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Community detection has arisen as one of the most relevant topics in the field of graph data mining due to its
applications in many fields such as biology, social networks or network traffic analysis. Although the existing
metrics used to quantify the quality of a community work well in general, under some circumstances they fail
at correctly capturing such notion. The main reason is that these metrics consider the internal community
edges as a set, but ignore how these actually connect the vertices of the community. We propose the Weighted
Community Clustering (WCC), which is a new community metric that takes the triangle instead of the
edge as the minimal structural motif indicating the presence of a strong relation in a graph. We theoretically
analyse W CC' in depth and formally prove, by means of a set of properties, that the maximization of WCC
guarantees communities with cohesion and structure. In addition, we propose Scalable Community Detection
(SCD ), a community detection algorithm based on WCC, which is designed to be fast and scalable on SMP
machines, showing experimentally that W C'C correctly captures the concept of community in social networks
using real datasets. Finally, using ground truth data, we show that SCD provides better quality than the
best disjoint community detection algorithms of the state of the art while performing faster.

1. INTRODUCTION

Communities are informally defined as sets of vertices which are internally connected but
scarcely connected to the rest of the graph. The retrieval of vertex communities (or clusters)
provides information about the sets of vertices that respond to a similar concept [Girvan and
Newman 2002]. For instance, in social networks, communities identify groups of users with
similar interests, locations, friends or occupations. This information is useful to perform
more focused marketing campaigns [Wang et al. 2009], to craft new visual representations
of data [Di Giacomo et al. 2007], increasing data locality thanks to a more coalesced data
placement [Prat-Pérez et al. 2011], finding expansion terms in query engines [Guisado-
Gémez et al. 2014] or for item suggestion [Sozio and Gionis 2010].

Detecting communities is inherently complex, since there is not a consensus on what
a community formally is. In the literature, communities are typically defined by means
of metrics that quantify how dense or isolated are [Newman and Girvan 2004; Kannan
et al. 2004; Leskovec et al. 2010]. Among those metrics, modularity and conductance are
those which have become more popular [Fortunato 2010] and precise [Leskovec et al. 2010],
respectively. Although these community metrics work well in general, they have problems
to correctly quantify the quality of a community under certain circumstances. The main
reason for this failure is that they consider all the edges as equally important, without
taking into account if they form structures internally. Then, algorithms based on maximizing
these metrics end up finding sets of vertices that visually manifest a lack of community
structure [Leskovec et al. 2010].

As a first contribution, we propose a new metric called Weighted Community Clustering
(WCC). WCC takes the triangle instead of the edge as the basic indicator of a strong rela-
tion in the graph. A triangle is a transitive relation between three vertices. Social networks
are known to contain more triangles than expected in a random graph [Newman and Park
2003; Newman 2001; Shi et al. 2007; Satuluri et al. 2011]. Such a large presence of triangles
is a direct consequence of what is known as the “homophily principle” [McPherson et al.
2001], which suggests that similar entities in a network tend to establish connections, such
as people with similar interests, members of the same family or work mates. This creates
homophilic regions in the graph (the communities) with a larger edge density, and hence
with a larger number of triangles. The usage of triangles allows us to differentiate from those
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casual edges and sets a minimal structural bound, which combined with a proper metric
design, makes WC'C sensitive to the internal edge layout of the community.

By observing the degenerate behavior of existing community metrics under certain cir-
cumstances, we identify a set of basic properties worth to consider when designing a com-
munity detection metric, to guarantee communities with a minimum level of cohesion and
structure. These properties have been the backbone around which WC'C' has been shaped.
Therefore, as a second contribution, we propose four basic properties and we prove math-
ematically that WCC' is able to correctly capture the concept of a community by fulfilling
them. Our approach goes one step further from existing proposals, since we give formal
guarantees that the maximization of WC'C' delivers cohesive and structured communities.
One example of these proposed properties is that communities do not contain bridges. In
other words, communities do not include edges that if they were individually removed would
disconnect the community. Another interesting property is the linear community cohesion,
which states that the number of required connections to include a vertex in a community is
directly proportional to the community size. This requirement guarantees that the size of the
communities does not affect significantly the density of the community, assuring that both
large and small communities are cohesive. Such simple properties, are not plenty fulfilled
by the most relevant metrics in the state of the art.

