.

The matrix H = 1√
2

(
1 1
1 −1

)
is self-adjoint and H2 = I2

(c) Phase shift matrices.

They are matrices of the form Sα =

(
1 0
0 eiα

)
.

As particular cases, we define S = Sπ/2 and T = Sπ/4. Note that σx = S2 = T 4, sometimes

written S =
√
NOT .

6.2.1. The CNOT gate. The most important quantum gate of order 2 is probably the controlled-not
CNOT gate. It takes 2 qubits |a〉, |b〉 and outputs the first qubit |a〉 and flips the second if the
first was in the state |1〉: |a⊕ b〉. More precisely, it acts on the basis vectors as

|a〉|b〉 CNOT−→ |a〉|a⊕ b〉, a, b ∈ {0, 1}.
Thus, its matrix representation is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

It turns out that the set of three gates {T,H,CNOT} is universal, in the sense that any unitary
transformation can be approximated to arbitrary precision by a sequence of gates from this set.
This is an analogous result from the one in classical computation, where any classical algorithm
can be implemented by means of the NAND and FANOUT gates, which shall be described in
Remark 6.2.

6.2.2. The Toffoli gate. This gate transforms 3 qubits and is given by its matrix representation
or, alternatively, its action onto the basis vectors:

T =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


, |a〉|b〉|c〉 T−→ |a〉|b〉|c⊕ ab〉.

This gate is also unitary and it flips the last qubit if the first two are in the state |11〉.
Remark 6.2. A circuit consisting of Toffoli gates can simulate any classical circuit: Indeed,
since any Boolean function can be implemented by a circuit of NAND and FANOUT gates, it is
sufficient to show how to implement those.

1If we identify the classical states 0 and 1 with the computational basis {|0〉, |1〉}, the Pauli matrix σx performs
the classical NOT operation, since it applies the corresponding permutation. Note that, in general, a quantum
computation does not have a classical analogue.
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The FANOUT gate copies 1 bit into 2 bits. This can be done by means of

T (|1〉|a〉|0〉) = |1〉|a〉|a〉.

The NAND gate outputs 0 if, and only if, both input bits are 1. In other words, it acts as
NAND(a, b) = 1⊕ ab. Thus, it can be implemented as

T (|a〉|b〉|1〉) = |a〉|b〉|1⊕ ab〉.

Since classical reversible computation is just a permutation on the bit strings of its input, it is
in particular unitary.

The extra qubits we need to add to make the computation reversible are called ancillas.

|1〉 |1〉

|a〉

|0〉 |a〉

|a〉

|a〉 |a〉

|b〉

|1〉 |1⊕ ab〉

|b〉

|a〉 |a〉

|b〉

|c〉 |c⊕ ab〉

|b〉

Fig. 6.1. Circuit representation of the Toffoli gate and its implementation of
the FANOUT and NAND gates.

Remark 6.3. As a result, quantum computation is at least as strong as classical computation.

6.3. Quantum Fourier Transform

In this section we will briefly review some facts on the classical Fourier Transform on Abelian
groups and we will define the quantum Fourier Transform, which is a key ingredient in many
quantum algorithms.

Let (G,+) be a finite Abelian group and (U ,×) the multiplicative group of complex numbers
with modulus 1.

Definition 6.1. A character on G is a function χ : G −→ U such that

∀g, h ∈ G χ(g + h) = χ(g)χ(h).

Remark 6.4. In the Abelian case, the set of all characters on G forms a group, G̃, which is
isomorphic to G. We fix an isomorphism φ : G −→ G̃ and denote by χg := φ(g).

Lemma 6.1. (Schur’s orthogonality lemma)
For every h, h′ ∈ G,

1

|G|
∑
g∈G

χh(g)χh′(g)∗ = δhh′ .

Definition 6.2. (Abelian Fourier Transform)
Let f : G −→ X be a function defined on G and taking its values in some C -vector space X
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(Typical choices of X are G,Z,R, with the structure of C -vector space). The Fourier coefficients
of f are

f̂(x) =
1√
|G|

∑
y∈G

χx(y)f(y).

The Fourier transform of f is the function

f̂ : x 7→ 1√
|G|

∑
y∈G

f(y)χx(y).

Remark 6.5. Let M = |G| and G = {e1, . . . eM}. Then the classical Fourier Transform can be
viewed as a linear transform and be represented by a matrix multiplication: We multiply the
vector f = (f(e1), . . . , f(eM )) by the Fourier Transform matrix

F =
1√
|G|


χ1(e1) χ1(e2) · · · χ1(eM )
χ2(e1) χ2(e2) · · · χ2(eM )

...
...

. . .
...

χM (e1) χM (e2) · · · χM (eM )

 ,

where we denoted χi = χ(ei) the characters of G̃.

From Schur’s orthogonality lemma, it follows that F is unitary (FF † = IM ). Thus, we obtain the

vector of Fourier coefficients f̂ = Ff . It is well known that this computation can be performed
in O(M logM) elementary operations, using the Fast Fourier Transform (FFT) whereas naive
matrix multiplication takes O(M2) elementary operations.

Definition 6.3. The Quantum Fourier Transform over an Abelian group G of cardinality M is
the unitary operation:

QFT : |x〉 7→ 1√
M

∑
y∈G

χy(x)|y〉.

With any function f : G −→ X we associate the state

|f〉 =
1√
M

∑
x∈G
|x〉|f(x)〉,

and the state associated with the Fourier transform f̂ of f is

|f̂〉 =
1

M

∑
x,y∈G

χy(x)|y〉|f(x)〉.

We say that f̂ is obtained by quantum Fourier sampling (QFS).

Remark 6.6. Note that quantum Fourier sampling can be thought of as the algorithm of Fig.

6.2. A measurement of the state |f̂〉 will output y ∈ G and z ∈ X with probability proportional

to

∣∣∣∣∑ x∈G
z=f(x)

χy(x)

∣∣∣∣2. These amplitudes can be estimated later by repeated sampling.

|f̂〉 gives us some global information on the function f through its Fourier coefficients and we will
be able to make the best use of it to distinguish functions with very different Fourier coefficients.

Example 6.2. To end this section, we show how the state |f̂〉 can be constructed. Sampling
from this state is the basis of several algorithms we shall show in the next section.

We first need to consider the Black-Box Model: Suppose we are given a function f : {0, 1}n −→
{0, 1}m. f can be given to us in several formats (a table of values, an algorithm, mathematical
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characterization...). To abstract away any special feature f might have, we place ourselves in
the black-box model of computation, in which f is given as a special gate Uf that we can use in
our circuit. However, it is, in general, not reversible (e.g. f being a constant function). To make
it reversible, we introduce another input y ∈ {0, 1}m. The box Uf acts as follows:

|x〉|y〉 Uf−→ |x〉|y ⊕ f(x)〉
and its a permutation of the (n+m)-bit strings; thus, reversible.

Now, let us assume that |G| = M = 2n, |X| = 2p are powers of 2 and that we input the state
|0⊗n〉|0⊗p〉 to the circuit of Fig. 6.2. We already know that H|0〉 = 1√

2
(|0〉 + |1〉). After the

Hadamard transform on n qubits, the state is

(H⊗n|0⊗n〉)|0⊗p〉 =

(
1√
2

(|0〉+ |1〉)
)⊗n

|0⊗p〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0⊗p〉,

So we have prepared a quantum superposition of all possibilities of the first entry and |0⊗p〉
in the second. After applying the black box Uf we obtain the state

∑
x∈{0,1}n

|x〉|f(x)〉, which,

performing the QFT on the first n qubits gives us the final state

|f̂〉 =
1

M

∑
x,y∈G

χy(x)|y〉|f(x)〉.

We shall denote this transformation Df . Note that Df uses only one gate Uf , yet it computes
the QFT over all input possibilities (a quantum superposition of these).

H⊗n

Uf

QFT

Fig. 6.2. The transformation Df (Quantum Fourier sampling) in the general case.

Remark 6.7. In the following algorithms, we shall implement Uf by means of actual gates
(CNOT, Hadamard...).

Example 6.3. The QFT over Zn2 .
Let G = (Z2

n,⊕). We are going to show that the QFT over G is just the tensor product of
Hadamard gates, H⊗n.

Indeed, the action of H on a n-qubit basis state |x〉 = |x1 . . . xn〉 on qubit i is

H|xi〉 =
1√
2

(|0〉+ (−1)xi |1〉) =
1√
2

∑
yi∈{0,1}

(−1)xi·yi |yi〉.

Applying this to H⊗n we obtain

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉,

where x · y =
∑
i xiyi mod 2.
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Since the characters of Zn2 are simply the applications χy(x) = (−1)x·y, y ∈ Zn2 , it follows that
H⊗n implements the QFT over Zn2 .

Example 6.4. The QFT over ZM .
Another important group is the cyclic group of M elements ZM . We shall denote by ω = ei2π/M

an Mth primitive root of unity. The group of characters of ZM is constituted of the M maps

χi : ZM −→ U
k 7−→ ωi·k

, 0 ≤ i ≤M − 1.

Hence, the QFT over ZM is the unitary operation

QFT : |x〉 7→ 1√
M

∑
y∈ZM

ωx·y|y〉.

For simplicity, we shall assume M = 2n. We shall introduce the notation y = y0 + 2y1 + . . . +
2n−1yn−1 and .xixi−1 . . . x0 = xi/2 + xi−1/4 + . . .+ x0/2

i+1. So, one computes∑
y∈ZM

ωx·y|y〉 =
∑

yi∈{0,1}
i∈{0...n−1}

ωxy0ω2xy1 · · ·ω2n−1xyn−1 |y0, . . . , yn−1〉

=

n−1⊗
i=0

 ∑
yi∈{0,1}

ω2ixyi |yi〉

 =

n−1⊗
i=0

(
|0〉+ ω2ix|1〉

)
.

Note that we can write ω2ix = ei2π2i−nx = ei2π.xn−1−i...x0 .

This means that with an appropriate phase shift on each qubit we can successfully implement
the QFT on ZM : More precisely, with the use of the phase shifts

Rd =

(
1 0

0 e−i
2π

2d

)
,

the QFT is implemented as shown in Fig. 6.3 using 1
2n(n+ 1) = O(log2M) gates.

H R2 Rn

H R2 Rn−1

H R2

H

Fig. 6.3. The QFT over Zm.
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6.4. Some Quantum Algorithms

In this section, we begin by showing two algorithms which make an elaborate use of the QFT over
the group Zn2 : Deutsch-Josza and Simon’s algorithms. Then we proceed to introduce Grover’s
search algorithm for an unstructured database. Later on, we move to Shor’s algorithm for
period finding and illustrate how the problem of factorization can be reduced to period finding
in polynomial time. Finally we describe Kitaev’s algorithm for phase estimation. Those two
algorithms require the use of the QFT over the group ZM or its inverse.

6.4.1. The Deutsch-Josza Algorithm. Consider the following problem [18] :
Input : An integer n and a Boolean function f : {0, 1}n −→ {0, 1}.
Assumption: f is either constant or balanced, i.e.,

#{x : f(x) = 0} = #{x : f(x) = 1} = 2n−1.

Output : Constant or balanced.

A classical deterministic algorithm will need at least 2n−1 queries to f to solve the problem since
we can always find a function which is constant on any 2n−1 x’s in {0, 1}n and we can choose its
value on the remaining x’s to make it constant or balanced.

However, this problem can be solved using exactly one query to Uf by means of the circuit Df

introduced in Fig. 6.2 with a slight modification. We will use the notation f(x) = f(x) ⊕ 1 for
the complement of f(x).

When performing the QFT we obtain:

• If f is constant, then

|f̂〉 =
1

2n

∑
x,y∈Zn2

(−1)x·y|y〉|f(x)〉

=
1

2n

∑
y∈Zn2

∑
x∈Zn2

(−1)x·y

 |y〉|f(0)〉 = |0⊗n〉|f(0)〉,

since
∑
x∈Zn2

(−1)x·y = 2nδy,0. An analogous calculation gives

|f̂〉 = |0⊗n〉|f(0)〉.
• On the other hand, if f is balanced, then

|f̂〉 =
1

2n

∑
x,y∈Zn2

(−1)x·y|y〉|f(x)〉

=
1

2n

∑
y∈Zn2

|0⊗n〉∑
x∈Zn2

|f(x)〉+
∑

x,y∈Zn2 \{0}
(−1)x·y|y〉|f(x)〉

 .

Similarly,

|f̂〉 =
1

2n

∑
y∈Zn2

|0⊗n〉∑
x∈Zn2

|f(x)〉+
∑

x,y∈Zn2 \{0}
(−1)x·y|y〉|f(x)〉

 .
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Observe that, for a balanced f ,
∑
x |f(x)〉 =

∑
x |f(x)〉, so |f̂〉 − |f̂〉 has zero amplitude on all

states which have their first register in the basis state |0⊗n〉.
On the other hand, for a constant f , |f̂〉 − |f̂〉 = |0⊗n〉(|f(x)〉 − |f(x)〉).

It is now clear that it is sufficient to measure the first register of |f̂〉 − |f̂〉. Then, if the outcome
is |0⊗n〉 it means that f is constant; otherwise it is balanced.

We present the final circuit for solving the problem in Fig. 6.4

|0〉

...

|0〉

|1〉

H⊗n

H

Uf

QFT

Fig. 6.4. The Deutsch-Josza circuit. The final box represents a measurement.

Remark 6.8. This algorithm is categoric -or exact- in the sense that it always produces the
same result. The following algorithms’ output is probabilistic; i.e., it might not always give the
same result.

6.4.2. Simon’s Algorithm. This is the first quantum algorithm that presents exponential
advantage over the best classical probabilistic algorithm. It studies the periodicity of functions
defined on Zn2 . We consider the problem:

Input : A function f : Zn2 −→ {0, 1}n.
Assumption: f is periodic: ∃a ∈ Zn2 : ∀x, y ∈ Zn2 , y = x⊕ a⇒ f(x) = f(y).
Output: a.

Since f does not have any particular structure apart from being periodic, the best classical
probabilistic algorithm can just query elements at random until a pair x 6= y is found such that
f(x) = f(y) and then output a = x⊕y. The birthday paradox tells us that the expected number
of queries until a collision is found is of order Ω(2n/2).

Let us observe that the periodicity of f induces a partition of the 2n input strings into two sets
X and X = {x ⊕ a : x ∈ X} each with cardinal 2n−1 such that f(x) takes different values for
each x ∈ X (and the same for X).

If we apply this to the expression
∑

x,y∈Zn2
(−1)x·y we can identify each term in X with its coun-

terpart in X and rewrite it as
∑

x∈X,y∈Zn2
((−1)x·y + (−1)(x⊕a)·y), which equals

∑
x∈X,y∈Zn2
y·a=0

2 · (−1)x·y.
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Thus, the state |f̂〉 obtained by quantum Fourier sampling is

|f̂〉 =
1

2n

∑
x,y∈Zn2

(−1)x·y|y〉|f(x)〉 =
1

2n−1

∑
x∈X,y∈Zn2
y·a=0

(−1)x·y|y〉|f(x)〉.

Performing a measurement of the first register in the computational basis will lead to a random
result yi = y ∈ Zn2 such that yi · a = 0. Thus, we gain one bit of information about the period
a. We do this repeatedly and obtain a set of equations.

Now let us take a deeper look at the meaning of the outcomes yi. These yi form a subspace of
the n-dimensional Z2-vector space of all n-bit strings. A solution a 6= 0 is completely determined
if among the yi there are n− 1 linearly independent vectors.
If we have a set of yi that does not yet span a space of dimension n− 1, then it contains ≤ 2n−2

out of the 2n−1 possible values for y. Thus, the probability that the next y will fall outside the
current space is ≥ 1

2 .

Hence, after O(n) repetitions, the algorithm will have enough information to determine a with
probability exponentially close to 1. Fig. 6.5 shows the circuit that implements Simon’s algo-
rithm.

|0〉
...
|0〉

H⊗n

Uf

QFT

|0〉
...
|0〉

Fig. 6.5. Simon’s Algorithm. In this particular case, QFT = H⊗n.

6.4.3. Grover’s Algorithm. Unstructured search is one of the most encountered fundamental
problems one can find in information processing. We can model it as a database that contains N
items, one of which has a special mark, given by a function f : {1, . . . , N} −→ {0, 1} such that
#f−1({1}) = 1. If we wish to find the marked item and the database has no special structure
(e.g., not sorted), any deterministic or randomized classical algorithm that succeeds to solve
the problem will have to make Ω(N) queries to f on average, since any query has 1/N success
probability and otherwise discloses no information about the location of the marked item.

The core of the algorithm is the repeated application of the diffusion transform D, which is an
inversion about the mean (the average value) as can be seen in Fig. We consider an arbitrary

superposition |ψ〉 =
∑
y∈{0,1}n αy|y〉 on n qubits, with αy ∈ C ,

∑
y |αy|

2
= 1 and we put α =

1
2n

∑
y αy be the average of the amplitudes of all basis states in |ψ〉. The diffusion transform D is

such that it maps the amplitude of a basis state to its symmetric respect to α, i.e., αy 7→ 2α−αy.



6.4. SOME QUANTUM ALGORITHMS 63

The implementation of D can be done with D = H⊗nRH⊗n, where R is the diagonal unitary
matrix which flips the sign of all basis states except |0⊗n〉. [32] shows the implementation of R
with elementary gates. We see that this actually works, since

H⊗nRH⊗n|ψ〉 =
1√
2n
H⊗nR

∑
x,y

(−1)x·yαy|x〉

= − 1√
2n
H⊗n

(∑
x,y

(−1)x·yαy|x〉
)

+
2√
2n

(∑
y

αy

)
H⊗n|0⊗n〉

= −
∑
y

αy|y〉+ 2α
∑
x

|x〉 =
∑
y

(2α− αy)|y〉.

On the other hand, the gate Sf = (I⊗n ⊗ H) · Uf · (I⊗n ⊗ H) can introduce a phase −1 = eiπ

on every state |y〉 such that f(y) = 1 by using an ancillary qubit initialized to |1〉 in the last
register, as seen in Fig. 6.6.

|00〉 |01〉 |10〉 |11〉

α

(before)

|00〉 |01〉 |10〉 |11〉

α

(after)

Fig. 6.6. Idea of the Diffusion Transform D: an inversion about the mean or
the average α.

Now let us see how to use this to solve our problem: Suppose we first prepare a uniform super-
position over all N = 2n basis states on n qubits. One application of Sf will change the sign of
only the basis state which corresponds to the marked item to its opposite.
So, all unmarked items will have amplitude 1√

N
whereas the marked item − 1√

N
on first iteration;

moreover, α(1) will be close to 1√
N

.

Now, applying the transformation D, all unmarked states will be close to average, so will roughly
remain the same. However, the marked item amplitude will go from − 1√

N
to 2√

N
−(− 1√

N
) = 3√

N
.

Repeating this process c
√
N times, for some constant c, it will lead the marked item’s amplitude

to be close to 1 and thus, a measurement in the computational basis will give the marked item
with high probability.

Grover’s algorithm is represented in Fig. 6.7.

Remark 6.9. The exact number of inner loops is important since the amplitudes of the un-
marked states evolve as α(i) = 1√

N−1
cos((2i + 1)θ) and the amplitudes of the marked state as

β(i) = sin((2i+ 1)θ), where θ is such that N sin2 θ = 1, i.e., they oscillate [32].

6.4.4. Shor’s Algorithm. The problem of factoring large integers is believed to be hard and
thus it is the heart of many cryptographic systems which are used today. Factoring is in NP and
the current best known classical algorithms run in sub-exponential time in the number of bits in
the input.
Peter Shor made an important breakthrough in 1994 [60] when he published a polynomial-time
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H⊗n

H H H H

Uf D Uf D

Sf Sf

|0〉

|0〉

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

|1〉

Grover iteration p = O(
√
N)

Fig. 6.7. The circuit for Grover’s Algorithm.

quantum algorithm for factoring. Its core is similar to Simon’s period finding algorithm, but
over another group [62].