Our third contribution consists of a detectability analysis of WCC'. We analytically find
the detectability threshold of the metric using the Stochastic Block Model for graph gen-
eration. We show that this threshold fulfills a set of desirable properties, such as that it is
independent of the size of the network, that WCC adapts to the inhomogeneities of the
graph or that WCC' does not detect communities when they do not exist. We empirically
validate this detectability threshold and its properties by means of a community detection
algorithm based on WCC' optimization. Furthermore, we have numerically analyzed and
found that WCC' is not affected by the so called “community detection paradox”.

As a fourth contribution we propose Scalable Community Detection (SCD ), a community
detection algorithm based on WCC'. SCD follows a hill climbing strategy and it is based
on a heuristic to estimate how the WCC' of a graph partition changes when a vertex is
transfered between two communities. The use of this heuristic makes SC'D one of the fastest
and highest quality community detection algorithm in the state of the art on real graphs.

Finally, we show using real graphs, that there is a correlation between WCC' and good
communities. We perform a statistical analysis of several indicators, such as the diameter
and the edge density, that are not sufficient to indicate the presence of a community if they
are taken alone, but are a good indication of a community structure if they are taken in
conjunction. We observe that conductance and modularity are not sufficiently robust and
they rank as good communities some which are not.

We experiment with datasets annotated with ground truth communities and several ex-
isting community detection algorithms following different strategies and SC'D. We show
that SCD is able to better retrieve those those communities found in the ground truth set
while performing fast. We also show that there is a strong correlation between WCC' and
the annotated data. Finally, we show that SCD is capable of scaling to large real graphs
using multiple cores in parallel.

The rest of the paper is structured as follows: in Section 2, we review the state of the
art. In Section 3, we introduce the problem of community detection and propose WCC.
In Section 4, we state the properties of WCC' and in Section 5, we show that the current
metrics in the state of the art do not fulfill the properties stated. In Section 6 we describe
SCD. In Section 7, we perform a detectability analysis of WC'C'. In Section 8, we describe
the experimental setup. In Section 9, we evaluate the quality of WC'C and the performance
of SCD. Finally, in Section 10 we give guidelines for future work and conclusions.
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2. RELATED WORK

Metrics: There are basically four types of metrics to evaluate the quality of a community.
First, those that focus on the internal connectivity of edges in the community. Metrics
such as the average degree, the internal edge density, which is the ratio of the internal
number of edges divided by the total possible edges [Radicchi et al. 2004], and the triangle
participation ratio (TPR), which is the fraction of vertices in the community that closes at
least one triangle with two other vertices in the community [Yang and Leskovec 2012], fall
into this category. Compared to triangle participation ratio, WCC' takes into account not
only whether a vertex closes a triangle or not, but also how many triangles are included
and their distribution in the community.

The second category of metrics are those that focus on the external connectivity of the
community. In this category, we find metrics such as the cut ratio, which is the the ratio
between the actual number of edges pointing outside the cluster and the total possible
number of edges pointing outside the cluster [Fortunato 2010], and the ezpansion, which
is the ratio between the number of edges pointing outside the cluster and the size of the
cluster [Radicchi et al. 2004].

The third type of metrics, are those that combine both the internal and external con-
nectivity. In this category, we find the conductance [Kannan et al. 2004], which is the ratio
between the edges going outside the community and the total number of edges between the
members of the community, and the Flake ODF, which stands for Flake Out Degree Frac-
tion, is the average fraction of vertices in the community that have fewer edges pointing
inside than outside of the community [Flake et al. 2000].

Finally, the fourth category of metrics are those that measure the quality of a community
compared to a network model. The most popular metric that falls into this category is the
modularity, which was proposed in [Newman and Girvan 2004] and is probably the most
widely used metric in the state of the art. Modularity measures the internal connectivity
of the community compared to that expected in random graph with the same exact degree
sequence. Modularity has become very popular in the literature, and a lot of algorithms
are based on its maximization. However, it has been reported that modularity has reso-
lution limits [Fortunato and Barthélemy 2007; Good et al. 2010]. Communities detected
by modularity depend on the total graph size, and thus, for large graphs, small well de-
fined communities are never found. This means that maximizing the modularity leads to
partitions where communities are far from intuitive.