Remark 6.10. We shall outline a classical polynomial-time reduction from factoring to period-
finding first.

Let N ∈ Z be the integer we wish to factor, i.e., we aim to find q|N a non-trivial factor of N .
Let us assume that we are given x such that x 6= ±1 mod N and x2 = 1 mod N . The latter
can be written as N |(x2 − 1) = (x − 1)(x + 1). This means that N has a common factor with
x + 1 or x − 1, which are different from N by hypothesis. In O(logN) one can compute this
common factor gcd(N, x± 1) using Euclid’s algorithm.

In order to compute such an x, let us take an integer y ∈ ZN . We can assume it is coprime with
N , otherwise we already found a factor using Euclid’s algorithm. Consider the function

f : Z −→ ZN
x 7−→ yx

,

which is periodic with period a = ord(y), the order of y (the smallest positive integer such that
ya = 1 mod N).

It can be shown via the Chinese remainder theorem that a y taken at random from {0, . . . , N−1}
will have even order mod N and it will be such that ya/2 6= ±1 mod N with probability at
least a constant [50].

Remark 6.11. There are two exceptions to this result: if N = 0 mod 2 or if N = ps for some
prime number p, which can be tested beforehand with efficient classical algorithms; so they can
be ruled out.

So it suffices to pick y at random, compute its order and if its even, compute gcd(ya/2 ± 1, N)
which will give a non trivial factor of N .

There still remains a loose end, which is the computation of a = ord(y).

Let us state the problem:
Input: An integer N ∈ N∗ and a function f : Z −→ X, where X is a set.
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Assumption: ∃a < N such that f is a-periodic:

∀x, y ∈ Z, x = y mod a⇒ f(x) = f(y).

Output: a.

Remark 6.12. In the particular case where f : ZM −→ X is a-periodic with a|M , we have |f̂〉 =

1

M

∑
x,y∈ZM

ωx·y|y〉|f(x)〉 =
1

M

∑
x∈Za,y∈ZM

M/a−1∑
j=0

ω(x+ja)y

 |y〉|f(x)〉. When ya = 0 mod M

(ay = cM for some c), we have a geometric sum which gives
∑M/a−1
j=0 ω(x+ja)y = M

a ω
xy and

gives 0 otherwise. So, the state |f̂〉 is

|f̂〉 =
1

a

∑
x∈Za

(∑
c∈Za

ωxcM/a|cM/a〉
)
|f(x)〉. (6.1)

A measurement on the first register will give a random y = cM/a with uniform probability. y
and M are known and we need to solve y/M = c/a in order to get a. At most dlog2 ae elements
of Za are not co-prime with a (to see this, decompose a into product of primes). Since c is taken
uniformly at random, after dlog2 ae = O(logN) repetitions we obtain with high probability a
(we express y/M as a reduced fraction and take its denominator, which gives a).

In the general case f : Z −→ X, two difficulties arise: Firstly, the domain of f must be cut
off. To do this, we take an integer M > N and restrict fM = f |ZM . To guarantee enough
periodicity, we have to pick M large enough. The second difficulty is that a is unknown so we
cannot guarantee M to be an exact multiple of a. Hence, fM will not be perfectly periodic and
this will lead to some extra terms in the superposition (6.1). Luckily for us, they will have small
norm in comparison to the relevant data.

More precisely, [32] shows that there is a constant probability of measuring a y satisfying∣∣∣ y
M
− c

a

∣∣∣ ≤ 1

2M
, c ∈ {0, . . . , a− 1}.

But two distinct fractions with denominator ≤ N must be at distance ≥ 1
N2 so it suffices to

choose M > N2 to guarantee that c
a is the unique fraction with denominator ≤ N at distance

≤ 1
2M from y

M . This can be found by continued fraction expansion and the total run-time of the
algorithm is still O(poly(logN)).

6.4.5. Phase Estimation Algorithm. Let U be a computation of order n and let |u〉 ∈ H
be an eigenvector of U . The corresponding eigenvalue can be written in the form e2πiϕ. The
problem can be presented as follows:
Input: U and |u〉.
Output: r bits {ϕ1, . . . , ϕr} of the binary expansion ϕ = 0.ϕ1ϕ2 · · · .

The algorithm that solves this problem is known as Kitaev Algorithm [34, 35]. It is depicted in
Fig. 6.8 and its steps are the following:

1. We initialize the state in H⊗m ⊗H⊗n in the value |0⊗m〉|u〉.
2. We apply a Hadamard gate to each of the first m qubits and obtain

(H⊗m ⊗ I2n)|0⊗m〉|u〉 = |hm〉|u〉.
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3. We perform a series of controlled q-computations Cm−l+1(U2l−1

) for l ∈ 1 . . .m defined as
follows:

Cm−l+1(U2l−1

)(|ϕ1 · · ·ϕm〉|u〉) =

{ |ϕ1 · · ·ϕm〉|u〉 if ϕm−l+1 = 0

|ϕ1 · · ·ϕm〉(U2l−1 |u〉) if ϕm−l+1 = 1

H

H

H

H

U U2 U4 U2m−1

...
...

|0〉

|0〉

|0〉

|0〉

|u〉

|0〉+ e2πi2
m−1ϕ|1〉

|0〉+ e2πi2
2ϕ|1〉

|0〉+ e2πi2
1ϕ|1〉

|0〉+ e2πi2
0ϕ|1〉

Fig. 6.8. Steps 1-3 of Kitaev’s Algorithm for phase estimation.

Observe that the action of U2l−1

only changes |u〉 by a factor which is either 1 or e2πi2l−1ϕ

(depending on the controlling qubit). We can move this factor next to the controlling qubit
and, thus, we have the state in the first register at the end of this step which is

1√
2m

(|0〉+ e2πi2m−1ϕ|1〉)(|0〉+ e2πi2m−2ϕ|1〉) · · · (|0〉+ e2πi20ϕ|1〉).

As e2πik = 1∀k ∈ Z, we may rewrite this expression using the binary expansion of ϕ:

1√
2m

m⊗
l=1

(|0〉+ e2πi0.ϕm−l+1···ϕm |1〉).

Note that, according to example this is exactly QFTZ2m
|ϕ〉.

4. We perform the QFT of the first m qubits in reverse order to undo this operation.
5. We measure the first register onto the computational basis.

Remark 6.13. Observe that Kitaev’s algorithm supplies ϕ exactly in the case when it can be
expressed using m bits.

If this is not the case, when we apply QFT †Z2m
⊗ I2n we do not obtain |ϕ〉|u〉, but a superposition

of the form
∑
l al|l〉|u〉, a difficulty which can be overcome [50] in order to obtain the first r bits

of ϕ correctly with good probability (1− ε) if m ≥ r + log2

(
2 + 1

2ε

)
.

Remark 6.14. As |u〉 is an eigenvector of U , observe that the state remains intact at the end
of the computation even having passed through various U gates.
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6.5. Hidden Subgroup Problem

Simon and Shor’s algorithms can be seen as particular cases for solving a more general problem,
which is called the Hidden Subgroup Problem (HSP). The HSP for Abelian groups can be
solved efficiently by a quantum algorithm. Inside this more general frame, one finds several
known problems; e.g., the discrete logarithm, finding solutions to Pell’s equation or the hidden
translation problem: f, g : Znp −→ X such that f(x) = g(x+ t) for some t we want to find, etc.

More formally, the problem we want to treat it the following:
Input: A finite group G, a set S, and a function f : G −→ S, which is given as a black box.
Assumptions: f is constant on (left) cosets of some unknown subgroup H ≤ G, and f takes
different values on different cosets.
Output: H (a set of generators).

The algorithm follows two basic steps

1. Preparation of a random coset state. We prepare the state

|f̂〉 =
1

|G|
∑
x,y∈G

χy(x)|y〉|f(x)〉 =
1

|G|
∑
c∈G/H
y∈G

(∑
x∈H

χy(cx)

)
|y〉|f(cH)〉.

We measure the last register. Thus, we select a random coset cH of H ≤ G and project the
state onto

|f̂ ′〉 =
1√

|G| · |H|
∑
y∈G

(∑
x∈H

χy(cx)

)
|y〉.

2. Fourier sampling. We measure the first register and we get y ∈ G with probability∣∣∣∣∣∑
x∈H

χy(cx)

∣∣∣∣∣
2

=

∣∣∣∣∣χy(c)
∑
x∈H

χy(x)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
x∈H

χy(x)

∣∣∣∣∣
2

.

Remark 6.15. On step 2, we get a random y ∈ H⊥ = {y ∈ G,χy(h) = 1 ∀h ∈ H}, since |f̂ ′〉 is
a uniform superposition over all y ∈ G such that χy(h) = 1∀h ∈ H; [32]. Such y can be viewed
as a linear constraint on H. Thus, with O(log |H|) independent constraints we can effectively
reconstruct H. This is, by quantum Fourier Sampling a sufficient number of times, we find a
generating set for H.

6.6. General overview

In order to give a general view of which are the most remarkable quantum algorithms known today
−which present a non-trivial speedup with respect to the best known classical counterpart−, in
this section we give list them, together with the kind of speedup they offer.

We have classified the algorithms into three classes: those which solve algebraic and number
theory problems, those which are based on an oracle function (like Grover’s Uf function), and
approximation algorithms.

SP stands for Superpolynomial, P for Polynomial, C for Constant and E for Exponential.
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Since the recent boost of activity in the field of quantum computation has given it a big growth,
the current list of algorithms is quite large. We recommend [64] for an up-to-date listing of
algorithms, as well as the formal explanation of all the problems listed below, with respective
references.

Algebraic and Number Theory problems:
Algorithm Speedup
Integer factorization (Shor) SP
Discrete logarithm SP
Pell’s Equation SP
Principal Ideal SP
Unit Group SP
Gauss Sums SP
Exponential congruences P
Matrix Elements of Group Representations SP

Oracle-Based problems:
Algorithm Speedup
Unstructured Search (Grover) P
Abelian Hidden Subgroup SP
Non-Abelian Hidden Subgroup SP
Bernstein-Vazirani P
Deutsch-Josza E
NAND-Tree P
Gradients and Quadratic Forms P
Hidden Shift SP
Linear Systems SP
Ordered Search C
Graph Properties (Adjacency Matrix representation) P
Graph Properties (Adjacency List representation) P
Welded Tree SP
Collision Finding P
Matrix Commutativity P
Group Commutativity P
Hidden Nonlinear Structures SP
Center of Radial Function P
Group Order and Membership SP
Group Isomorphism SP
Statistical Difference P
Finite Rings and Ideals SP
Counterfeit Coins P
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Approximation problems:
Algorithm Speedup
Quantum Simulation SP
Knot Invariants SP
Three-Manifold Invariants SP
Partition Functions SP
Adiabatic Optimization (Unknown)
Zeta Functions SP
Weight Enumerators SP
Simulated Annealing P
String Rewriting SP
Matrix Powers SP
Matrix Product Verification P





Chapter 7

Quantum Entropy and Information

In this chapter, we present the generalization of the concept of entropy to a quantum level, as well
as Schumacher’s theorem of data compression and the Holevo bound for accessible information.
We follow the exposition one can find in [17], along with some useful comments from [48]. We
introduce several important quantum channels and discuss its capacities, as well as how they
interact with the qubits that pass through them. We conclude with the presentation of quantum
entanglement in a formal manner, discussing its methods for detection in the general case.

7.1. Quantum Entropy

Definition 7.1. The quantum entropy S(A) of a system A with density matrix ρA is defined as

S(A) = −Tr(ρA log ρA).

The quantum joint entropy S(A,B) of a composite system with two components A and B is
defined as

S(A,B) = −Tr(ρAB log ρAB),

where ρAB is the density matrix of the composite system AB.
The quantum conditional entropy S(A|B) is defined as

S(A|B) = S(A,B)− S(B).

The quantum mutual information of two subsystems A and B of a composite system AB is
defined as

S(A : B) = S(A) + S(B)− S(A,B) = S(A)− S(A|B) = S(B)− S(B|A).

Remark 7.1. If λx are the eigenvalues of ρ, then von Neumann’s definition of entropy can be
rewritten [48] as

S(ρ) = −
∑
x

λx log λx,

where logarithms are taken in base 2 and the same conventions of Remark 2.3 apply.

Remark 7.2. In fact, this is what motivated Definition 7.1, and it agrees with what we defined
in Section 2.1.

Remark 7.3. For classical random variables X and Y , one has H(X) ≤ H(X,Y ) [17]. Its
intuitive explanation is that the uncertainty of a random variable X cannot be more than the
uncertainty of the pair of random variables X and Y .

71
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However, this in general is false in the quantum picture. Indeed, for a bipartite quantum system
AB, S(A) can exceed S(A,B): In the case of a maximally entangled state of two d-dimensional
systems S(A,B) = 0, since the joint state is a pure state; however ρA = TrBρAB = 1

d IA and
S(A) = log d > 0. We should also observe that, in such a case, the quantum conditional entropy
is negative S(B|A) = S(A,B)− S(A) = −S(A) < 0 (see also Remark 7.16).

Properties 7.1. The von Neumann entropy is strongly subadditive [17]:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC), (7.1)

for a tripartite system.

This has several important consequences:

1. Conditioning reduces entropy: When conditioning on two systems B and C, the entropy is
less than conditioning on just system B:

S(A|BC) ≤ S(A|B).

Proof: Since S(A|BC) = S(A,B,C)− S(B,C), where the terms on the right hand side are
the von Neumann entropies of their respective systems, it follows from (7.1) that S(A|BC) ≤
S(A,B) + S(B,C)− S(B)− S(B,C) = S(A|B). ut

2. Discarding quantum systems never increases mutual information: i.e.,

S(A : B) ≤ S(A : BC).

Proof: S(A : BC) = S(A) + S(B,C) − S(A,B,C) which, by (7.1), is ≥ S(A) + S(B,C) −
S(A,B)− S(B,C) + S(B) = S(A : B). ut

3. Quantum operations never increase mutual information: Given a composite quantum system
AB and Φ a CPT (Definition 7.2) map acting on the subsystem B alone. Let us denote A′B′

the composite system after this action. Then

S(A′ : B′) ≤ S(A : B).

The proof of this point can be found at [17].

Definition 7.2. A quantum operation, or superoperator Φ is a linear, completely positive, trace-
preserving map (CPT) which take density matrices to density matrices. More precisely,

Φ : ρ 7−→ ρ′, ρ ∈ B(H), ρ′ ∈ B(H′), ρ, ρ′ ≥ 0, T rρ = Trρ′ = 1.

A quantum operation captures the dynamical change to the state of a system, which occurs as
the result of some physical process: time evolution of an open system, compression data from a
quantum operation source and transmission of quantum information through a noisy quantum
channel are examples of this. In the latter case, H and H′ are referred to as the input and output
Hilbert spaces of the channel Φ.

7.2. Data Compression

Definition 7.3. A quantum information source is defined by a set of pure state {|ψk〉}k, with
corresponding probabilities {pk}k. Each of these states acts on a Hilbert space H. From the
information theory point of view, the |ψk〉 are signals produced with the source, each with
probability pk. Thus, a quantum information source can be characterized as

{ρ,H},
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where ρ =
∑
k

pk|ψk〉〈ψk| is a density matrix acting on H.

Remark 7.4. The states {|ψk〉}k need not be mutually orthogonal.

In classical information theory, data compression corresponds to a reduction in the number of
bits required to store the information emitted by a classical information source. In the quantum
case, the idea behind data compression is similar, replacing bits by qubits and the nature of the
source (classical for quantum). The quantity we aim to compress, in this case, is the dimension

of the Hilbert space H̃n:

More precisely, we consider sequences of density matrices ρ(n), for arbitrary n, acting on Hilbert
spaces Hn of increasing dimension Nn with n:

ρ(n) =
∑
k

p
(n)
k |ψ

(n)
k 〉〈ψ

(n)
k |, p

(n)
k ≥ 0,

∑
k

p
(n)
k = 1.

In order to compress data from such a source, we encode each signal state |ψ(n)
k 〉 by a state

ρ̃
(n)
k ∈ B(H̃n). We set dc(n) = dim H̃n and we require dc(n) ≤ Nn ∀n.

Definition 7.4. A compression scheme is a CPT map

C(n) : |ψ(n)
k 〉〈ψ

(n)
k | 7−→ ρ̃

(n)
k ∈ B(H̃n).

And a corresponding decompression scheme is a CPT map

D(n) : B(H̃n) −→ B(Hn).

Our goal will be to minimize dc(n) while preserving the existence of a reliable compression −
decompression scheme.

Definition 7.5. We define the rate of compression as

Rn :=
log dim H̃n
log dimHn

=
log dc(n)

logNn
.

The usual case is when Hn corresponds to the Hilbert space of n qubits, so Nn = 2n; hence,
logNn = n.

We are interested in finding the optimal rate of data compression, which in this case is given by

R∞ := lim
n→∞

Rn = lim
n→∞

log dc(n)

n
.

Remark 7.5. Since we do not require the states {|ψ(n)
k 〉}k be orthogonal, a new problem arises:

they are, in general, not completely distinguishable.

If we wished to reconstruct perfectly a quantum signal state from its compressed version, it would
turn out to be a too stringent task because of this reason.

Instead, a reasonable requirement for the reliability of the compression-decompression scheme is

that a nearly indistinguishable state from the original one can be reconstructed from ρ̃
(n)
k .

Definition 7.6. A measure of indistinguishability which is useful for this purpose is the average
ensemble fidelity, which is defined as

Fn :=
∑
k

p
(n)
k 〈ψ

(n)
k |D(n)(ρ̃

(n)
k )|ψ(n)

k 〉.
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Fidelity satisfies [17, 51]

0 ≤ Fn ≤ 1 and Fn = 1 ⇐⇒ D(n)(ρ̃
(n)
k ) = |ψ(n)

k 〉〈ψ
(n)
k | ∀k.

Definition 7.7. A compression-decompression scheme is said to be reliable if

lim
n→∞

Fn = 1.

Remark 7.6. The idea which leads to data compression is that some signal states occur with
a higher probability than others do. In the quantum case this is translated into the following:
such signals span a subspace of the original Hilbert space of the source, which is referred to as
the typical subspace.

7.2.1. Schumacher’s Theorem for Memoryless Quantum Sources. When considering a
memoryless quantum source, its density matrix ρn acts on the tensor product Hilbert space H⊗n
and is given by the tensor product π⊗n, where π is the density matrix of a single qubit. We
announce Schumacher’s quantum coding theorem for i.i.d. quantum sources, the proof of which
can be found at [17].

Theorem 7.1. (Schumacher’s quantum coding theorem)
Let {ρn,Hn} be an i.i.d. quantum source: ρn = π⊗n and Hn = H⊗n. If R > S(π), then there
exists a reliable compression scheme of rate R. If R < S(π) then any compression scheme rate
of R is unreliable.

7.3. Quantum Channels

For the following examples we will need these results [51]:

Theorem 7.2. Any state transformation ρ 7→ E(ρ) can be written in the form called
operator sum representation:

E(ρ) =
∑
p

ApρA
†
p,

where the operation elements Ap satisfy
∑
p
ApA

†
p = I.

Conversely, all linear mappings of this form are state transformations.

Definition 7.8. E is completely positive if E⊗idn preserves positivity, for the identical mapping
idn : Mn(C ) −→Mn(C ) on any matrix algebra.

This result [51] was first proved by Kraus:

Theorem 7.3. Let E : Mn(C ) −→ Mk(C ) be a linear map. E is completely positive if, and
only if, it admits a representation

E(A) =
∑
u

VuAV
†
u

by means of some linear operators Vu : C n −→ C k.
This is also equivalent to: the representing block matrix

(Xij)1≤i,j≤k ∈Mk(C )⊗Mn(C )

is positive.
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Remark 7.7. This operator sum representation is called Kraus representation and it is not
unique.

Example 7.1. Bit flip channel. This is a single qubit channel which flips the qubit sent through
it with probability (1− p). If ρ is the input state to the channel, then the output is

Φ(ρ) = pσxρσx + (1− p)ρ.
The corresponding Kraus operators are A1 =

√
pσx and A2 =

√
p− 1I.

Example 7.2. Depolarizing channel. We present two different approaches for the analysis of
this channel:

• This channel leaves intact the input qubit with probability 1 − p, and it introduces the
following errors, each with probability p/3: bit flip (σx), phase flip (σz) and combined flip
(σy). Hence, the output of the channel is

Φ(ρ) = (1− p)ρ+
p

3
(σxρσx + σyρσy + σzρσz) .

In such case, we have four Kraus operators:

A1 =
√

1− pI, A2 =

√
p

3
σx, A3 =

√
p

3
σy, A4 =

√
p

3
σz.

• We can also think of the depolarizing channel to leave a qubit unaffected with a certain
probability 1−q and to replace its state with the completely mixed state 1

2 I with probability
q (the center of the Bloch Sphere):

Φ(ρ) = (1− q)ρ+
q

2
I.

Observe that, since ρ+ σxρσx + σyρσy + σzρσz = 2 · I ∀ρ ∈ B(H),

Φ(ρ) =

(
1− 3

4
q

)
ρ+

q

4
(σxρσx + σyρσy + σzρσz) ,

which means that p = 3
4q.

Since the state I
d represents the completely mixed state in a d-dimensional Hilbert space,

the depolarizing channel can be generalized to

Φ(ρ) = (1− p)ρ+
p

d
I.

Example 7.3. Amplitude damping channel. This channel is a model for energy dissipation. We
have a 2-level atom in the excited state |1〉, which has probability p to decay to its ground state
|0〉 due to spontaneous emission of a photon.

This can be decomposed into the Kraus operators

A1 =

(
1 0
0
√

1− p

)
, A2 =

(
0
√
p

0 0

)
.

Let us analyze how they interact with each state:

A1|0〉 = |0〉, A1|1〉 =
√

1− p|1〉
A2|0〉 = 0, A2|1〉 =

√
p|0〉.

Operator A1 describes how the state evolves if there is no decay, whereas operator A2 describes
the decay of the atom from its excited state to the ground state.
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So, the action of this channel is

Φ :

(
ρ00 ρ01

ρ10 ρ11

)
7−→

(
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
.

The amplitude damping channel is an example of a quantum channel which takes a mixed initial
state ρ =

∑
i,j

ρij |i〉〈j| to a pure state |0〉〈0| asymptotically, since applying the channel n times in

succession leads to

lim
n→∞

φn(ρ) =

(
ρ00 + ρ11 0

0 0

)
=

(
Tr(ρ) 0

0 0

)
= |0〉〈0|.

This is intuitively obvious, since an atom in its excited state decays to its ground state eventually.

Example 7.4. Phase damping channel. We begin by writing a single-qubit density matrix in
its most general form:

ρ =

(
p α
α∗ 1− p

)
, 0 ≤ p ≤ 1, α ∈ C , |α| ≤

√
p(1− p).

The phase damping channel introduces a decay of the off-diagonal terms (which we called de-
coherences in Remark 3.9). The off-diagonal elements have no classical analogue and the phase
damping channel plays a central role in the transition from the quantum to classical world, as
we shall see in Section

More precisely, it acts as a rotation (phase kick) through an angle θ about the z axis of the Bloch
sphere. As seen in section this rotation is described by the matrix

Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
We shall also assume that the rotation angle is drawn from a Gaussian random distribution
(0, 2λ):

p(θ) =
1√
4πλ

e−
θ2

4λ .

The new density matrix ρ′ is therefore obtained after averaging over θ:

ρ′ =

∫ ∞
−∞

p(θ)Rz(θ)ρR
†
z(θ)dθ =

(
p αe−λ

α∗e−λ 1− p

)
.

Comparing ρ′ with Section 3.3 we see that the phase damping channel maps the coordinates of
the Bloch sphere as x′ = e−λx, y′ = e−λy, z′ = z.

Observe that the repeated application of the phase-damping channel leads to coherences dropping
to zero exponentially: α(n) = e−λnα.

7.4. Accessible Information

Definition 7.9. The maximum information about a random variable X that can be gained
through any possible measurement is called accessible information.

Iacc = maxH(X : Y ),

where the maximum is taken over all possible measurement schemes.
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Remark 7.8. Iacc can be viewed as the amount of classical information that can be stored and
recovered from a quantum system.

Theorem 7.4. (Holevo bound)
Suppose we have a classical source, characterized by a random variable X which takes values
x ∈ J = {1, 2, . . . ,M} with probabilities p(x). We encode the symbol x into a quantum state ρx
and send it to a noiseless quantum channel. Then we perform a measurement on it, described by
a finite set of POVM elements {Ey}. Let Y be the classical random variable corresponding to
the outcome of the measurement. Then, for any such measurement that can be done, the mutual
information H(X : Y ) satisfies the Holevo bound:

H(X : Y ) ≤ χ,
where

χ = S(ρ)−
∑
x∈J

pxS(ρx),

and ρ =
∑
x∈J

pxρx.

Remark 7.9. The equality is attained if all the ρx commute (in that case, they are simulta-
neously diagonalizable) and the measurement is performed in the simultaneous eigenbasis of all
the ρx’s.

Remark 7.10. The Holevo χ quantity depends on the state ρ, but it also depends on its
preparation; namely, the ensemble E = {px, ρx}.

When the ensemble consists of pure states, χ reduces to the von Neumann entropy S(ρ). This
is because S(ρx) = 0 if ρx is pure.

Notation 7.1. When we want to specify the ensemble from which we derive the Holevo quantity,
we shall note it χ(E).

Properties 7.2. The Holevo bound possesses some remarkable properties [17]:

• It is non-negative: χ(E) ≥ 0.
• A quantum operation can never increase the Holevo χ quantity: If E = {px, ρx} and E ′ =
{px,Φρx}, then

χ(E ′) ≤ χ(E).

Remark 7.11. The monotonicity of χ under quantum operations Φ is an indicator that the
Holevo bound quantifies the amount of information encoded in a quantum system.
Decoherence, described by an operation Φ, can never increase χ -which is consistent with the
intuitive fact that noise never increases information-.

Remark 7.12. In contrast, the von Neumann entropy is not monotonic under quantum oper-
ations. We have already seen in Example 7.2 that the depolarizing channel transforms a pure
state into a mixed state; thus, increasing the von Neumann entropy S. On the other hand, in
Example 7.3, the amplitude damping channel takes a mixed state into a pure state (since the
atom ends up decaying to its ground state), thereby reducing the von Neumann entropy. This
should not be look at as an information gain, since every mixed state decays to the ground state
and we lose ability to distinguish between different preparations of the mixed state.
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7.5. Quantum Entanglement

In this section, we focus on the study of quantum entanglement, particularizing on the case of 2
particles. We also mention the most used criteria for the detection of entanglement, such as the
Peres criterion or the use of entanglement witnesses [4, 6, 30, 38, 39, 48].

7.5.1. Formal definition. We consider finite-level systems Σi. We denote its set of states by
S(Σi). We denote its joint system Σ =

∑
i

Σi.

If we consider a multipartite system consisting of n subsystems, according to classical description,
the total state space of the system is the Cartesian product of the n subsystem state spaces. This
implies that the total state is always a product state of the n separate subsystems. In contrast,
according to quantum formalism, more precisely, Axiom 4, the total Hilbert space H is a tensor
product of the subsystems’ Hilbert space.
As the dimension of the tensor product space is given by the product of the dimension of each
component (whereas the dimension of the Cartesian product space is just the sum) it is clear
that, in general, the quantum state of the system cannot be described by the states of all the
subsystems separately1.

Definition 7.10. In the case where a pure state |ψ〉 ∈ S(Σ) can be written as the tensor product
|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉, we will say that the state is separable, or a product state. Otherwise, it
is entangled.

However, in practice, one finds mixed states, rather than pure. Entanglement of mixed states
is no longer equivalent to being non-product, as in the case of Definition 7.10. Instead, the
following generalized definition is used [30]:

Definition 7.11. A mixed state of n systems {Σi}i is entangled if it cannot be written as a
convex combination of product states

ρ 6=
∑
j

λjρ
j
1 ⊗ · · · ⊗ ρjn, ρji ∈ S(Σi),

∑
j

λj = 1, λj ≥ 0.

The states which are not entangled according to the definition are called separable.

Remark 7.13. Although one does not find a consensus in the literature, in the pure case,
separable states are also called product states, whereas separable is a term left for mixed states.

In short, entanglement is what allows to perform non-classical tasks.

Remark 7.14. In practice, it is hard to decide if a given state is separable or entangled, based
on Definition 7.11. The so-called separability problem remains still open today and a complete
(operative) characterization of entanglement has not yet been given, achieving only partial results
[30, 38, 48].

In this chapter, we shall present the most relevant of these criteria.

1This is what allows to construct exponentially large superpositions with only a linear amount of resources, which
is the key to quantum computation.
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7.5.2. Entanglement Detection.

Remark 7.15. Unless otherwise stated, we will consider Σ = Σ1 + Σ2, i.e., the bipartite case,
until the end of this chapter.

In the case of bipartite pure states, |Ψ〉 ∈ S(Σ), the response is elementary: If we express it over

a product basis {|ei1〉 ⊗ |ej2〉}i,j and we call dk the dimension of the system Σk, we have

|ψ〉 =

d1−1∑
i=0

d2−1∑
j=0

AΨ
ij |ei1〉 ⊗ |ej2〉.

|Ψ〉 is a product state if, and only if, the rank of the matrix AΨ = (AΨ
ij)i,j is 1.

In general, the rank r(Ψ) ≡ r(AΨ) ≤ min{d1, d2} is called the Schmidt rank of vector |Ψ〉 and it
is equal to either of the ranks of the reduced density matrices

ρΨ
1 = Tr2(|Ψ〉〈Ψ|), ρΨ

2 = Tr1(|Ψ〉〈Ψ|),
which satisfy

ρΨ
1 = AΨ(AΨ)†, ρΨ

2 =
(
(AΨ)†AΨ

)T
,

as we have already seen from Lemma 3.1.

In particular, Theorem 1.5 gives us the Schmidt decomposition: There exists a product bi-
orthonormal basis {|ẽi1〉 ⊗ |ẽi2〉} such that

|Ψ〉 =

r(Ψ)∑
i=0

√
pi|ẽi1〉 ⊗ |ẽi2〉.

This argument should make obvious the following proposition:

Proposition 7.1. A bipartite pure state is entangled if, and only if, its Schmidt number is
greater than one.

Equivalently, a bipartite pure state is separable if, and only if, the rank of either of the reduced
density matrices ρΨ

1 , ρΨ
2 is equal to one, or there is a single non-zero Schmidt coefficient

√
pi.

Remark 7.16. A similar characterization can be made in terms of (quantum conditional) en-
tropy [17]:
A pure state |ψ〉 of a bipartite system Σ1 + Σ2 is entangled if, and only if,

S(Σ2|Σ1) < 0.

However, phenomenons like decoherence (see Section 9.2 or Example 7.2) turn pure states into
mixed ones, which may still contain some ”noisy” entanglement.

According to Definition 7.11, even in the case n = 2, it is a hard problem to say if the state is
entangled. Its separable decomposition may have nothing to do with its eigenvalue decomposition
(as it did in the pure state case). Moreover, many separable states have their eigenvectors
entangled [30].

Remark 7.17. According to Definition 7.11, the set of separable states, S, is a convex set, and
it is invariant under product unitary operations U1 ⊗ U2 [30].
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7.7.5.2.1. The PPT criterion. The characterization of the set of mixed bipartite separable states
can be partially made with several entropic necessary conditions [30]. However, a much more
powerful criterion has been provided by Asher Peres [6, 30], which is known as the positive
partial transpose (PPT) criterion.

Theorem 7.5. (Peres criterion)
A state ρ ∈ S(Σ1 + Σ2) is entangled if it does not remain positive under partial transposition:

(T ⊗ id2)(ρ) 6= 0⇒ ρ is entangled.

Here, the operation T is transposition on the indexes corresponding on subsystem Σ1. The
partially transposed state is usually noted ρT1 , ρT2 or ρΓ.

Remark 7.18. The definition of partial transposition is operative, in the sense that fixing some
product basis, there is the following correspondence in elements (for example, let us take Γ = T2):

〈m|〈µ|ρΓ|n〉|ν〉 ≡ 〈m|〈ν|ρ|n〉|µ〉.
Theorem 7.6. A fundamental fact is [30, 39] that the Peres criterion is also sufficient in the
cases where the dimension of the corresponding Hilbert spaces are 2⊗ 2 or 2⊗ 3 (3⊗ 2).

Definition 7.12. The (entangled) states which are detected with this criterion, i.e., are not
positive under partial transposition are called NPT states, whereas the (entangled) states which
remain undetected are called PPT (positive under partial transposition).

A representation of this has been depicted in Fig. 7.1.

NPT
PPT

SEPARABLE
NPT

PPT

SEPARABLE

Fig. 7.1. On the left, the classification for H = C 2 ⊗ C 2 and H = C 2 ⊗ C 3

(H = C 3 ⊗ C 2). On the right, the general classification for H = C m ⊗ C n,
with m = 2, n ≥ 3 and min{m,n} ≥ 3.

7.7.5.2.2. Separability via EW. Another approach to the separability problem is the consideration
of Entanglement Witnesses (EW).

EWs are observables which completely characterize separable states and allow to detect entan-
glement physically. In Fig. 7.2 we can see its geometric interpretation: We can describe a convex
set (see Remark 7.17) by means o hyperplanes.

This suggests the following definition [13, 38]:

Definition 7.13. We say that an operator W = W † acting on Σ1 + Σ2 is an EW if, and only if,

(i) 〈e, f |W |e, f〉 ≥ 0 for all product vectors |e, f〉 = |e〉 ⊗ |f〉,
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(ii) it has, at least, one negative eigenvalue; i.e., W � 0, and
(iii) Tr(W ) = 1.

Note that (i) implies that 〈W 〉ρ = Tr(Wρ) ≥ 0, for all ρ separable, whereas (ii) implies that W
always detects something and (iii) is nothing but a normalization condition.

We usually denote Dm,n and Dsepm,n the set of density matrices and separable density matrices,
respectively, acting on Σ. The set of entangled states detected by W is usually denoted DW ≡
{ρ ∈ Dm,n : 〈W 〉ρ � 0}.

Given two EWs, W1,W2, we say that W1 is finer than W2 if DW2
⊆ DW1

. Hence, we say that
W is optimal if there does not exist any other EW which is finer than W .

This is represented in Fig. 7.2.

W

Wopt

ρsep

ρent

Tr(Wρsep) ≥ 0, T r(Woptρsep) ≥ 0

T
r(W

opt ρ
ent ) <

0,
T
r(W

ρ
ent ) ≥

0

Fig. 7.2. The lines represent the hyperplanes which correspond to an entan-
glement witness W and an optimal entanglement witness Wopt. All states not
to the right of the hyperplane provide non-negative mean value of the witness,
whereas those on the right are detected.

We have the following partition in the set of EWs [30]: An EW W is called decomposable (DEW)
if it can be written as

W = aP + (a− 1)QΓ, P,Q ≥ 0, a ∈ [0, 1].

EW’s that do not admit this form are called indecomposable.
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Remark 7.19. Note that DEWs detect only states which have non-positive partial transposition
(NPT). For the detection of entangled states which are PPT, one has to use indecomposable EWs.

Remark 7.20. The characterization of EWs (in particular, with respect of the notion of opti-
mality) is still incomplete, even in the case of DEWs.

Here we give some partial results [4, 38]:
A sufficient criterion for the optimality of EWs is

Proposition 7.2. Let H be a Hilbert space of dimension m⊗ n and let us define

PW = {|e, f〉 ∈ H : 〈e, f |W |e, f〉 = 0}.
If the set of product vectors PW spans H, then W is optimal.

Proposition 7.3. Let W be a DEW acting on a 2 ⊗ n Hilbert space H; the following are
equivalent [4]:

(1) The set of product vectors {|e, f〉 ∈ H : 〈e, f |W |e, f〉 = 0} spans H,
(2) W is optimal, and
(3) W = QΓ, where Q is a positive operator supported on a completely entangled subspace

CES (i.e., |ψ〉 = Q|φ〉 is never a product vector).

The proof of the proposition can be found at [4].

Remark 7.21. However, already in the case H = C 3 ⊗ C 3 there exist DEWs for which
(iii) 6⇒ (i). Consequently, the transparent characterization of DEWs in the qubit-qunit case of
Proposition 7.3 does not hold in general.

To this end, [4] constructs the appropriate examples with the use of unextendible product basis
(UPB) from C 3, called pyramid [37].



Chapter 8

Quantum Cryptography

In this chapter, we give a brief introduction to cryptography and analyze the advantages of
quantum cryptography. We explain some basic cryptographic protocols (BB84, Ekert, six state...)
and analyze the possible eavesdropping strategies (differentiating on individual, collective and
general attacks, depending on how much power is given to the eavesdropper), the PNS attack...
We discuss which key rate can be extracted given a protocol and how authentication is performed.
Finally, we focus on real system implementations [36, 48, 14].

8.1. Introduction, classical cryptography

The need to establish secrecy for the secure transmission of information dates back to 500 B.C.
The Spartans already devised a method, the Skytale (a wooden rod around which a strap of
parchment is wrapped; the diameter of the rod is secret): The message is written on the strap,
each letter on a new twist, rendering it unreadable after unwrapping it. For example, the word
QUANTUM could be transformed to QTUUAMN . The receiver owns a Skytale of the same
diameter allowing him to decipher the scrambled message. This cipher uses the transposition
principle.

Another principle is the substitution principle, first found in Caesar’s cipher, circa 50 B.C. In this
case, we substitute each letter with another one with a fixed offset, i.e., A→ D,B → E, . . . , Y →
B,Z → C. In this case, the word QUANTUM would be encoded into TXDQWXP .

Both archaic cryptosystems are poor. In every language, some letters appear more frequently
than others, so a frequency analysis could easily break the substitution cipher, whereas the
transposition principle is also easy to break.

8.1.1. The Vernam Cipher. The Vernam cipher [68] was developed in 1926. Its main idea is
the addition of a random secret key to the message: Each letter of the plaintext is substituted
by a number so that the message is a string of numbers mi. For each i, a random number ki is
chosen and we obtain the ciphertext ci = mi ⊕ ki, where the sum is the bitwise XOR operation.
For decryption, the receiver adds the same key and recovers the message mi = ci ⊕ ki.

One should note that the message and the key should be the same length, which is a drawback
if large messages are to be sent, since large amounts of random numbers have to be previously
distributed between the two parties.

83
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Another important observation is that each key ki must be used only once (this is why the
Vernam cipher is also referred to as one-time pad). The reason for this is that if ci = mi ⊕ ki
and c′i = m′i ⊕ ki, then ci ⊕ c′i = mi ⊕m′i, thus the ciphertext would reveal information about
the original message.

The Vernam cipher has been proved to be perfectly secure [59].

8.1.2. RSA. This is an example of an asymmetric cryptosystem. The examples viewed so far
were symmetric. In 1976, Diffie and Hellman [19] proposed the use of one-way functions for
constructing an asymmetric cryptosystem. Its principle is the use of a public key, announced
to everybody and a corresponding private key, kept secret. The ciphertext is computed via
a trapdoor function, i.e., a function easy to evaluate, but hard to invert, unless having some
additional information, which would be the private key.

In 1978, Rivest, Shamir and Adleman utilized this suggestion to exploit the hardness of factoring
large numbers [55]. Their cryptosystem, now known as RSA, is still widely used in everyday life,
albeit no rigorous proof of its security has been given. Furthermore, it is severely endangered by
the advent of the quantum computer, as discussed in Section 6.4.4.