A recent survey [Leskovec et al. 2010] of community metrics discusses the performance
of metrics on real networks. In this survey, Leskovec et al. showed that, among all these
metrics, conductance is the metric that best captures the concept of community (modularity
is not included in the analysis). In [Yang and Leskovec 2012], the authors use ground truth
data to determine that both the conductance and the TPR are those metrics that best
capture the concept of real world communities.

Broadly speaking, existing metrics focus on maximizing or minimizing certain aggregated
values or ratios, without paying attention to the internal/external structure of the commu-
nities. Indeed, the only metric that takes a more structured approach, such as TPR, has
proven to be one of the most robust metrics.

Algorithms: The most common category of algorithms is formed by those based on max-
imizing modularity. In the literature, we find several proposals based on different opti-
mization strategies such as agglomerative greedy [Clauset et al. 2004], simulated anneal-
ing [Medus et al. 2005] or multistep [Blondel et al. 2008] approaches, just to cite a few of
them.

Regarding the algorithms not based on maximizing modularity, we find Infomap, based
on performing random walks [Rosvall and Bergstrom 2008], an algorithm based on com-
puting the edge clustering coefficient [Radicchi et al. 2004], the clique percolation method,
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based on computing chains of cliques [Palla et al. 2005], or the Label Propagation Method
[Raghavan and Albert 2007], which has acquired a great popularity due to its linear com-
plexity. According to [Lancichinetti 2009], the best community detection algorithm in the
state of the art is Infomap.

Finally, there is a category of algorithms, such as OCA [Padrol-Sureda et al. 2010],
Link Clustering [Ahn et al. 2010], Oslom [Lancichinetti et al. 2011] and BigClam [Yang
and Leskovec 2013], that aim at looking at overlapping communities, that is, communities
that can share vertices with other communities or core-periphery communities [Yang and
Leskovec 2014], where these are formed by a core and a periphery. However, in this paper
we focus on the search of disjoint communities, where each vertex can only belong to one
community.

3. WEIGHTED COMMUNITY CLUSTERING
3.1. Problem Formalization

Given a graph G = (V| E), the problem of disjoint community detection consists in classi-
fying the |V| = n vertices of the graph into ¢* non-empty pairwise disjoint cohesive sets, S;
for 1 < i < q. We call those g sets a partition of V, i.e. P = {S51,...,5,;}, in such a way
that S;U---US, = V.

The criterion to measure the degree of cohesion of each set is formally obtained by defining
a metric, that is, a function f,, that assigns a real number to each subset S; of V' such that
0 < f5(5;) < 1. A good/bad community is a set of vertices S with a value of fs close to 1/0.

We define the cohesion of a community f4(S) as the average cohesion of its vertex members
x with respect to the set S:

s |S|vax5 (1)

Similarly, we define the metric on a partition P by taking the weighted average of the
value of the function on the sets .S; of the partition:

)= D (18- £(s). (2)

For a given graph and a given metric f in G, the goal is to obtain an optimal partition,
that is, a partition P such that f(P) takes a maximum value. We call the communities in
an optimal partition the optimal communities of the graph.

3

3.2. Metric Definition

The difficulty of community detection arises from accurately defining f(5), that is, how the
cohesion of a set S is quantified. According to the informal community definition, cohesive
sets are those that encompass the two following features:

— The set is structurally isolated from the rest of the graph (i.e the external connectivity
of the set is small).
— The set is structurally intraconnected (i.e. the internal connectivity of the set is large).