Explicitly, RSA works as follows: We choose two (large) prime numbers, not of very similar bit
length, p1 and p2, and compute N = p1p2. The Euler function of N is φ(N) = (p1 − 1)(p2 − 1).
We choose e such that 1 < e < φ(N) and gcd(e,N) = 1, which is an easy task, using Euclid’s
algorithm. Bézout identity allows us to easily find a d such that ed = 1 mod φ(N). The public
key will be {N, e} and the private key will be d. A message is encoded into C = Me mod N . As
a = ade mod N ∀a (this is Fermat’s Theorem), the decoding can be done easily by calculating
Cd mod N = M .

In practice, this protocol is used for exchanging keys and then the information is encrypted using
faster algorithms such as AES (Advanced Encryption Standard) which use such keys.

As a simple example, if we take p1 = 11, p2 = 13, N = 143, φ(N) = 120. Then a pair of keys
could be {e,N} = {23, 143} and {d} = {47}.

8.2. Quantum cryptographic protocols

Quantum cryptography involves several areas of research: for example, do one-way functions exist
for a quantum computer? Can RSA be generalized against adversaries who possess a quantum
computer? These are some of the questions being investigated in this field. However, perhaps
the most successful application of quantum cryptography is the problem of distributing a secret
key through a quantum channel.

In the context of quantum key distribution (QKD), quantum states are used as information
carriers. However, the term may be somewhat misleading, since it does not refer to quantum
cryptosystems, but to establish a random secret key using quantum signals. As described in
the previous section, the Vernam cipher is provably secure and it provides a candidate for a
perfect cryptosystem, if the key distribution problem can be solved. There are two main ap-
proaches to QKD: The “prepare and measure” scheme (classical bits are encoded in a set of
non-orthogonal quantum states) and the “entanglement-based” scheme (if the entanglement is
maximal, simultaneous measurements will lead to perfectly correlated secret bits).
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8.2.1. BB84. Named after Bennett and Brassard [9] in 1984, the main idea is to employ two
pairs of orthogonal quantum states, where the classical bit values 0 and 1 are encoded into one
pair at a time. The quantum states of one pair are non-orthogonal to the states of the other
pair.

More explicitly, we take the eigenstates of the Pauli operator σz, which we will call |0z〉 and
|1z〉, and the eigenstates of the Pauli operator σx, which we will name |0x〉 and |1x〉. These

states share the property that |〈ix|jz〉| = 1/
√

2, i, j ∈ {0, 1}. They are related by the Hadamard
transform H: |0x〉 = H|0z〉 and |1x〉 = H|1z〉.

Alice and Bob are connected via a quantum channel which is totally insecure. This means that
it can be assumed to be under full control of the eavesdropper, Eve. In addition, they have a
public classical channel, which is authenticated (i.e., the identity of Alice and Bob is guaran-
teed by means of some previously shared secrecy) thus preventing Eve from sending messages
impersonating Alice or Bob.

The BB84 works as follows:

1. Preparation. Alice prepares 2n qubits, each one picked at random from the set of four states
{|0z〉, |0x〉, |1z〉, |1x〉}.

2. Measurement. For each qubit that Bob receives, he chooses at random one of the two bases
z or x and measures the qubit with respect to that basis.

3. Sifting. Alice uses the classical channel to tell Bob in which basis she encoded each qubit.
The bits where Bob used the same basis as Alice (which we expect to be n approximately)
form the sifted key.

4. Parameter estimation. Alice and Bob use a subset of the sifted key to estimate the error rate.
They do so by publicly announcing the bit values of the subset. If they differ in too many1

cases, the protocol is aborted (the eavesdropper has been detected).
5. Establishment of secret key. Alice and Bob obtain a joint secret key from the remaining bits

by performing classical error correction and privacy amplification.

Example 8.1. We present an example of the BB84 protocol. Y, N and R stand for Yes, No,
Random, respectively. + is {|0z〉, |1z〉} basis encoding and × is {|0x〉, |1x〉} basis encoding.

Alice’s string 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1
Alice’s basis + + + × × + × + × × + + × + × +
Bob’s basis + × + × × × + + × + + + + + × +
Bob’s string 1 R 0 1 1 R R 0 1 R 0 0 R 1 1 1
Same basis? Y N Y Y Y N N Y Y N Y Y N Y Y Y
Bits to keep 1 0 1 1 0 1 0 0 1 1 1
Test Y Y N N Y Y N Y N N Y
Key 1 1 0 1 1

Error correction and privacy amplification are purely classical sub-protocols. Let us sketch the
idea: Error correction is used to eliminate errors in the sifted key (which might be due to faulty
devices, noise and/or Eve’s tampering with the quantum signals). A simple error correction
protocol could be as follows: Alice chooses two bits from the sifted key and tells Bob its XOR
value. Bob tells Alice if the value coincides, in which case they keep the first bit and discard the
second; otherwise, both bits are discarded.

1In further sections we will elaborate the meaning of “too many”.
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After error correction, once Alice and Bob share an identical bit string, the goal is to decrease
Eve’s knowledge about these bits. This is achieved by means of privacy amplification, a proce-
dure which could work as follows: Alice and Bob agree on pairs of the bits of the error-corrected
key and replace them with its XOR value. By doing so, the length of the key is halved, but Eve’s
information about this shorter key is less; even if she knew the values of the single bits with high
probability.

Eavesdropping Strategies and Disturbance Versus Information Gain
So far we have given a description of the BB84 protocol, but we haven’t analyzed its security.
The most simple attack Eve could perform is an intercept and resend attack of the 2n qubits
that travel from Alice to Bob. Since Theorem 4.1 forbids the perfect copy of quantum states,
an obvious strategy is to measure them. However, Eve does not know which basis they were
originally prepared in, since Alice announces this information once Bob has received all signals.
All Eve can do is guess, i.e., for about n qubits she will happen to choose the same basis as Alice
and get perfectly correlated results. In the other half, her results will be completely random and
uncorrelated.
Then, Eve has to resend these bits to Bob, but she does not know which basis Alice chose, so Eve
prepares each qubit in the same basis used for the measurement. This means that only about
n of the newly created qubits will match Alice’s bases. Bob receives Eve’s qubits and measures
them. Afterward, Bob and Alice apply the sifting phase 3.
Alice and Bob’s bases will be the same and Eve’s basis will be different in approximately n/2
cases. In such cases, Bob’s result will be random, which means that the sifted key will be wrong
for about n/4 bits. If, in the parameter estimation stage 4., Alice and Bob obtain such a high
error rate (25%) the protocol is aborted.

Remark 8.1. This simple example shows that the intercept & resend strategy induces Eve to
introduce errors when she learns parts of the key.

In general, there is a trade-off between disturbance and information gain. We shall illustrate this
fact in this more (yet not most) general strategy:

Now Eve possesses an ancillary system |E〉 and a unitary interaction. Let U denote the unitary
operation employed by Eve.

• If Eve does not disturb Alice’s qubits, the action on two non-orthogonal states among
{|0z〉, |0x〉, |1z〉, |1x〉} is given by

U |0z〉|E〉 = |0z〉|E0z 〉,
U |1x〉|E〉 = |1x〉|E1x〉,

where the notation is self-explanatory, and we can consider this case without loss of gen-
erality. Since unitary operations preserve the scalar product, the scalar product of the
right-hand sides and left-hand sides are

〈0z|1x〉〈E|E〉 = 〈0z|1x〉〈E0z |E1x〉
This implies that |E0z 〉 and |E1x〉 must be identical; thus, Eve cannot gain any information
when measuring her ancilla.

• Let us suppose that Eve’s attack does disturb the qubits that Alice sends. In this case, we
use the notation

U |0z〉|E〉 = |0′z〉|E0z 〉,
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U |1x〉|E〉 = |1′x〉|E1x〉,
which implies that

〈0z|1x〉〈E|E〉 = 〈0′z|1′x〉〈E0z |E1x〉.
In order to allow Eve to obtain information about the states sent by Alice, she needs to
make the states |E0z 〉 and |E1x〉 distinguishable. This means that their scalar product must
decrease, so 〈0′z|1′x〉 must increase.

Remark 8.2. This shows that the more information Eve wants to obtain, the more disturbance
she introduces to the signal.

8.2.2. Six-state. The six-state protocol [12] is a variant of the BB84 protocol described in
the previous section. The enhancement is to introduce the eigenvalues of σy into the encod-
ing. Thus, we encode in three mutually unbiased bases of the two-dimensional Hilbert space:
{|0α〉, |1α〉}α∈{x,y,z} with |〈iα|jβ〉| = 1/

√
2 if α 6= β and i, j ∈ {0, 1}.

Intuitively speaking, this protocol is better since the six states span the full Bloch sphere, rather
than only a great circle, which would be the case of BB84. Indeed, Alice can choose one out of
three encodings and in the sifting procedure, approximately 2/3 of the raw key bits get discarded.
Thus, a higher secret key rate can be extracted, since the eavesdropper has less prior information.

8.2.3. Ekert. The Ekert protocol (1991) [22] uses entanglement to create a secret key for Alice
and Bob. The idea is to distribute maximally entangled singlet states

|ψ−〉 =
1√
2

(|01〉 − |10〉).

The basic feature to be exploited is the fact that a measurement o both qubits in any basis
yields correlated results. The problem is now the distribution of the qubits, such that one can
be sure that an eavesdropper can get no (or very limited) information about the final key. This
is accomplished by checking a Bell inequality; namely, the CHSH inequality described in 4.1.1.

The protocol is stated as follows:

1. Entanglement distribution. Alice and Bob distribute a number of singlet states |ψ−〉 among
them. We shall suppose that the first subsystem belongs to Alice and the second belongs to
Bob.

2. Measurements. For each singlet, Alice and Bob measure an observable, which is randomly
chosen from the sets {Ai}i and {Bi}i, respectively. These observables are spin components,
lying on the x− z plane of the Bloch sphere, given by

Ai = cosφAi σz + sinφAi σx, Bi = cosφBi σz + sinφBi σx,

where the angles are φA1 = 0, φA2 = π/2, φA3 = π/4 for Alice and φB1 = 0, φB2 = −π/4, φB3 = π/4
for Bob. In Fig. 8.1 we have illustrated a graphical representation of the measurement
directions.

3. Announcement of bases. Alice and Bob announce the directions they chose for each measure-
ment. In the cases where their directions match; namely, (A1, B1) and (A3, B3), their results
are completely anticorrelated. The sifting key is formed by inverting all bits from one party.

4. Bell inequality test. The CHSH inequality is tested, using the results obtained when Alice
and Bob measured in the directions (A1, B3), (A1, B2), (A2, B3) and (A2, B2).

5. Establishment of secret key. Alice and Bob obtain a joint secret key from the sifted key by
means of error correction and privacy amplification, as described in the BB84 protocol.
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Step 4. is what guarantees if Alice and Bob share a maximally entangled state (thus, it cannot
be entangled between any under possession of Eve; i.e., Eve has no information on the key).
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π/4

π/4

z

x

1

2
3

π/4

π/4

Alice

Bob

Fig. 8.1. Ekert protocol. Alice’s and Bob’s measurement directions on the
Bloch sphere.

Remark 8.3. In this case, the CHSH inequality would be as follows2:

If we have four classical random variables A1, A2, B2, B3 taking values on {−1, 1}, it is trivial
to see that A1(B3 +B2) +A2(B3 −B2) = ±2. Taking the average over N assignments to these
variables, one finds that

|〈A1(B3 +B2) +A2(B3 −B2)〉| ≤ 2.

In the form of a CHSH inequality, this would be

S := |〈A1B3〉+ 〈A1B2〉+ 〈A2B3〉 − 〈A2B2〉| ≤ 2,

where 〈AiBj〉 = 1
N

∑
ν∈I A

(ν)
i B

(ν)
j , #I = N , and A

(ν)
i is assignment number ν of variable Ai.

If the variables are quantum mechanical observables their expectation number would now be

〈AiBj〉 = Tr(Ai ⊗Bjρ).

In the case of Ekert protocol, ρ = |ψ−〉〈ψ−|. Using directions described in step 2., the value of

S is S = 2
√

2, a violation of the CHSH inequality.

So, whenever Alice and Bob measure S = 2
√

2, they can be sure to share a maximally entangled
state between them. If the entanglement is maximal, it cannot be entangled with anything else;
in particular, anything under Eve’s control.

On the other hand, if no violation of the CHSH is found, Alice and Bob’s measurement are
compatible with a separable state, rendering impossible to create a secret key. In this case, the
protocol should be aborted.

2We already derived the inequality in Section 4.1.1, but we present a much clearer approach here which needs not
involve a Hidden Variable Model.
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Remark 8.4. We want to emphasize that the protocols mentioned for QKD have the problem of
authentication. Indeed, Bob must know that it is really Alice who is talking (for example, at the
sifting procedure) or the whole security of the protocol could be compromised. We analyze the
different kinds of strategies a spy could perform to break a QKD cryptosystem in the following
section. The authentication procedure is still an area of active research today [36].

8.3. Eavesdropping strategies

In a formal manner, the set of all eavesdropping strategies can be classified into three classes,
which we will call individual, collective and coherent attacks. The criteria for distinguishing them
is the power we give to the eavesdropper.

The most general way to describe how information can be extracted from a quantum system in
a state ρA is the following [14]: Attach an ancilla system in a predefined known state |0〉〈0|E ;
then perform a -sophisticated- unitary operation U on the composite system ρA⊗|0〉〈0|E . Then,
do an -also sophisticated- measurement on the ancilla system, which is

ρE = TrA(U†(ρA ⊗ |0〉〈0|E)U).

The measurement to be performed is given by a POVM M described by the projections on the
eigenspaces {Mj}j , and which yields outcome j with probability Tr(Mjρ) when measuring a
state ρ.

Notation 8.1. We shall denote the classical probability distribution induced by the measurement
by Pρ

M(j) = Tr(Mjρ).

If we want to indicate the number of subsystems on which the measurement is performed, we
will write M1 or Mn.

Let us consider the case where Alice sends n quantum systems ρ1
A, . . . , ρ

n
A to Bob.

• Individual attacks are the simplest ones, and correspond to an eavesdropper with little
power.
More precisely, Eve will attach an ancilla system |0〉〈0|E to each state ρiA and applies
the same unitary operation, U , performing the same measurement on her part of all the
composite systems individually and in the same way.
The probability distribution that Eve obtains for each class of attacks is given by

P
ρ1E
M1 · · ·PρnE

M1 , where ρiE = TrA(U†(ρiA ⊗ |0〉〈0|E)U).

• Collective attacks are a bit more general, as they allow the eavesdropper to measure all
ancilla systems collectively.
In this case, the probability distribution obtained by Eve will be

P
ρ1E⊗···⊗ρnE
Mn , where ρiE = TrA(U†(ρiA ⊗ |0〉〈0|E)U).

• Coherent attacks are potentially the most powerful, since they correspond with an eaves-
dropper with unlimited technological power and resources, only limited by laws of Nature.
In a coherent attack, Eve attaches one large ancilla system to the state ρ1

A ⊗ · · · ⊗ ρnA and
then performs a global unitary transformation Ug and measurement Mn.
The probability distribution obtained by Eve will contain the most information in this case:

PρE
Mn , where ρE = TrA(U†g ((ρ1

A ⊗ · · · ⊗ ρnA)⊗ |0〉〈0|E)Ug).
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Remark 8.5. Coherent attacks are not only the most general ones; they also are the most
difficult ones to analyze, due to the high dimension of the global Hilbert space, which grows
exponentially. Coherent eavesdropping has been studied for the BB84 [14] and for the six-state
protocol [14]. As a quite surprising result, the authors found that coherent eavesdropping does
not increase Eve’s Shannon information; however, it does slightly increase the probability to
guess the key.

8.3.1. PNS attack. The different kinds of attacks considered so far involve idealized QKD
protocols and eavesdropping.

Nevertheless, realistic experimental implementations may offer Eve new and more powerful paths.
When looking at a common experimental implementation for QKD, a dangerous strategy becomes
obvious:

Qubit systems can be conveniently represented by photons, typically using their polarization as a
degree of freedom. Ideally, each qubit is encoded by exactly one photon. However, single-photon
sources do not exist. Instead, one often uses weak coherent pulses,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉,

where α ∈ C and |n〉 is a Fock state, as described in Section 5.2.2.

If the phase of α, argα is unknown or it is randomized, one arrives at the following mixture of
Fock states [14]:

ρ =

∫
1

2π
|α〉〈α|d argα =

∞∑
n=0

P(n)|n〉〈n|,

where the probability distribution of photons obeys Poissonian statistics, i.e.,

P(n) = e−|α|
2 |α|2n
n!

.

The mean photon number is n = |α|2. Thus, a weak laser pulse contains no photons in most
cases, and more than a photon with a small probability. A typical value used for QKD [14] has
a mean photon number n = 0, 1. This corresponds to P(0) ' 90, 5% probability of no photons;
P(1) ' 9% of one photon; thus, the probability for more than a photon would be ' 0, 5%.

The photon number splitting (PNS) attack is as follows: For each weak coherent pulse sent from

Alice to Bob via a lossy optical fiber, Eve measures its photon number (via a non-demolition
measurement). If it is more than one, she splits off one photon, stores it and sends the remaining
photon(s) to Bob via a lossless fiber. If the photon number is one, she blocks the event with
certain probability (according to the photon statistics Bob expects to receive). Vacuum events
are just forwarded to Bob.

For all multi-photon events, Eve can get full information on the corresponding key bit if she
waits for Alice to announce the bases, measuring correctly each corresponding photon. Thus,
the protocol loses its unconditional security.

Several strategies have been proposed to counter this attack: For example, the use of decoy
states [14, 36], which consists of the introduction of a second source in Alice’s side sending weak
coherent pulses with different photon number distribution; namely, the decoy source has a much
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higher mean ndec, yet it is not different from the signal source in any other parameter. After
sending all pulses, Alice announces which were prepared by each source. Eve can be detected in
case she launched a PNS attack by Bob, who will find an abnormally higher loss for the photons
with lower mean photon number n.

Remark 8.6. Other kinds of attacks in a realistic environment are possible [36] besides the
PNS attack. We shall only sketch its main idea here.

Example 8.2. For example, the Trojan Horse attack (or light injection attack) [36]: Eve aims
not to interact with the photons in transit between Alice and Bob, but to probe the device in
Alice’s and Bob’s side by sending some light into them and collecting the reflected signal.

Eve can use the information of the reflected signal to detect which basis Alice used for the
preparation of the photon, via a phase modulation due to the different ways the reflected and
the reference pulse can go through. If Eve is able to perform this before Alice’s photon reaches
Bob, she can perform a simple intercept & resend (I&R) attack and gain full information on the
secret bit string, since Eve can always measure in the correct basis.

A countermeasure could be the use of isolators in Alice’s lab (when the communication is from
Alice to Bob) and monitor the intensity of incoming light.

Example 8.3. The faked states attack is a kind of I&R strategy in which Eve does not try to
intercept the recreated state. Instead, Eve manages to send a signal to Bob which can only be
detected in a way totally controlled by Eve. The time-shift strategy is an alternative version of
this [36].

8.4. Bounds

Definition 8.1. Let A, B, E be random variables with joint probability distribution PABE .
The conditional mutual information between A and B, given E, is defined as

I(A;B|E) =
∑
e∈E

PE(e)[H(A|e) +H(B|e)−H(A,B|e)],

where the conditional Shannon entropy is defined as

H(X|e) = −
∑
x∈X

PX|E(x, e) logPX|E(x, e),

and we consider that E takes values in E and X in X .

Remark 8.7. The conditional mutual information I(A;B|E) quantifies the amount of informa-
tion revealed about A when learning B, given the knowledge of E.

When one minimizes I(A;B|E) over all the possible processing of the variable E obtains

Definition 8.2. The intrinsic information between A and B, given E, is defined as

I(A;B ↓ E) = inf
E−→Ẽ

I(A;B|Ẽ),

where the infimum is taken over all channels PẼ|E that can be used to process E.

The following definitions quantify how many secret bits can be extracted from a given probability
distribution and how many are needed to create it:
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Definition 8.3. The secret key rate S(A : B||E) is defined as the maximal amount of secret
bits that can be extracted asymptotically from PABE .

Definition 8.4. The information of formation Iform(A;B|E) is defined as the minimal number
of secret bits that are needed asymptotically to create PABE .

Proposition 8.1. The following bounds of the secret key rate can be derived:

S(A;B||E) ≤ I(A;B ↓ E) ≤ Iform(A;B|E).

The proof of this proposition can be found at [14].

8.5. Certified random number generation

In this last section, we present a particular experiment [52] with cryptographic applications: the
problem of certifying a sequence is genuinely random.

Randomness is a fundamental feature of nature and a valuable resource for multiple applications
(numerical simulation of physical and/or biological systems, cryptography...). However, the char-
acterization of true randomness is elusive. There exist a series of statistical tests [57] which are
designed to look for the existence of patterns that may appear in non purely random sequences.
Yet, not all patterns can be covered by a finite number of such tests.

At a more fundamental level, in the classical world, any system admits in principle a deterministic
description and apparent randomness is due to our lack of knowledge. On the other hand,
quantum theory is intrinsically random.

Let us consider a RNG (random number generator) as a black box. Let us also assume the
possibility that an adversary has tampered with the RNG introducing patterns undetected by
any statistical test. The patterns we consider also include the case that all the numbers were
generated in advance by the adversary and copied into a memory inside the black box.

Is there any means to guarantee the existence of private randomness?

The laws of quantum mechanics enable procedures to achieve that. In the experiment proposed
at [52], the violation of Bell’s inequalities (like CHSH described in Section 4.1.1) is used to certify
non-local correlations and to generate private randomness.

Let us begin by describing the experiment: Fig. 8.2 shows the experimental setup. The process
begins with each atom emitting a single photon (to the left). Each photon is entangled with the
corresponding atom. The aim is to entangle the two 171Yb+ atoms. In order to achieve this,
the procedure used is known as entanglement swapping : roughly speaking, the two photons are
entangled and then this entangled is transferred to the atoms. Hence, the photons are collected
with respective optical fibers and they interfere in the beamsplitter (BS). Finally, each photon
is measured with a photo-multiplier tube (PMT). At this stage, the two qubits are entangled.
Random binary inputs x, y are given to microwave oscillators, which coherently rotate each qubit
accordingly (in plain terms, x, y determine in which basis we will measure each qubit). To ensure
no influence of one measurement to another, during the measurement process, the two boxes were
not allowed to communicate. The measurement outputs binary values a and b. More precisely,
atomic fluorescence techniques were used (with detection error probability < 3%).
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The Bell inequality was quantified through the CHSH correlation function [16, 52]

I =
∑
x,y

(−1)xy(P(a = b|xy)−P(a 6= b|xy)),

with an estimator for I for n samples:

Î =
1

n

∑
x,y

(−1)xy(N(a = b|xy)−N(a 6= b|xy))/P(xy),

where N counts the corresponding number of events.

The total number of samples was n = 3.016, collected over the period of one month (this is due
to the low probability of success of entanglement generation, P(ent) ∼ 2 · 10−8).

The experimental results are shown in the following table:

(x, y) (φx, φy) N(0,0;x,y) N(0,1;x,y) N(1,0;x,y) N(1,1;x,y) Total P̂(a = b|xy)
0, 0 0, π/4 293 94 70 295 752 0, 782
0, 1 0, 3π/4 298 70 74 309 751 0, 808
1, 0 π/2, π/4 283 69 64 291 707 0, 812
1, 1 π/2, 3π/4 68 340 309 89 806 0, 195

In order to minimize the number of runs to obtain a meaningful bound, the input was distributed
as PX,Y ∼Uniform(1/4). Also, for the collected data, Î = 2, 414± 0, 058. Hence, the probability

that these results could be explained by means of a local theory (I ≤ 2) is P(Î ≥ 2, 414) ≤
0, 00077.

Fig. 8.2. Experimental realization of private random number generator using
two 171Yb+ qubits trapped in independent vacuum chambers.

The CHSH violation observed implies that > 42 new random bits are generated with a 99%
confidence level [52].





Chapter 9

Quantum Coding

In this chapter, we treat the subject of quantum coding and quantum error correction. We treat
the different kinds of decoherence a quantum channel can undergo. We give some examples
of quantum codes (three-qubit bit-flip/phase-flip codes, nine-qubit Shor code) and introduce
CSS codes. We analyze how adding extra qubits does in fact compensate the decoherence they
introduce in the system. Finally we treat the case of degenerate codes [8, 44, 48, 50].

9.1. Introduction

In practice, any quantum system is open; namely, it is never perfectly isolated from the en-
vironment. The core of the problem is the superposition principle, according to which, any
superposition of quantum states is an acceptable quantum state. We use the word decoherence
in order to refer to any quantum-noise process due t coupling a system with the environment.

In quantum information processing, decoherence is the major threat to the actual implementation
of any quantum computation or communication protocol.

9.2. Decoherence

We shall begin this section by studying quantum-noise (decoherence) processes that can act on
a single qubit, before giving the general formulation of the problem in Section 9.2.1. We shall
consider the environment as a single qubit and the system-environment (Σ +E) interaction shall
be modeled as a CNOT gate (Fig. 9.1). Let us assume that initially the system Σ is in a pure
state |ψ〉 = α|0〉+β|1〉 with its corresponding density matrix representation in the basis {|0〉, |1〉}
and that E is in the initial state |0〉:

ρ =

(
|α|2 αβ∗

α∗β |β|2
)

As seen in Remark 3.9, the diagonal terms are known as populations and represent the proba-
bilities to obtain the outcomes 0 or 1 from a measurement along the z-axis, respectively. The
off-diagonal terms, known as coherences, appear when |ψ〉 is a superposition of the states |0〉 and
|1〉 and shall be completely destroyed by the decoherence process depicted in Fig. 9.1.

95
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ρ ρ′

|0〉

Fig. 9.1. Quantum circuit modeling decoherence process.

Indeed, the initial global Σ + E state

|Ψ〉 = |ψ〉 ⊗ |0〉 = (α|0〉+ β|1〉)|0〉
evolves into he final state

|Ψ′〉 = α|00〉+ β|11〉. (9.1)

Remark 9.1. The CNOT interaction has entangled the qubit with the environment, as the state
|Ψ′〉 is non-separable. By tracing over the environment, we obtain the final density matrix ρ′ of
the system Σ:

ρ′ = TrE |Ψ〉〈Ψ| =
(
|α|2 0

0 |β|2
)
.

Remark 9.2. This decoherence process allows for the following interpretation: From (9.1) it is
obvious that the environment has learned, through the CNOT interaction, what is the state of
Σ (if Σ is in the state |0〉, E remains in the state |0〉; if Σ is in the state |1〉, E flips to the state
|1〉). Therefore, we can think of the CNOT gate as a measurement performed by E onto Σ.
Now the information of the relative phases of the coefficients α, β is encoded into the Σ +
E quantum correlations. As we do not keep record of the state of the environment E, this
information is eventually lost for us.
In short, information leaks from the system into the external world.

Example 9.1. Quantum circuits simulating noise channels.

In a more general picture, let us consider a system Σ described by a density matrix ρ and an
environment E with two ancillary qubits, in the pure state

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉,
with α, β, γ, δ ∈ C satisfying the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The initial
density matrix E + Σ will have the following block representation:

ρ(E+Σ) ≡ ρ̃ = |ψ〉〈ψ| ⊗ ρ =


|α|2 ρ 3 3 3

3 |β|2 ρ 3 3

3 3 |γ|2 ρ 3

3 3 3 |δ|2 ρ

 ,

where 3 denotes blocks not needed in subsequent calculations.

Consider the quantum circuit which implements the unitary transform with the following block
representation:

U =


σx 0 0 0
0 σy 0 0
0 0 σz 0
0 0 0 I2
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Thus, the final state E + Σ is described by ρ̃′ = Uρ̃U†, which is, in general, entangled with the
environment.

To obtain ρ′ we trace out the environmental qubits

ρ′ = TrE ρ̃′ = |α|2 σxρσ†x + |β|2 σyρσ†y + |γ|2 σzρσ†z + |δ|2 ρ,
which can be expressed through the Kraus operators introduced in Remark 7.7 E1 = |α|σx,
E2 = |β|σy, E3 = |γ|σz and E0 = |δ| I2 leading to the Kraus representation

ρ′ =

3∑
i=0

EiρE
†
i . (9.2)

Remark 9.3. The transformation induced by the Kraus operators in (9.2) has a geometric
representation on the Bloch sphere. Let us associate the Bloch vectors r, r′ with the density
matrices ρ, ρ′ respectively.

Using the Bloch sphere representation (3.3), direct computation shows that

2σxρσ
†
x =

(
1− z x+ iy
x− iy 1 + z

)
, 2σyρσ

†
y =

(
1− z −(x+ iy)
−(x− iy) 1 + z

)
and 2σzρσ

†
z =

(
1 + z −(x− iy)
−(x+ iy) 1− z

)
.

Using the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1 we obtain

x′ = (1− 2(|β|2 + |γ|2))x,

y′ = (1− 2(|α|2 + |γ|2))y,

z′ = (1− 2(|α|2 + |β|2))z.

This tells us that the Bloch sphere is deformed into an ellipsoid centered at the origin of the
Bloch sphere and with axes directed along x, y, z.

Remark 9.4. Depending on the choice of parameters |α| , |β| , |γ| (observe that their relative
phase does not affect the final state ρ) we can obtain various commonly investigated channels,
such as the bit-flip channel already seen in Example 7.1 with β = γ = 0 or their analogous
phase-flip channel with α = β = 0 and bit-phase-flip channel with α = γ = 0. The depolarizing
channel introduced in Example 7.2 is obtained by setting |α|2 = |β|2 = |γ|2 = p/3, with its Bloch
sphere representation r′ =

(
1− 4

3p
)
r resulting in a shrinking of the sphere.

Remark 9.5. The models we have seen in this section and in Example 7.4 leading to decoherence
are phenomenological. They do not represent the physical mechanisms inducing decoherence
any better than a resistance in an electric circuit represents the scattering process undergone
by electrons. We justify decoherence by means of a simple model which allows more formal
developments [8].

9.2.1. Quantum to classical transition. Since the dawn of quantum theory, the emergence of
classical behaviour in a world governed by the laws of quantum mechanics has been a fascinating
problem. The heart of the problem is the superposition, which entails consequences that appear
unacceptable to classical intuition, as we have seen for example in the CHSH inequality (4.1)
discussion and Example 4.1.
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Example 9.2. Schrödinger’s cat.
Schrödinger’s cat paradox is a −theoretical− experiment devised by the Austrian physicist Erwin
Schrödinger in 1935 to discuss the Copenhagen interpretation of quantum mechanics and the EPR
article [23] which had highlighted the strangeness of the subject.

Inside a box we have a radioactive source, a detector, a hammer, a vial of poison and a cat. The
source is a two-level atom Σ, initially in its excited state |1〉 (we shall use the model already
described in Example 7.3). The atom can decay to the ground state |0〉 by emission of a photon,
which triggers the detector. The clock of the detector induces the hammer to break the vial and
kill the cat (system Σ′, where |?〉 shall mean the cat is alive and |†〉 it is dead).

We assume that the composite Σ + Σ′ system is

|ψ0〉 = |1〉|?〉.

After the half-life of the atom we have the state |ψ〉 = 1√
2

(|1〉|?〉+ |0〉|†〉), a superposition of the

live and dead cat states. Note that now the cat and the atom are entangled.

More precisely, the density matrix of the state |ψ〉 is

ρ = |ψ〉〈ψ| = 1

2
(|1〉|?〉〈1|〈?|+ |0〉|†〉〈0|〈†|+ |1〉|?〉〈0|〈†|+ |0〉|†〉〈1|〈?|) ,

which has the representation in the basis {|0〉|?〉, |0〉|†〉, |1〉|?〉, |1〉|†〉}:

ρ =
1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


This density matrix contains non-zero matrix elements along the diagonal and also off-diagonal.
The latter (coherences) have no classical analogue -to the date, no cat has been found alive and
dead at the same time yet-.

The paradox is solved via decoherence. Decoherence plays a key role in understanding the
transition from the quantum to the classical world.

The atom-cat system is never perfectly isolated from the environment, which it is constantly
measuring it. The state we must consider is (by denoting |E0〉, |E1〉 the states of the environment)

|Ψ〉 =
1√
2

(|1〉|?〉|E1〉+ |0〉|†〉|E0〉) .

If |E1〉, |E0〉 are orthogonal states, we obtain, the final state corresponding to Σ + Σ′ by tracing
out the environment E:

ρdec = TrE |Ψ〉〈Ψ| =
1

2
(|1〉|?〉〈1|〈?|+ |0〉|†〉〈0|〈†|) ,

which is now a diagonal matrix corresponding to a mixed state. It is now compatible with a
classical description in terms of probabilities: After the half-life of the atom, the cat is dead with
probability p = 1/2 and alive with the same probability. We discover its state upon observation.
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9.3. Quantum Codes

We have already seen how the process of decoherence can lead to destruction of quantum in-
formation. To fight the effect of noise, a well-developed technique is the use of error-correcting
codes. The main ingredient to achieve such aim is the use of redundancy.
The simplest way to protect a classical bit is to send three copies of it; for instance, if Alice wishes
to send Bob a classical bit, she may send 000 instead of 0 or 111 instead of 1. Bob receives the
three bits, maybe with some errors, and decides with majority voting which one was sent.

Remark 9.6. There is an underlying hypothesis in this reasoning, which is that the noisy
channel is memoryless; namely, noise acts independently on each bit. If ε is the probability of
error on a single bit, then the code fails with probability εc = 3ε2(1− ε) + ε3 = 3ε2 − 2ε3 (if two
or more bits have been flipped). If εc < ε, this means that the code improves the possibilities of
successful transmission, which happens if ε < 1/2.

We wish to apply the same principle to quantum information; however we encounter difficulties
due to the basic principles of quantum mechanics:

1. According to the no-cloning theorem it is impossible to make copies of an unknown quantum
state. Therefore, we cannot just send |ψ〉|ψ〉|ψ〉 in order to protect an unknown |ψ〉.

2. In order to operate classical error correction, we observe (measure) the output from the noisy
channel. In quantum mechanics, measurement disturbs (in general) the system: If we receive
|ψ〉 = α|0〉 + β|1〉 and measure its polarization along the z-axis, the state will collapse onto
|0〉 or |1〉, destroying the coherent superposition of |ψ〉.

3. The only possible classical error affecting a single bit is the bit flip error 0 � 1. There is
a much wider class of quantum errors, in general with no classical counterparts (e.g. the
phase-flip error α|0〉+ β|1〉� α|0〉 − β|1〉; noise may also slightly rotate a state |ψ〉 → R|ψ〉,
with R a rotation matrix). At first sight it might appear that infinite precision is needed in
order to correct this continuum of quantum errors (e.g., the rotation angle of R); however, we
shall see that quantum error correction is indeed possible.

9.3.1. Three-qubit bit-flip code. We shall assume that noise acts on each qubit indepen-
dently. Imagine that Alice wishes to send a qubit |ψ〉 = α|0〉+ β|1〉 to Bob via a noisy quantum
channel which will leave the state of the qubit unchanged with probability 1−ε and will apply the
Pauli operator σx with probability ε. Note that this channel acts like the one already described
in Example 7.1.

Notation 9.1. We shall use the following notation for the logical states or codewords: |0L〉 ≡
|000〉, |1L〉 ≡ |111〉.

Alice will employ the encoding |0〉 → |0L〉, |1〉 → |1L〉. Thus, a generic state will be encoded as

|ψ〉 = α|0〉+ β|1〉 → α|0L〉+ β|1L〉.

A simple CNOT circuit in cascade can implement this encoding:

CNOT1,3(CNOT1,2(α|0〉+ β|1〉)|00〉) = CNOT1,3(α|00〉+ β|11〉)|0〉 = α|0L〉+ β|1L〉. (9.3)

This state is known as the GHZ (named after Greenberger, Horne and Zeilinger) state, or
cat state.

Remark 9.7. This does not violate the no cloning theorem, since |ψ〉|ψ〉|ψ〉 6= α|0L〉+ β|1L〉.
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After passing the channel, Bob may receive the following states, with its corresponding proba-
bilities:

α|000〉+ β|111〉, (1− ε)3,
α|100〉+ β|011〉, ε(1− ε)2,
α|010〉+ β|101〉, ε(1− ε)2,
α|001〉+ β|110〉, ε(1− ε)2,
α|110〉+ β|001〉, ε2(1− ε),
α|101〉+ β|010〉, ε2(1− ε),
α|011〉+ β|100〉, ε2(1− ε),
α|111〉+ β|000〉, ε3.

In order to prevent a single bit-flip error, Bob could proceed as in classical error correction

and measure the polarizations σ
(i)
z of the three qubits and apply majority voting. However, no

quantum state would remain afterward.

The problem is solved by performing collective measurements on two simultaneous qubits.

This process is illustrated in Fig. 9.2: with the aid of two extra ancillary qubits in the original

state |00〉, Bob is now allowed to measure σ
(1)
z σ

(2)
z and σ

(1)
z σ

(3)
z . Thus, Bob obtains an error

syndrome x0, x1 from the two classical measurements.

|0〉

|0〉

x0

x1

M0

M1

Fig. 9.2. The circuit for extraction of the error syndrome x0, x1 by performing
measures M0,M1 on the ancillary qubits.

Bob’s actions should be the following:

• x0 = x1 = 0. No action.
• x0 = 0, x1 = 1. Apply NOT to the third qubit.
• x0 = 1, x1 = 0. Apply NOT to the second qubit.
• x0 = x1 = 1. Apply NOT to the first qubit.

After Bob’s correction, the five-qubit states and their corresponding probabilities will be
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(α|000〉+ β|111〉)|00〉, (1− ε)3,
(α|000〉+ β|111〉)|11〉, ε(1− ε)2,
(α|000〉+ β|111〉)|10〉, ε(1− ε)2,
(α|000〉+ β|111〉)|11〉, ε(1− ε)2,
(α|111〉+ β|000〉)|01〉, ε2(1− ε),
(α|111〉+ β|000〉)|10〉, ε2(1− ε),
(α|111〉+ β|000〉)|11〉, ε2(1− ε),
(α|111〉+ β|000〉)|00〉, ε3.

In order to recover the original |ψ〉, Bob applies the inverse operation of the encoding (9.3). As
discussed in the introduction of this section, the encoding improves the transmission of quantum
information if ε < 1/2.

Remark 9.8. When Bob measures the syndrome, he does not learn anything about the quantum
state (this is, the values of α and β). Thus, coherence is not destroyed. This has been possible
because Alice has sent a many-qubit entangled state and Bob measured only collective properties
of this state.

Remark 9.9. If we wish to use quantum-error correction repeatedly (e.g. for the stabilization
of a state on a quantum computer; namely, a quantum memory, against decoherence from the
environment) we must supply new ancillary qubits on every iteration. More precisely, erase them
to the |0〉 state. According to Landauer’s principle [7, 8, 48], erasure of information dissipates
energy, so this process spends power.

9.3.2. Three-qubit phase-flip code. It is also possible to correct phase errors. This kind
of error has no classical analogue. A phase-flip error is modeled through σz Pauli matrix, and
affects the states of the computational basis as follows:

|0〉 → σz|0〉 = |0〉, |1〉 → σz|1〉 = −|1〉.