Therefore, it is reasonable to design an f(S) to encompass these two characteristics.
If fs(S) is too biased towards promoting the structural isolation of the set (i.e. it scores
those sets with a small external connectivity high, but ignores the internal connectivity),
then vertices which are barely connected to the rest of the graph might be included in the

1We assume that q is a value determined by the nature of the graph rather than an arbitrary value determined
by the user
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a b C

Fig. 1. a) Metric maximizing structural isolation. b) Metric maximizing structural intraconnectivity. c)
Metric taking a compromise between structural isolation and intraconnectivity

same community. This is exemplified in Figure 1(a), where considering the whole graph as
a community would obtain the best score with such a metric. On the other hand, if f4(S) is
biased towards promoting the structural intraconnectivity of the set (i.e. scoring high sets
with an extreme internal connectivity, but ignoring the external connectivity), then some
considerably affine vertices with those in S might not be included in community S. Taking
this statement to the limit, we would only select the maximal cliques in the graph. This
is exemplified in Figure 1(b), where the set of four vertices in black would have a better
score than the whole dense region in the middle of the graph. A good balance between
these two characteristics is crucial to properly identifying the communities as exemplified
in Figure 1(c).

Last but not least, the previously stated features rely on the concept of structure. Tra-
ditionally, the presence of a single edge between two vertices has been typically taken as a
sufficient condition to consider that two vertices are structurally connected, but this is not
sufficient for us.

Thus, in this paper, we take a different definition for structure that relies on the “ho-
mophily principle” that is latent in social networks [McPherson et al. 2001]. In short, this
principle says that similar entities tend to establish connections among them. In social
networks, people are more likely to connect to other people that work at the same place,
have similar interests or have strong social interactions. The consequence is that the people
that form these communities are very connected and inside these communities many triples
of vertices are connected by triangles. In this paper, we suggest to use triangles to iden-
tify the structured connections of a community, and hence differentiate them from casual
connections.

With this in mind, we design a community metric sensitive to both the structural isolation
and the intraconnectivity, and which takes the triangle as the basic indicator of structure.
We denote by t(x,S) the number of triangles that vertex = closes with the vertices in a set
S and by vt(x,S) the number of vertices of S that form at least one triangle with x. We
propose the Weighted Clustering Coefficient, WCC,(z,.S), as the specific implementation
of f,(x,S) in Equation 1:

0 if t(z,V) =0
WCC,(x,8) = { L&, 5) vt(z,V) . 3)

Ha V) @ V) 719\ ol — ot g) V) A0

——

isolation intraconnectivity

Note that vt(x, V) + |S\ {z}| — vi(z,S) = 0 implies that S = {z} and vt(x,V) = 0. Then,
condition vt(x, V) + |S\ {z}| — vt(z,S) = 0 is included in condition ¢(x, V) = 0.
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(e) 0.52118 () 0.65128 (g) 0.78072 (h) 0.92798

Fig. 2. Examples of communities from real graphs, sorted by WCCs.

The left factor of WCC,(z,5) is the ratio of triangles that vertex x closes with set S, as
opposed to the number of triangles that x closes with the whole graph. The left factor is
maximized for a vertex z when S includes all the vertices that form triangles with x. Note
that since a pair of vertices can build many triangles, the left term rewards the inclusion
of the vertices that build more triangles with x. In other words, it measures the structural
isolation of vertex .

On the other hand, the right factor is the ratio between the number of vertices in V'
that close at least one triangle with x, and the number of vertices in V' that close at least
one triangle with x plus the number of those in S\ {z} not closing any triangle with
and another vertex u € S\ {z}. The right term is maximized for x when S contains only
vertices that do form at least one triangle with x and a third vertex u € S. In other words,
it measures the structural intraconnection of vertex x with set S.

The two factors of WCC,(z,S) are finally combined with a multiplication because it is
necessary to maximize both concepts. If any of the two terms is zero the cohesion of the
vertex with respect to the set is zero.

Finally, analogously to fs(S) in Equation 1, we denote the quality of a community as
WCC4(S). Figure 2 shows some examples of communities with different values of WCCj,
showing different levels of cohesion. These communities are extracted randomly from the
set of communities found in the real graphs by the algorithms in Section 9. The color of the
vertices represents the percentage of neighbors belonging to the community. The darker the
vertex, the larger the percentage of neighbors of the vertex that belong to the community,
that is, the larger the isolation of the vertex. On the other hand, the size of the vertices
represents the percentage of vertices of the community that are actual neighbors of that
vertex. The larger the size of the vertex, the more connected the vertex is with the other
vertices of the community, that is, the larger the intraconnectivity. In other words, the color
represents the isolation, while the size represents the intraconnections. Thus, the better the
community is, the larger and darker are its vertices. We see then, that there is a correlation
between high WC'Cy values and good communities.