Hence, a state |ψ〉 = α|0〉+ β|1〉 is mapped into σz|ψ〉 = α|0〉 − β|1〉.
Remark 9.10. The discussion in Section 4.1.1 may inspire us to observe that a phase-flip error
in the computational basis {|0〉, |1〉} becomes a bit-flip error in the basis {|+〉, |−〉}. Indeed, we
have σz|+〉 = |−〉, σz|−〉 = |+〉.

By means of the Hadamard gate we may transform the vectors of the computational basis into
new basis vectors and vice versa. Therefore, we use the encoding

|0〉 → |0L〉 = |+ + +〉, |1〉 → |1L〉 = |− − −〉,
and use three bit-flip correcting code. We do the final decoding step by implementing the same
array of gates as for the encoding, but in the reverse order.

9.3.3. Nine-qubit Shor code. The code we present in this section corrects the most general
possible noise acting on a single qubit.

Notation 9.2. We will employ the following encoding:

|0〉 → |0L〉 ≡
1√
8

(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
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|1〉 → |1L〉 ≡
1√
8

(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

So, a generic quantum state will be encoded in

|ψ〉 = α|0〉+ β|1〉 → α|0L〉+ β|1L〉.

Fig. 9.3 shows the implementation of such encoding.

|ψ〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

H

H

H

Fig. 9.3. 9-qubit Shor code encoding circuit. |ψ〉 is encoded into 9 qubits.

We shall now see how this code can correct both bit and phase-flip errors. Fig. 9.4 shows the
quantum circuit for error recovery, which we shall now analyze: The method described in Section
9.3.1 can be applied to each three-qubit block since a single bit-flip error can be detected and
corrected this way.

Let us now assume that it is a phase-flip error which has occurred in the first three-qubit block.
Neglecting the normalization factor, the state of the first block is modified as

|000〉 ± |111〉 → |000〉 ∓ |111〉.

As observed in Remark 9.8, in order to detect this phase-flip error without disturbing the encoded
quantum state |ψ〉, we must perform collective measurements.

We will measure the syndromes

y0 = σ(1)
x σ(2)

x σ(3)
x σ(4)

x σ(5)
x σ(6)

x

y1 = σ(1)
x σ(2)

x σ(3)
x σ(7)

x σ(8)
x σ(9)

x

This is, we will perform a parity check on the first and second blocks and on the first and third
blocks in order to localize in which block the phase-flip has occurred.
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|0〉

|0〉

x0

x1

M0

M1

H H

H H

H H

|0〉

|0〉

x2

x3

M2

M3

H H

H H

H H

|0〉

|0〉

x4

x5

M4

M5

H H

H H

H H

|0〉

|0〉

y0

y1

M ′
0

M ′
1

Fig. 9.4. 9-qubit Shor code syndrome-extraction circuit. Note that the three
sub-blocks on the left are the same as in Fig. 9.2.

Therefore, (y0, y1) = (−1,−1) means that the phase flip affects the first block of qubits. Similarly,
(1,−1), (−1, 1) and (1, 1) correspond to third block, second block and no phase error, respectively.

To correct a phase error on block i+ 1 we apply the operator σ
(3i+1)
z σ

(3i+2)
z σ

(3i+3)
z , since it maps

|000〉 ± |111〉 → |000〉 ∓ |111〉.
Remark 9.11. The nine-qubit Shor code does not only correct single-qubit bit and phase-flip
errors. It also protects against arbitrary errors affecting a single qubit.

It is a fundamental feature of quantum error correction that a continuum of errors may be
corrected by only correcting a discrete subset of them.

To understand this point, let us consider a single qubit interacting with the environment, which
we can assume to be in a pure state |0〉E without loss of generality.
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The most general evolution can be written as

U |0〉|0〉E = |0〉|e0〉E + |1〉|e1〉E , U |0〉|1〉E = |0〉|e2〉E + |1〉|e3〉E .
Note that the states |ei〉E need not be normalized or mutually orthogonal.

A simple calculation shows that, for a generic initial state of the system, |ψ〉 = α|0〉+ β|1〉, one
has

U |ψ〉|0〉E = (I2|ψ〉)|eI〉E + (σz|ψ〉)|ez〉E + (σx|ψ〉)|ex〉E + (σxσz|ψ〉)|exz〉E , (9.4)

where we denoted

|eI〉E =
1

2
(|e0〉E + |e3〉E), |ez〉E =

1

2
(|e0〉E − |e3〉E)

|ex〉E =
1

2
(|e1〉E + |e2〉E), |exz〉E =

1

2
(|e1〉E − |e2〉E).

We observe from that that the action of U can be expanded over the discrete set of operators
(since σy = iσxσz):

{I2, σx, σy, σz},
which form a basis of the Hilbert space of 2× 2 matrices.

When we measure the error syndrome, we are projecting the superposition U |ψ〉|0〉E onto one of
the four states in which we expand it in (9.4).

In the case of Shor code, looking at the evolution of codewords |0L〉 and |1L〉, one obtains [8]
that the final state of the environment is the same is initially either in the state |0L〉 or |1L〉.
The deep reason that justifies this result is that |0L〉 and |1L〉 are entangled. Just by observing
a single qubit (for any of them, the state would be maximally mixed ρ = 1

2 I2) it is impossible
to tell them apart. Therefore, given an arbitrary |ψ〉, the environment cannot learn anything
about α or β through the interaction with a single qubit, i.e., inducing single qubit errors. Since
quantum information is not destroyed by this interaction, error recovery is possible.

9.4. CSS Codes

The codes we have seen so far exploit very little of classical codes. Here we present a quantum
error correction code that corrects bit and phase flip errors independently, by using a quantum
version of two linear codes. We will say that a code C is [n, k] if it encodes a k-bit string into an
n-bit string (n > k).

Definition 9.1. Let C1 and C2 be classical linear [n, k1], [n, k2] codes, respectively, such that
C2 ⊂ C1. For each codeword x ∈ C1, we define the quantum state

|x+ C2〉 =
1√
|C2|

∑
y∈C2

|x+ y〉,

where |C2| denotes the cardinality of C2. The vector space spanned by {|x+ C2〉}x∈C1
defines a

[n, k1 − k2] quantum code, a Calderbank-Shor-Steane code, CSS(C1, C2) for short.

From the definition we see that two different codewords x,x′ may lead to identical vectors
|x+ C2〉 = |x′ + C2〉. This will be the case if, and only if, x−x′ ∈ C2. Equivalently, if x and x′

belong to the same coset of C1/C2. Otherwise, the states |x+ C2〉 and |x′ + C2〉 are orthogonal.



9.4. CSS CODES 105

The dimension of the space CSS(C1, C2) is |C1| / |C2| = 2k1−k2 since it is the number of cosets
of C1/C2; thus, m = k1 − k2 qubits can be encoded.

Error correction with CSS works as follows: Suppose that C1 and C⊥2 can correct up to t errors1.
Let us denote H1 the parity check matrix for C1 and H2 that for C⊥2 .

We define σsα = σs1α ⊗ σs2α ⊗ · · · ⊗ σsnα , where α ∈ {x, y, z}, σ0
α = I2 and s = (s1, s2, . . . , sn) is an

n-bit vector.
By measuring σsz for each row vector s of H1 it can be shown [14] that one computes the syndrome
for bit-flip errors. Similarly, the syndrome for phase-flip errors can be computed by measuring
σrx for each row vector r of H2.
This way, arbitrary errors on any t qubits can be corrected. An important property of CSS codes
is that error correction for phase errors and for bit flips is decoupled from each other [14].

Example 9.3. To illustrate the process described, let us consider the [n = 7, k1 = 4] Hamming
code C1 and the [n = 7, k2 = 3] code C2 = C⊥1 .

A generator matrix for C1 is

G1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


and a parity check matrix is given by

H1 =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


It is trivial to check that H1G1 = 0, the zero matrix, since the arithmetic we use is the one of
Z2.

The code C2 = C⊥1 has generator matrix G2 = HT
1 and parity check matrix H2 = GT1 . The code

C1 contains 16 codewords and the code C2 contains 8. We list the latter as they will be needed
later:

C2 = {0000000, 1010101, 0110011, 1100110, 0001111, 1011010, 0111100, 1101001}.

In this case, we get a CSS code encoding k2 − k1 = 1 logical qubit into n = 7 physical qubits.

From Definition 9.1 we construct |0L〉 and |1L〉 as follows, taking y0 ∈ C1 and y15 ∈ C1 two
representatives from different cosets of C1/C2; namely, y0 = 0000000,y15 = 1111111:

1If C is a linear [n, k] code with generator matrix G and parity check matrix H, we define the dual code C⊥ of C,
which is the set of all codewords that are orthogonal to each codeword in C. The dual code C⊥ is an [n − k, n]
code which is generated by HT and has a parity check matrix GT .



106 9. QUANTUM CODING

|0L〉 = |y0 + C2〉

=
1√
8

(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉) .

Similarly,

|1L〉 = |y15 + C2〉

=
1√
8

(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉) .

We show now that, if the classical codes C1 and C⊥2 correct up to t errors, the quantum CSS
code can correct up to t qubits. As we have already seen in section 9.3.3, it suffices to correct
bit-flip and phase-flip errors in order to correct arbitrary errors.

We can rewrite the state |ṽ〉 = |v + C2〉 affected by amplitude and phase errors:

|ṽ〉ap =
1√
2k2

∑
w∈C2

(−1)(v+w)·ep |v + w + ea〉,

where we denoted by · the bitwise scalar product. The n-bit vector ea describes amplitude errors
and the n-bit vector ep describes phase errors. The errors are located in the positions where a
1 appears. Thus, we require that the weight (the number of ones) of these vectors is not greater
than t.

In order to detect ea we introduce a number of ancillary qubits, sufficient to store the error
syndrome |H1ea〉. This is, we map the state |ṽ〉ap|0〉 into

1√
2k2

∑
w∈C2

(−1)(v+w)·ep |v + w + ea〉|H1ea〉.

The measure of the ancillary qubits will tell us where the bit-flip has occurred. Now, by applying
a NOT gate to each of these qubits, we correct this kind of error; thus, obtaining the state

|ṽ〉p =
1√
2k2

∑
w∈C2

(−1)(v+w)·ep |v + w〉.

We have neglected the ancillary qubits, as they are needed no more. To correct the remaining
phase errors, we will proceed, as usual, to turn them into amplitude errors and then reverse the
transformation: Indeed, applying the Hadamard gate to each qubit, we obtain the state

1√
2k2

1√
2n

∑
w∈C2

2n−1∑
z=0

(−1)(v+w)·(ep+z)|z〉.

Changing the indexes z′ = z + ep (z = z′ + ep, as the sum is the operation of Z2) we rewrite
the state as

1√
2k2

1√
2n

∑
w∈C2

2n−1∑
z′=0

(−1)(v+w)·z′ |z + ep〉.
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Since, for a linear code C[n, k],
∑
w∈C(−1)w·z = 2k if z ∈ C⊥ and 0 otherwise [8], our state is

1√
2n−k2

∑
z′∈C⊥2

(−1)v·z
′ |z′ + ep〉.

We have converted the phase error to an amplitude error. As we did previously, introducing
ancillary qubits in the state |0〉 and applying the parity-check matrix H⊥2 for C⊥2 (which, in the
case of the example, would be H1 = H⊥2 since C2 = C⊥1 ), we map |z′ + ep〉|0〉 into |z′ + ep〉|H⊥2 ep〉
and correct the error according to the measurement of the ancillary qubits. We finally obtain
the state

1√
2n−k2

∑
z′∈C⊥2

(−1)v·z
′ |z′〉

and apply the Hadamard gate to each qubit obtaining the original uncorrupted state |ṽ〉 =
|v + C2〉.

9.5. Fault-tolerant quantum computation

The discussion so far has assumed that encoding and decoding of quantum information can be
achieved perfectly, as well as error recovery operations.

However, these are complex quantum operations which are subject to errors. Quantum logic
gates which are present in quantum information processing may propagate errors in a quantum
computer.

Quantum error correction has a double edge: The more qubits the system has, the more sensi-
tivity it possesses to decoherence effects; however, to preserve the information on it, we do add
extra qubits and perform quantum error correction.

The question which arises is: if we add a redundancy mechanism to protect a quantum compu-
tation, and a second redundancy mechanism to protect the first redundancy mechanism, and so
on... does this process converge in a fault tolerant quantum computation?

In this section, we shall show that -under certain assumptions- an arbitrarily long quantum
computation can be performed, given the noise in individual gates is below a critical threshold.

Example 9.4. Consider the CNOT gate. If a bit-flip error affects the control qubit (|0〉 ↔ |1〉),
then the error will also spread to the target qubit. For instance, the computation CNOT (|0〉|0〉) =
|0〉|0〉 would turn into CNOT (|1〉|0〉) = |1〉|1〉.

Another example of error qubit propagation is known as backward sign propagation [7]: A phase
error affecting the target qubit is also transferred, after the application of a CNOT gate, to the
control qubit.

In order to implement a reliable quantum computation, fault-tolerant quantum gates must be
applied. It is possible if we perform quantum logic operations directly on encoded states. For
example, a fault tolerant CNOT gate could be implemented as shown in Fig. 9.5. It is easy to
show [8] that if the CNOT gates are applied transversally (that is, bitwise), the truth table of
the CNOT is verified for the logical qubits.
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Remark 9.12. The CNOT gate is implemented fault-tolerantly, since each qubit in each code
block is involved in a single gate. Therefore, errors can only propagate to at most one qubit in
the other block, not inside the same block; thus making the CNOT gate fault-tolerant.

|xL〉 |xL〉

|yL〉 |xL ⊕ yL〉

Fig. 9.5. A quantum circuit implementing a transversal CNOT gate between
two logical qubits, encoded in three-qubit blocks.

9.5.1. The noise threshold for quantum computation. Given certain assumptions about
the noise model (in the simplest case, random and uncorrelated errors) and provided the noise
affecting individual quantum gates is below a certain threshold, the threshold theorem for quan-
tum computation [8] tells us that it is in principle possible to efficiently implement arbitrarily
long quantum computations.

The main idea behind this result is the use of concatenated codes.

Example 9.5. To grasp this concept, let us consider the following example, using the CSS code
described in Example 9.3. It encodes a single logical qubit into a block of n = 7 qubits. In a
concatenated code, each qubit of the block is itself a n-qubit block. This process is repeated
until we reach L levels of concatenation, as shown in Fig. 9.6. Then, a single logical qubit is
encoded into nL = 7L physical qubits.

L = 1
L = 2

Fig. 9.6. Concatenation of a 7-qubit code up to L = 2nd level.
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Let us call ε the error probability per qubit and per unit of time (e.g., the time required to
implement a single elementary quantum gate).

We shall call α the number of locations in the quantum circuit where an error may affect a single
qubit (before that error correction is applied)2.

At the first level of encoding (L = 1), error correction will fail if at least two qubits have been
corrupted. Therefore, the probability of failure is

p1 ≈ cε2 ≈ α2ε,

where we have denoted c ≈ α2 the number of ways in which a fault-tolerant circuit can introduce,
at least, two errors.

At the second level of encoding (L = 2), we employ n2 qubits and error correction will fail if -at
least- two of e subblocks of size n fail. Hence, the failure probability is

p2 ≈ cp2
1 ≈ α2(α2ε2)2.

Iterating this procedure, one finds that the failure probability at L-level concatenation is

pL ≈ cp2
L−1 ≈ α2L+1−2ε2L =

(α2ε)2L

α2
.

Let us suppose that we wish to implement a computation of length T , where T is the number of
logic quantum gates, with accuracy ε0.

This can be approximated, for low values of ε0 to require an error probability per logic gate
≤ ε0/T . Which is the number of levels of concatenation L we should apply?

The inequality

pL ≈
(α2ε)2L

α2
≤ ε0

T
is what we must match.

If εα2 ≤ 1, it can be rewritten as

L ≥ L ≈ log2

(
log(T/α2ε0)

log(1/α2ε)

)
.

Since xlog y = ylog x (can be seen taking logarithms on each side), the total number of physical
qubits

ntot ≈
(

log(T/α2ε0)

log(1/α2ε)

)log2 n

grows only polylogarithmically with T and ε.

The condition εα2 ≤ 1 motivates the definition of the threshold error probability εth = 1/α2.

Remark 9.13. Note that the above result assume that the quantum computer hardware is
capable of executing many quantum gates in parallel in a single time step. Otherwise, errors in
concatenated codes would accumulate too quickly to allow for successful error correction.

2A typical value for α, in the case of codes correcting a single error (like Hamming’s [7,4]) is α ∼ 102 [8].
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Remark 9.14. For α ∼ 102, our result demands a noise threshold εth ∼ 10−4. In the literature
[8], one can find various sophisticated calculations in which εth ∈ (10−6, 10−4). The numerical
value of such threshold depends on the assumed features of the quantum computer hardware.

9.6. Degenerate codes

Another remarkable feature of quantum error correcting codes is that, in occasions, they can be
used to correct more errors than those identified by the error syndrome [20, 33, 61, 63]. Such
degenerate codes have been known since the 90’s [20, 61], but have remained poorly understood
since recently [63].

Shannon already discovered (Theorem 2.4) that the capacity of a noisy channel N with input
symbol X and output symbol Y = N (X), its image under the action of the channel is

C = sup
pX

ι(X : N (X)).

Moreover, the proof of the theorem (see [66]) shows that C is achieved by a random coding
argument.

Remark 9.15. The maximization is over a single input to the channel; i.e., it does not require
to consider the correlation of many inputs over many channel uses.

When one moves to the quantum analogue, he would expect that the quantum capacity is given
by some measure of quantum correlations, maximized over the possible inputs. In order to show
why it is not the case, we need some previous definitions.

Definition 9.2. It is convenient to introduce the concept of coherent information of a (bipartite)
state:

Ic(ρAB) = S(ρB)− S(ρAB),

where S is the von Neumann entropy from Definition 7.1.

Definition 9.3. It is also convenient to introduce the concept of purification: If we are given
a quantum state ρA describing a system ΣA, it is possible to introduce another system ΣB and
define a pure state |φAB〉 from ΣA + ΣB such that it reduces to ρA when looking at system ΣA
alone:

TrB(|φAB〉〈φAB |) = ρA.

This is always possible, as can be seen, for example, at [48]. More precisely, if ρA =
∑
i pi|iA〉〈iA|,

we introduce ΣB , having the same associated Hilbert space as ΣA and we take an orthonormal
basis |iB〉. Then |φAB〉 ≡

∑
i

√
pi|iA〉|iB〉.

We are in conditions to introduce the quantity Q1, as the quantum analogue from Theorem 2.4,
defined in [63]:

Q1 ≡ sup
ρ
Ic(N , ρ),

where

Ic(N , ρ) = Ic(I⊗N (|φAB〉〈φAB |))
and |φAB〉 is a purification of ρ.
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The quantity Q1 can be achieved using a random code on the typical subspace of the maximizing
ρ, as one would expect. However, this rate has not always been optimal [20, 61]: If we consider
the depolarizing channel introduced in Example 7.2, they show that codes with rates larger than
Q1 can be achieved, especially, when the depolarizing channel is very noisy (then Q1 can be
small or even zero [63]) this effect is more striking.

The correct formula is achieved when considering the multi-symbol case, rather the single-symbol
we have already discussed.

Definition 9.4. The quantum capacity of a noisy channel N is given [63] by

Q ≡ lim
n→∞

sup
ρn

Ic(N⊗n, ρn),

where the notation is self-explanatory.

Remark 9.16. When we take the limit lim
n→∞

, it means that we must consider the behavior of

the channel on inputs which are entangled across many uses.

The difference between Q and Q1 is closely related to the existence of degenerate quantum codes.
Degeneracy is not a property of a quantum code alone, but a property of a code together with
a family of errors it is designed to correct.

More precisely,

Definition 9.5. We say that a code C degenerately corrects a set of errors Ec if

• C corrects Ec, and
• there are multiple errors in Ec mapped to the same error syndrome.

Definition 9.6. A code C is grossly degenerate if it has the further property that the number
of collisions of errors to the same error syndrome is exponential in the code’s block length.

In the case of the depolarizing channel, Q1 is exactly the maximum rate achievable with a non-
degenerate code. However, Q > Q1, and this can be shown with the construction of a grossly
degenerate code [20, 61].

In order to give a better understanding of how degenerate codes work, let us study quantum
error correction in a more general framework (as suggested by [63]): when errors affecting n
qubits occur.

Errors affecting n qubits can be described over a set of 4n operators {Ek}k by means of Pauli
operators, where

Ek ≡
n⊗
j=1

σ
(j)
ij

: ij ∈ {0, x, y, z}.

When considering the action of an arbitrary operator U on the n-qubit system |ψ〉 (plus the
environment), the general expression is

U |ψ〉|0〉E =

4n−1∑
k=0

Ek|ψ〉|ek〉E .

The final environment states |ek〉E need not concern us.
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We have a set of possible errors, described by E = {E0, . . . , E4n−1} and a subset Ec ⊆ E of errors
that can be corrected by the code.

The question we make to ourselves is what condition must be satisfied in order to make error
correction possible?

It should be obvious that −given two different codewords, |iL〉 and |jL〉−, correctable errors
should map them into orthogonal states in order to distinguish them with certainty (otherwise
perfect error correction would be impossible):

〈iL|E†kEl|jL〉 = 0, i 6= j Ek, El ∈ Ec.

Another necessary condition is that ∀Ek, El ∈ Ec, we must not gain any information on the
encoded state |iL〉 from the measurement of the error syndrome. Otherwise, the quantum state
would be disturbed (as discussed in the end of Section 9.3.3). This is the condition

〈iL|E†kEl|iL〉 = Ckl,

where Ckl ∈ C does not depend on the state |iL〉. Note that Ckl = C∗lk.

The two previous conditions can be summarized in

〈iL|E†kEl|jL〉 = Cklδi,j , (9.5)

where Ek, El ∈ Ec and the matrix C = (Ckl)kl is Hermitian.

Proposition 9.1. Error correction is possible if, and only if, (9.5) is satisfied.

The proof of this proposition can be found at [53].

With Eq. (9.5) we arrive at an equivalent definition, which is more operative, of degeneracy [8]:

Definition 9.7. A code C is non-degenerate if

Ckl = δk,l, ∀ k, l.
Otherwise, if Ckl 6= δk,l for some Ckl, the code is degenerate.

We have already seen examples of degenerate and non-degenerate codes, which we shall explain
below:

Example 9.6. The three-qubit bit-flip code from Section 9.3.1 is non-degenerate.
Indeed, let us check that (9.5) is fulfilled: We have 3 correctable errors, which are

E1 = σ(1)
x ⊗ σ(2)

0 ⊗ σ(3)
0 = E†1,

E2 = σ
(1)
0 ⊗ σ(2)

x ⊗ σ(3)
0 = E†2,

E3 = σ
(1)
0 ⊗ σ(2)

0 ⊗ σ(3)
x = E†3,

where σ
(j)
0 = I(j)2 .

Since Pauli matrix σx is σ2
x = I2, E†1E1 = E†2E2 = E†3E3 = I2 obtaining

〈iL|E†kEk|jL〉 = δi,j .

Remaining cases are easy to check. For example

〈0L|E†2E3|0L〉 = 〈000|σ(1)
0 ⊗ σ(2)

x ⊗ σ(3)
x |000〉 = 〈000|011〉 = 0.
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Similarly, for |1L〉. In summary,

〈iL|E†kEl|iL〉 = 0, k 6= l.

This means that Eq. (9.5) holds with Ckl = δk,l. Hence, the code is non-degenerate.

Example 9.7. The nine-qubit Shor code introduced in Section 9.3.3 is degenerate.
Indeed, let us see that C is nor the identity matrix anymore: Let us consider the errors E1 and

E2, corresponding to phase-flip errors in qubits 1 and 2 respectively: E1 = σ
(1)
z ⊗ σ(2)

0 ⊗ · · ·σ
(9)
0 ,

and E2 = σ
(1)
0 ⊗ σ(2)

z ⊗ · · ·σ(9)
0 .

The effect of E1 and E2 is the same onto the logical qubits |0L〉 and |1L〉:

|0(1)
L 〉 = E1|0L〉 =

1√
8

(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉),

|1(1)
L 〉 = E1|1L〉 =

1√
8

(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉);
whereas

|0(2)
L 〉 = E2|0L〉 =

1√
8

(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉),

|1(2)
L 〉 = E2|1L〉 =

1√
8

(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

Hence, we obtained |0(1)
L 〉 = |0(2)

L 〉 and |1(1)
L 〉 = |1(2)

L 〉. This means that

〈iL|E†1E2|iL〉 = 1, i = 0, 1⇒ C12 = 1 6= δ1,2 = 0.

Thus, the nine-qubit Shor code is a case of a degenerate code.

Remark 9.17. Observe that the states |0(j)
L 〉 from the previous example, for j ∈ {1, 2, 3} would

be indistinguishable, yet the code is capable of correcting the error. The error syndrome is the
same for all cases. This is the key feature of degeneracy which allows to improve the quantity
Q > Q1.
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Chapter 10

Physical Realizations

In this last chapter, we describe which physical implementations are being developed nowadays,
and how they are accomplished. We consider various types of technologies (Ion traps, cavity
quantum electrodynamics, photonic realizations...) and analyze their benefits and drawbacks.
We focus on the photonic realization of entanglement via sporadic parametric down conversion
and the optical realization of protocols and computation. In particular, we treat the Cirac-Zoller
CNOT gate and the Jaynes-Cummings model [26, 43, 48, 8].

10.1. Photonic Realizations

At present, the only appropriate system for long-distance communication of quantum states is the
photon, since photons can travel long distances with low loss (in optical fibers or in free space).
The state of a single photon can be manipulated by means of basic linear optical components,
such as phase shifters and beam splitters, as we shall discuss in this section.

Definition 10.1. An optical component is said to be linear if its output modes (with creation

and annihilation operators b̂†j and b̂j) are a linear combination of its input modes (with creation

and annihilation operators â†j and âj).

b̂†j =
∑
k

Mjkâ
†
k.

10.1.1. The phase shifter.

Definition 10.2. A phase shifter of phase φ on the Fock state |m〉 is defined by the transfor-
mation UP :

UP (φ) = eiφm̂ = eiφâ
†â.

Therefore, the Fock state |m〉 is mapped into eiφm|m〉.

The phase shifter is implemented in practice with a slab of transparent medium with refractive
index n; with n 6= n0, where n0 is the refractive index of free space. Hence, the wave vector in
the medium is

k = nω/c

and in free space
k0 = n0ω/c,

117
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where ω/2π is the photon frequency and c is the speed of light in vacuum.

If the photon travels a distance L through the medium, its phase will change by eikL, which is
different from the phase change eik0L it would have undergone when traveling the same distance
in free space.

Thus, the phase shift from the definition would be φ = kL or φ = k0L, depending on the medium.

In Fig. 10.1 (left) we have represented two phase shifters and a beam splitter.

10.1.2. The beam splitter.

Definition 10.3. The beam splitter acts on two modes through the unitary transformation UB :

UB(θ, φ) =

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)
,

where the relation between the input and output modes is the linear mapping [8]

â†l |0〉 7→
∑
m=1,2

(UB)mlb̂
†
m|0〉.

In particular, for the input state

|mn〉 =
(â†1)m√
m!

(â†2)n√
n!
|00〉,

and according to (5.10), we obtain the output state

UB |mn〉 =
1√
m!n!

(
2∑
i=1

(UB)i1b̂
†
i

)m 2∑
j=1

(UB)j2b̂
†
j

n

|00〉

=
1√
m!n!

(cos θ b̂†1 + e−iφ sin θ b̂†2)m(−eiφ sin θ b̂†1 + cos θ b̂†2)n|00〉.

Example 10.1. In the dual-rail representation, a single photon can follow two different paths,
and the states of the qubit |0〉, |1〉 correspond to the photon following one path or the other.

The two logical states can be written as |0〉 = â†0|0〉0|0〉1 = |1〉0|0〉1 and |1〉 = â†1|0〉0|0〉1 = |0〉0|1〉1,

where the operators â†0 and â†1 create a photon in the input modes 0 and 1; |0〉0 and |0〉1 are the
vacuum states corresponding to these modes.

As seen in Fig. 10.1, a beam splitter

UB(θ = π/4, φ = −π/2) =
1√
2

(
1 i
i 1

)
implements the transformation

|0〉 7→ 1√
2

(|0′〉+ i|1′〉), |1〉 7→ 1√
2

(i|0′〉+ |1′〉),

where we have represented the states |0′〉 = b̂†0′ |0〉0′ |0〉1′ = |1〉0′ |0〉1′ and |1′〉 = b̂†1′ |0〉0′ |0〉1′ =

|0〉0′ |1〉1′ . Here, the operators b̂†0′ and b̂†1′ create a photon in the output modes 0′ and 1′. In
Fig. 10.1 we see that this beam splitter, together with two −π/2 phase shifters, implements a
Hadamard gate:
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Indeed, the sequence of gates

UP (φ = −π/2)UB(θ = π/4, φ = −π/2)UP (φ = −π/2)

transforms the input states |0〉 and |1〉 as follows (with an obvious abuse of notation):

|0〉 = |1〉0|0〉1 → |1〉0|0〉1 →
1√
2

(|1〉0|0〉1 + i|0〉0|1〉1)

→ 1√
2

(|1〉0|0〉1 + |0〉0|1〉1) =
1√
2

(|0′〉+ |1′〉).

|1〉 = |0〉1|1〉0 → −i|0〉0|1〉1 →
−i√

2
(i|1〉0|0〉1 + |0〉0|1〉1)

→ 1√
2

(|1〉0|0〉1 − |0〉0|1〉1) =
1√
2

(|0′〉 − |1′〉), (10.1)

which is the precise behavior of a Hadamard gate.

Example 10.2. We can also represent a qubit by its polarization: the two polarization states
|h〉, |v〉 (horizontal, vertical) stand for the states |0〉, |1〉.

In Fig. 10.1 we show how the CNOT gate can be implemented −up to a sign factor− provided the
dual-rail qubit is the control and the polarization qubit the target. We introduce a polarization
rotator (R : |h〉 → |v〉, |v〉 → −|h〉) in the upper 1′ path.

Indeed, we have

|0〉|h〉 = |1〉0|0〉1|h〉 → |1〉0′ |0〉1′ |h〉 = |0′〉|h〉,
|0〉|v〉 = |1〉0|0〉1|v〉 → |1〉0′ |0〉1′ |v〉 = |0′〉|v〉,
|1〉|h〉 = |0〉0|1〉1|h〉 → |0〉0′ |1〉1′ |v〉 = |1′〉|v〉,
|1〉|v〉 = |0〉0|1〉1|v〉 → −|0〉0′ |1〉1′ |h〉 = −|1′〉|h〉.

This is exactly the behaviour of a CNOT gate.

10.2. Cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) stands for a set of techniques enabling the interaction
of single atoms and single photons inside a resonating cavity.

In this section we will focus on experiments realized with atoms whose valence electrons are
in states with a very large principal quantum number n; they are called Rydberg atoms. More
precisely, we consider alkali atoms, which have a single valence electron, very far from the atomic
nucleus; therefore, its electric dipole moment is very high and can be used to achieve the so-called
strong-coupling regime. This means that the coherent evolution of a single atom coupled to a
single photon −stored in a high quality cavity− overwhelms the incoherent dissipative processes1.
Thus, atom-photon entanglement can be produced before decoherence dominates.

1Quality is a measure of the rate at which a vibrating system dissipates its energy. We define the quality factor
Q as 2π times the ratio of the stored energy over the energy lost per cycle. Typical values are Q ∼ 3 · 108 [8].
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|0〉 |0′〉

−π
2

−π
2

|1〉

|1′〉 |1′〉

|0′〉|0〉

|1〉

Fig. 10.1. Optical scheme of the Hadamard gate (left) and CNOT gate (right).

An important observation is that the energy separation En − En−1 between two consecutive
atomic levels is very low: It corresponds to frequencies in the range 10 ∼ 50GHz, whereas when
n ∼ 1 they would correspond to optical frequencies in the order of 1015Hz.

Note that these radio frequencies are available in laboratories, so that resonant cavities can be
excited and then used to manipulate atoms. Also, the lifetime of Rydberg atoms is very long [8].
For example, for n ∼ 50, and a high angular momentum l ∼ n, the transition frequency between
states with principal quantum numbers n and n− 1 is in the microwave range and its lifetime is
about 30ms. The microwave wavelength is in the order of centimeters, so it is very convenient
for experimental manipulation.

In Fig. 10.2, we have shown the typical apparatus setup for CQED experiments.

• Alkali atoms leave the oven O and are excited to the appropriate Rydberg state by means
of appropriately tuned laser pulses L. In order to select atoms with well defined velocity,
Doppler effect is used. Although the source emits atoms randomly, pulsed lasers allow to
prepare the Rydberg states in O(µs). This means that the position of each atom flying inside
the apparatus is known with O(mm) precision, allowing to address and control individual
atoms.

• The prepared Rydberg atom crosses one or more (usually microwave superconducting)
cavities, R1, C,R2, resonant with the transition between two atomic levels |g〉, |e〉. The
relaxation time of the fields applied in R1 and R2 is O(ns) and therefore they do not
produce any entanglement between the atom and the microwave radiation field. The so-
called Rabi oscillations produced in these cavities are of the order of 10µs, much longer than
the relaxation time. These cavities are used for preparing the initial state in the desired
superposition α|g〉+ β|e〉.
The cavity C is prepared in the vacuum state |0〉 with no photons (the photon mean number
can be reduced to 10−1); it can evolve to the one-photon state |1〉 after the interaction with
the atom. The photon storage time is in the order of O(ms), which is much larger than the
atom-cavity interaction time, a few tens of µs.
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• Finally, the up/down state of the atom is measured using two detectors Dg and De. This
is accomplished by means of ionizing the atom with a static electric field O(102V/cm) and
detecting the resulting electron. The detectors Dg and De are very selective and will only
ionize the atom if it is in the state |g〉 or |e〉, respectively. For example, circular Rydberg
states for rubidium atoms with n = 49, 50, 51 can be distinguished with this technique.

O
L

R1 C R2

De Dg

Fig. 10.2. A sketch of a cavity quantum electrodynamics apparatus: the atoms
leave the oven O and are excited into the desired Rydberg state by pulsed lasers
L. They enter the cavities R1, C,R2 and are finally detected using state selective
field ionization in De and Dg.

Remark 10.1. The use of R2 is to be able to fully determine the (12) parameters that define

the quantum operation ρ
C7→ ρ′. Also, the fields in R1 and R2 can be considered classical. When

an atom interacts with a classical field, its state remains pure [8].

10.3. The Jaynes-Cummings model

We now revisit the atom-field interaction, but this time the field is also quantized, as we described
in Section 5.2.1. More precisely, we consider the interaction of a two-level atom with a single
mode of the quantized electromagnetic field. The state vector of the atom, at time t has the
form

|ψatom〉 = ce(t)|e〉+ cg(t)|g〉,
where we have followed the notation of Section 10.2. The state of the field, in the Fock basis (see
Section 5.2.2), is

|ψfield〉 =
∑
n

cn(t)|n〉.

Thus, the collective atom-field state is the tensor product of both,

|ψatom−field〉 =
∑
n

cn,e(t)|e〉 ⊗ |n〉+ cn,g(t)|g〉 ⊗ |n〉,

which is, in general, an entangled state.

Definition 10.4. The total atom-field Jaynes-Cummings Hamiltonian is written as

H = Hatom
0 +Hfield

0 + V,

where

Hatom
0 = ~(Ee|e〉〈e|+ Eg|g〉〈g|),

Hfield
0 = ~ω

(
â†â+

1

2

)
,

V = ~g̃(â+ â†)(σ̂− + σ̂+).
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Note that the Hamiltonian corresponding to the field is the same as the quantum harmonic
oscillator (5.4). Here we use the lowering and raising operators σ̂− and σ̂+, which are linear
combinations of the Pauli matrices:

σ+ = |e〉〈g| =
(

0 1
0 0

)
=

1

2
(σx + iσy),

σ− = |g〉〈e| =
(

0 0
1 0

)
=

1

2
(σx − iσy) = σ†+.

Finally, g̃ is the so-called atom-field coupling constant [43].

Let us now analyze the terms of this Hamiltonian: The terms (â+ â†) and (σ̂− + σ̂+) represent
the time-dependent part of the driving field, and the induced transitions |e〉 → |g〉 and |g〉 → |e〉,
respectively. We have the following operator products:

• âσ̂−: This mediates the transition |e〉 → |g〉 and the absorption of a photon. It corresponds
to a total energy loss of ∼ 2~ω.

• âσ̂+: This corresponds to the transition |g〉 → |e〉 and the absorption of a photon. This
process is called stimulated absorption, and the total energy is conserved.

• â†σ̂−: This governs the transition |e〉 → |g〉, together with the emission of a photon. This
process is known as stimulated emission, and conserves the total energy.
• â†σ̂+: This describes the emission of a photon and the transition |g〉 → |e〉. It has an energy

gain of ∼ 2~ω.

10.3.1. Atom-atom entanglement in CQED. This is one of the first demonstrations of
creating controlled entanglement of two qubits [27] using the apparatus described in Fig. 10.2.

The idea is the following: The two qubits correspond to two-level atoms, which interact, one
after the other, with a single mode quantized field, which is resonant with the atomic transition
frequency; hence, described by the Jaynes-Cummings interaction.

We arrange things in order that the first atom will exit the cavity C in a balanced coherent
superposition of the |e〉 and |g〉 states. So, the mode will be in a balanced superposition of |n〉
and |n+ 1〉 photons. Hence, the first atom and the field will be in a maximally entangled state.

The second atom will then recover this information from the field, left there by the first atom
and, once done, the two atoms will be maximally entangled, whereas the field will remain totally
disentangled.

This is a quite generic scenario, in which the atoms do not interact directly with each other; they
interact through the field, as if it were some kind of data bus or an intermediate information
storage.

More precisely,

• The atom1-atom2-field system is initially prepared in the state

|ψ〉 = |e1〉 ⊗ |g2〉 ⊗ |0〉.
• The velocity of atom1 is such that the interaction time t1 with the field mode satisfies

Ωt1 = π/2, where Ω = 2g̃
√
n+ 1|n=0 is the vacuum Rabi frequency (the frequency which

defines and confines the field mode).
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• The total state after the atom leaves the cavity is

|ψ′〉 =
1√
2

(|e1〉 ⊗ |g2〉 ⊗ |0〉 − i|g1〉 ⊗ |g2〉 ⊗ |1〉).

• Choosing the velocity of the second atom such that t2 = 2t1 (therefore, Ωt2 = π), then it
will leave the cavity in |d2〉, provided the first atom left the field mode empty; or it will
leave the cavity in |e2〉 −with unit probability−, if the first atom deposited a photon in the
field. Thus, the final state reads

|ψ′′〉 =
1√
2

(|e1〉 ⊗ |g2〉 ⊗ |0〉 − |g1〉 ⊗ |e2〉 ⊗ |0〉),

which can be rewritten as

|ψ′′〉 =
1√
2

(|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉)⊗ |0〉.

Remark 10.2. Note that |ψ′′〉 is maximally entangled in the atomic states, whereas it is sepa-
rable in the atoms and field subsystems.

10.4. Ion Traps

The main idea of this method is to have a string of ions trapped in well controlled positions and
to individually address each ion with the use of laser pulses. Due to progress in laser technology,
the degree of control over the states of trapped ions is continuously increasing and generation
and coherent manipulation of entangled states has been achieved; e.g., up to 14 qubits [45] in a
linear ion trap.

We shall describe a particular case of a trap, which is the Paul trap: the ions are confined by a
spatially varying time-dependent radiofrequency field oscillating at frequency ωRF . The ions in
the trap repel each other through Coulomb forces; therefore, they undergo collective motion in
their translational degree of freedom (along the trap axis, which is weakly confined by a shallow
harmonic potential).

If ωx, ωy and ωz are the frequencies along the three principal axes of the trap (let us suppose it
is z-oriented), the field is such that the trapping frequency ωt ≡ ωz � ωx, ωy, so we can limit
our considerations of motion along the z axis. In Fig. 10.3 we can see a photo [11] of a linear
ion trap.

Typical values used in experiments [8] are ωRF ∼ 50MHz, with applied voltages from 100V to
500V, trap sizes of ∼ 1mm. This leads to an harmonic motion of the ion in the z-direction of
frequency ωt/2π from ∼ 1MHz to ∼ 5MHz.

10.5. The Cirac-Zoller CNOT gate

10.5.1. Experimental results. To conclude this chapter, we present the implementation of
the Cirac-Zoller CNOT quantum gate. Its experimental scheme, suggested in [15] and sketched
in Fig. 10.4 and with its image in Fig. 10.5, with the trapped ions technique, which was realized
in [10, 11], with its experimentally observed truth table shown in Fig. 10.6 and its numerical



124 10. PHYSICAL REALIZATIONS

Fig. 10.3. A linear quadrupole Paul trap (beige) containing individually ad-
dressed 40Ca+ ions (blue). After cooling by laser beams (red) the trapped ions
form a string and are imaged using a charge-coupled device (CCD). In the CCD
image, the spacing between ions is ∼ 8µm.

results (reproduced from [10]):

|gg〉 |ge〉 |eg〉 |ee〉
|gg〉 0.74(3) 0.13(3) 0.05(3) 0.08(3)
|ge〉 0.15(3) 0.71(5) 0.06(1) 0.08(2)
|eg〉 0.01(2) 0.08(3) 0.14(4) 0.77(3)
|ee〉 0.03(3) 0.02(1) 0.72(6) 0.22(4)

In the implementation of [10], two 40Ca+ ions are held in a linear Paul trap. The pulse sequence
for its operation requires ∼ 500µs (and the decoherence time scale is of the order of 1ms).
In the experiment, the fidelity of the gate is 71%. The principal sources of errors are laser
frequency noise and heating, due to stochastically fluctuating electric fields. Other sources of
errors are spontaneous decay of the ion within the detection time and spurious fluorescence from
the adjacent ion.

Remark 10.3. An obvious observation from the experiment we described is that the ions we
want to interact with need to be adjacent. Is it still possible to implement a CNOTi,j in a ion
trap containing n ions, where we use the ith ion as control and the jth ion as target? In [29] this
is achieved for n = 4, by means of transporting the qubits, and rearranging them in such a way
that the desired interaction is achieved. The transport is controlled by time-varying potentials
and other zones of the processor are dedicated to qubit storage (a quantum memory).

10.5.2. Theoretical approach.

Notation 10.1. Let us now focus on the theoretical model introduced in [15]. The symbols e
and g will be used as labels for the ionic excited and ground states, respectively. There is the
need to distinguish between the degenerate sub-level of the excited state, so we will use the suffix
q = 0, 1. Finally, we will refer to ion n ∈ {1, . . . , N} with an additional suffix.

The dynamics of ion n is described by the Jaynes-Cummings Hamiltonian (assuming the Lamb-
Dicke approximation) [43]:

Hn,q =
Ωeff

2

(
|eq〉n〈g|â+ |g〉n〈eq|â†

)
,

where Ωeff is the effective Rabi frequency.
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|g〉, |e〉

|g〉, |e〉

Ion 1

Ion 2

Phonon
(motion)
|0〉

|g〉, |e〉

|0〉

CNOT
|g〉, |e〉

|g〉, |e〉

|0〉, |1〉

|e0〉, |0〉
|e0〉, |1〉

|g〉, |0〉
|g〉, |1〉

|g〉, |0〉
|g〉, |1〉

|g〉, |0〉
|g〉, |1〉

|e1〉, |0〉
|e1〉, |1〉

|e0〉, |0〉
|e0〉, |1〉

R−1(π, φ) R−1(π, φ+ π)

1

2

3

(CNOT)

R0(π/2,−π/2) R0(π/2, π/2)

Raux
−1 (2π, φaux)

Fig. 10.4. Scheme for the realization of experimental CNOT gate described in
[10]: Two ions in the same trap are initially prepared in their motional ground
state. In Step 1, a low-sideband laser pulse R−1(π, φ) is applied to the first ion
(the control qubit). This maps the excited state amplitude to the first excited
state of the motional mode (SWAP operation). In Step 2, a CNOT operation
is performed between the motion qubit and the spin state of ion 2. Finally, in
Step 3, Step 1 is reversed.

Similarly to Section 10.3.1, in which excitations of the radiation field (photons) were created and
used to carry quantum information, here â and â† annihilate and create, respectively, excitations
of the collective center-of-mass motion in the translational degree of freedom (phonons).

Thus, the energy is exchanged between the electronic degrees of freedom of the ions and the
single quantized mode of their collective translational dynamics, with characteristic frequency
Ωeff .
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Fig. 10.5. CCD image of the two ions forming the CNOT gate in [10] experi-
ment, published in [11]. Following the process of Fig. 10.4 a laser pulse is first
applied to ion 1 and its state becomes entangled with the field mode of the
motion phonon; then a sequence of pulses performs a CNOT operation to ion 2;
finally a laser pulse on ion 1 reverses the first operation.

Fig. 10.6. Truth table for the Cirac-Zoller CNOT gate operation. |g〉 corre-
sponds to the S1/2 ground state and |e〉 to the D5/2 metastable state of the
40Ca+ ion. The fidelities (probabilities) represented are |〈ψexperiment|ψideal〉|2.

To implement a CNOT gate, it is possible to use a controlled-phase gate of amplitude π, which
we shall note CPHASE(π), and apply single-qubit Hadamard gates, as can be seen in [8]. Let
us first implement the CPHASE(π) gate2.

2The CPHASE(δ) gate applies a phase shift to the target qubit only when the control qubit is in the state |1〉.
Thus, it is represented by the matrix 

1 0 0 0

0 1 0 0

0 0 1 0
0 0 0 eiδ

 .

The particular case δ = π is known as CMINUS [7, 48].
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One can see [8] that, after applying a Ωefft = kπ pulse, the Hamiltonian Hn,q generates the
following unitary transformation U on the ion-phonon system:

U |g〉n|0〉 = |g〉n|0〉,

U |g〉n|1〉 = cos

(
kπ

2

)
|g〉n|1〉 − i sin

(
kπ

2

)
|eq〉n|0〉,

U |eq〉n|0〉 = cos

(
kπ

2

)
|eq〉n|0〉 − i sin

(
kπ

2

)
|g〉n|1〉.

With the process

(i) π-pulse (k = 1) on the m-th ion on the 0-transition, Uk=1,q=0
m ,

(ii) 2π-pulse (k = 2) on the n-th ion on the 1-transition, Uk=2,q=1
n ,

(iii) π-pulse (k = 1) on the m-th ion on the 0-transition, Uk=1,q=0
m ,

one obtains the transformation Um,n, which is the CMINUS gate using as control qubit ion m
and target qubit ion n:

Um,n = U1,0
m U2,1

n U1,0
m .

Indeed, it is easy to check the mapping on the ionm-ionn-phonon system:

|g〉m|g〉n|0〉 → |g〉m|g〉n|0〉 → |g〉m|g〉n|0〉 → |g〉m|g〉n|0〉,
|g〉m|e0〉n|0〉 → |g〉m|e0〉n|0〉 → |g〉m|e0〉n|0〉 → |g〉m|e0〉n|0〉,
|e0〉m|g〉n|0〉 → −i|g〉m|g〉n|1〉 → i|g〉m|g〉n|1〉 → |e0〉m|g〉n|0〉,
|e0〉m|e0〉n|0〉 → −i|g〉m|e0〉n|1〉 → −i|g〉m|e0〉n|1〉 → −|e0〉m|e0〉n|0〉.

The result is (like in Section 10.3.1) separable from the auxiliary phonon system and it can be
seen that it really implements a CMINUS gate on the selected ions m and n from the trap.

The CNOT gate is obtained by applying a Hadamard gate both a priori and a posteriori of the
CMINUS transformation on the target qubit [7].

Let us introduce the single ion transformations Vn and V †n , which are represented in the basis
{|g〉n, |e0〉n} as

Vn =
1

2

(
1 1
−1 1

)
= (V †n )†.

Let us also observe that, by linearity,

Um,n|g〉m(|g〉n ± |e0〉n)|0〉 = |g〉m(|g〉n ± |e0〉n)|0〉,
Um,n|e0〉m(|g〉n ± |e0〉n)|0〉 = |e0〉m(|g〉n ∓ |e0〉n)|0〉.

Finally, combining the two operations, we arrive at our goal:

CNOT = V †nUm,nVn.

Indeed, a simple calculation proves the equivalence:

|g〉m|g〉n|0〉 → |g〉m(|g〉n − |e0〉n)|0〉 → |g〉m(|g〉n − |e0〉n)|0〉
→ |g〉m|g〉n|0〉,

|g〉m|e0〉n|0〉 → |g〉m(|g〉n + |e0〉n)|0〉 → |g〉m(|g〉n + |e0〉n)|0〉
→ |g〉m|e0〉n|0〉,
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|e0〉m|g〉n|0〉 → |e0〉m(|g〉n − |e0〉n)|0〉 → |e0〉m(|g〉n + |e0〉n)|0〉
→ |e0〉m|e0〉n|0〉,

|e0〉m|e0〉n|0〉 → |e0〉m(|g〉n + |e0〉n)|0〉 → |e0〉m(|g〉n − |e0〉n)|0〉
→ |e0〉m|g〉n|0〉,

where we also point out that the phonon state remains unchanged after the computation, in all
cases, like the atom-atom entanglement described in Section 10.3.1.

With this we showed how a CNOT gate can be successfully made. This kind of gate is primordial
because it creates entanglement between two qubits and it is also one of the pillars of quantum
computation, since it forms, together with single qubit operations (as stated in Section 6.2.1), a
set of universal gates. This implies that with such set of gates any quantum logic operation or
quantum algorithm can be performed.



Conclusions

In this project we have presented the most important aspects of quantum information processing.
We have interspersed with many remarks; aimed to be insightful commentaries, in order to
orient ourselves in a world still filled with fundamental questions. Questions that arise from
the so counter-intuitive reality quantum mechanics has proved to be, and that very few, if any,
completely grasp.

Although some of these questions have already been answered, we still do not know how to oper-
atively characterize entanglement, or if one-way functions can be built for a quantum computer,
or if RSA can be generalized to a quantum computer, or which is the maximum error rate that
allows secure quantum key distribution through a quantum channel, to mention some of them.

In the technological aspect, we have seen that even the implementation of a simple quantum
operation poses a major challenge for its realization. Indeed, still very few qubits can be manip-
ulated, in laboratories, and this is achieved with ‘computers´ that occupy a whole room. In fact,
during a quantum computation, many things can go wrong. We have to find a trade-off between
the isolation of the qubits from the environment and the ability to address them individually.

We have seen that there are, however, error correction mechanisms that help perform these
operations more successfully. Nevertheless, they need the introduction of ancillary qubits, thus
making the system bigger and more prone to decoherence. Thus, the error correction mechanism
may need to be supervised by another error correction scheme, and so on. We have also proved
that this procedure actually converges and quantum computation is ultimately possible if certain
conditions are met.

These conditions, such as the threshold error probability, are tried to be fulfilled with several
technologies, the most important of which we have discussed.

Despite the big leap between theory and practice, the real possibility of performing, some day,
a quantum computation with a considerable number of qubits is probably what attracts most
interest in the field that would be, otherwise, nothing but a mathematical curiosity.

We have also seen that quantum entanglement is a valuable physical resource, as it enables many
novelties, and it is in the heart of quantum communication, quantum computation, quantum
coding or quantum information in general. The non-classical correlations entangled pairs possess
enable us to certify a sequence is truly random, to teleport a quantum state, to perform secure
communication protocols, etc.

Quantum phenomena are also beginning to appear in other areas in which the approach has been
typically classical. An example of this is microprocessors electronics: Although Moore’s law has
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been fairly accurate since it was coined in the 1970s, the constantly shrinking size of processors
poses an impasse to the power of a classical computer and quantum phenomena are being more
and more important, and need to be taken into account.

We have seen that quantum algorithms exist which outperform the best known classical algo-
rithm. The example per excellence is Shor’s Algorithm, which ultimately poses a threat to most
of the communication protocols we are using nowadays if a quantum computer capable of ma-
nipulating a large enough number of qubits were to be built. Although it is not clear yet if
quantum computation is more powerful than classical computation, we have seen that it is at
least as powerful.

Quantum mechanics has also revolutionized the field of cryptography. Whereas classical cryp-
tography is based on the assumption that the spy cannot solve a problem thought to be compu-
tationally hard, quantum cryptography assumes that the spy cannot break the laws of quantum
mechanics. Another fundamental difference is that in classical cryptography there is no way to
(directly) know if someone is listening and deciphering the communication; in quantum cryptog-
raphy, the gain of information an eavesdropper could make introduces errors in the communica-
tion and his presence can be detected. Again, there is a big step from theory to practice, as we
have seen that in a real scenario the spy has more tools at his disposal.

Future lines of development

During the development of this Thesis, many questions have been encountered.

In the context of quantum computing, more quantum algorithms appear every day. Which
other problems can be more efficiently solved with a quantum computer? Is there some other
scheme of quantum computation (such as quantum walks or adiabatic quantum algorithms, or
measure-based quantum computation using cluster states, which are emerging tends) that can
be exploited to lead to new results? In the complexity classification of problems for a quantum
computer, the number of classes is broader, thus in a quantum context, more questions such as
P=NP? can be asked.

In the characterization of entanglement, is there a necessary and sufficient condition that allows
to decide it in bigger dimensions? Can entanglement witnesses be classified with respect to its
optimality, at least in the decomposable case? How does one treat the general case?

With regard to quantum key distribution, how does one solve the problem of authentication? In
the more realistic scenario, how can one be sure that all physical eavesdropping strategies are
being considered and counteracted? Which is the maximum key rate that can be extracted for
a given protocol and a given channel with its error probability?

In quantum coding, we have seen that CSS codes allow us to use classical codes to create a
corresponding quantum code. This can be applied to Hamming codes or Reed-Solomon codes,
for example. However, we have seen that degenerate codes exploit quantum features of the
channel and thus they suggest that more efficient encoding could be performed.

Also, if degenerate codes improve the capacity of a quantum channel in the sense we described,
as they provide one-way error correction, if we used them for two-way communication protocols,
could we obtain higher key rates? Or could secure QKD still be possible with a higher noise level
with the use of these codes?
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About the technological aspects, the future lines of development are still broader: from the im-
provement of the photomultiplier detection efficiency to the perfect confinement of a ion trap.
The first classical computer occupied a whole building; today we put one in our pocket, several
orders of magnitude more efficient, faster and smaller. Today, a basic calculator can still outper-
form a quantum computer, which needs a whole laboratory and a considerable budget. In the
future, we shall see...
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Notation

In this section is listed the notation most generally used in this Thesis. Terms which are defined
are underlined, whereas terms to be emphasized are written in italics.

a∗ : Complex conjugate
â : Operator
a : Vector
a : Matrix representation of â
aT : Transposition of matrix a
a† : Hermitian transposition of matrix a
In : Identity matrix or operator acting on a n− dimensional space
R : The field of real numbers
C : The field of complex numbers
Z : The ring of integer numbers
N : The set of natural numbers
Zm : The ring Z/(m)Z
P : A classical probability function P : σ −→ [0, 1]

in a classical probability space (Ω, σ,P)
E : Expectation of a random variable
Sn : The group of permutations of n elements
#A : Cardinal of set A
C⊥ : Dual of code C
dnx : Measure over Rn
δi,j : Kronecker’s delta function
<(a) : Real part of a ∈ C
=(a) : Imaginary part of a ∈ C
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AEP Asymptotic Equipartition Property
AES Advanced Encryption Standard
BB84 Bennett & Brassard, 1984
BS Beam-Splitter
C Constant
CAR Canonical Anti-Commutation Relation
CCD Charge Coupled Device
CCR Canonical Commutation Relation
CHSH Clauser-Horne-Shimony-Holt
CMINUS Controlled π-Phase
CNOT Controlled NOT
CPHASE Controlled Phase
CPT Completely Positive, Trace preserving map
CQED Cavity Quantum ElectroDynamics
CSS Calderbank, Shor and Steane
CZ-CNOT Cirac-Zoller CNOT
DEW Decomposable EW
E Exponential
EPR Einstein-Podolsky-Rosen
EW Entanglement Witness
GHZ Greenberger, Horne and Zeilinger
HSP Hidden Subgroup Problem
IID Independent, Identically Distributed
I&R Intercept & Resend
NPT Non-positive under Partial Transposition
P Polynomial
PMT PhotoMultiplier Tube
PNS Photon Number Splitting
POVM Positive Operator-Valued Measure
PPT Positive under Partial Transposition
QFS Quantum Fourier Sampling
QFT Quantum Fourier Transform
QKD Quantum Key Distribution
RNG Random Number Generator
RSA Rivest, Shamir and Adleman
SNR Signal to Noise Ratio
SP Super Polynomial
UPB Unextendible Product Basis


	Introduction
	Part 1.  Mathematical Preliminaries
	Chapter 1. Hilbert Spaces
	1.1. Orthogonal expansions
	1.2. The adjoint operator
	1.3. Tensor product of Hilbert Spaces and Operators
	1.4. Positive Operators
	1.5. Spectral Theorem
	1.6. Schmidt Decomposition

	Chapter 2. Classical Information Theory
	2.1. Entropy
	2.2. Source Coding
	2.3. Channel Coding
	2.4. Current status of Coding Theory


	Part 2.  Physical Preliminaries
	Chapter 3. Postulates of Quantum Mechanics
	3.1. Informal description
	3.2. Axiomatic description
	3.3. The Qubit
	3.4. Measurements
	3.5. Composite systems
	3.6. State transformations
	3.7. Entanglement: an introductory description

	Chapter 4. Quantum Probability
	4.1. Bell inequalities
	4.2. Classical-quantum probability
	4.3. *-algebras of operators and states
	4.4. Quantum impossibilities
	4.5. Quantum novelties

	Chapter 5. Field Theoretical Methods
	5.1. Quantum Harmonic Oscillator
	5.2. Quantum Bosonic Fields
	5.3. 2nd Quantization of Fermions


	Part 3.  Quantum Information Processing
	Chapter 6. Quantum Algorithms and Computing
	6.1. Introduction
	6.2. Circuit Model
	6.3. Quantum Fourier Transform
	6.4. Some Quantum Algorithms
	6.5. Hidden Subgroup Problem
	6.6. General overview

	Chapter 7. Quantum Entropy and Information
	7.1. Quantum Entropy
	7.2. Data Compression
	7.3. Quantum Channels
	7.4. Accessible Information
	7.5. Quantum Entanglement

	Chapter 8. Quantum Cryptography
	8.1. Introduction, classical cryptography
	8.2. Quantum cryptographic protocols
	8.3. Eavesdropping strategies
	8.4. Bounds
	8.5. Certified random number generation

	Chapter 9. Quantum Coding
	9.1. Introduction
	9.2. Decoherence
	9.3. Quantum Codes
	9.4. CSS Codes
	9.5. Fault-tolerant quantum computation
	9.6. Degenerate codes


	Part 4.  Physical Implementations
	Chapter 10. Physical Realizations
	10.1. Photonic Realizations
	10.2. Cavity quantum electrodynamics
	10.3. The Jaynes-Cummings model
	10.4. Ion Traps
	10.5. The Cirac-Zoller CNOT gate

	Conclusions
	Future lines of development

	References
	List of Figures