3.3. Basic behavior
We formally summarize the basic behavior of WCC,(z, S)*:

PROPOSITION 3.1. Let G = (V, E) be a graph and § # S C V. Then,
(i) 0 < WCCy(2,58) <1 forallxz V.

2All the proofs of the propositions and theorems introduced in this paper can be found in the Appendix.
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(il) WCCy(x,S) =0 if and only if t(x,S) = 0.
(iil) WCCy(z,S) =1 if and only if vi(x,V) = vt(x,S) = |S\ {z}| > 2.

The value of WCC,(z, S) indicates the cohesion of vertex x with respect to S. This value
is a real number between 0 and 1 (Proposition 3.1 (i)). These two extreme values are only
vertex x, in order to have some degree of cohesion with a subset S, the vertex must at least
form one triangle with two other vertices in set S. If a vertex builds no triangle with the
vertices in .9, then the cohesion of the vertex with respect to the set is zero. On the other
hand, value one is reached if and only if S includes exactly and only all the vertices that
close triangles with z. Furthermore, from the point of view of WCC,,, only those edges in
E closing at least one triangle are relevant and influence the cohesion of a vertex.

We infer three characteristics on WCC,(S) from Proposition 3.1 as follows.

PROPOSITION 3.2. Let G = (V, E) be a graph and ) #S C V. Then,

(i) 0 <WCCs(S) < 1.
(il) WCCs(S) =0 if and only if S has no triangles.
(iii) WCC(S) =1 if and only if S is a clique with vt(x,V) = vt(x,S) for allx € S.

The clique is the subgraph structure that best resembles the perfect community, and
thus, WCCj rates it with the largest value. On the other hand, if the community has no
triangles, its quality is the minimum possible. In Figure 3(a-d), we show a community of five
vertices with an increasing number of internal triangles. The larger the density of triangles,
the larger the WCC value for the community.

(a) 0 (b) 0.7 (¢) 0.9 (d) 1

Fig. 3. Example of the sensitivity of WCC against triangles

Finally, according to Equations 1 and 2, an optimal partition is such that, for all vertices
of the graph, function WCC,(z, S) is optimized.

4. PROPERTIES OF WCC

Following the previous requirements of structural isolation and intraconnectivity, many
formulas may be composed by combining different measures of such requirements in Equa-
tion 3. However, this is not a sufficient condition to ensure a good community metric. In
this section, we present a set of properties that WC'C meets, giving additional insight of
the behavior and robustness of the metric. We present these as generic properties that we
think are worth to be considered when designing any good community detection metric.

4.1. Property 1: Internal Structure

Typically, existing community metrics take all the internal edges of a community considering
they are equally important, without considering whether they form structures or not. The
structure of the edges connecting the vertices is important to determine whether these
form a good community or not. Therefore, the cohesion of a given community ought
to depend, not only on the number of internal edges, but on how those edges
connect the vertices of the community.
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One such structure is the triangle, as stated above, which indicates the presence of a strong
relation in the graph. The relevance of triangles in social networks has been confirmed in
previous studies [Newman and Park 2003; Newman 2001; Shi et al. 2007; Satuluri et al. 2011]
and models describing the growth of social networks give triangle closing as a key factor of
network evolution [Leskovec et al. 2008]. WCC' is crafted to be sensitive to triangles, and
as a consequence, to be sensitive to the internal structure of the community. We verify this
property for WCC" the left factor in Equation (3) is the ratio of the number of triangles
that vertex x forms with the vertices in S as opposed to the number of triangles that
vertex x forms with the whole graph. Hence, this left factor is affected by the number of
triangles inside the community. On the other hand, the right factor depends on the number
of vertices that form triangles with vertex x. Therefore, the distribution of triangles inside
the community affects the right factor.

Figure 4 shows two examples of communities with the same number of vertices and edges,
but distributed differently. While in Figure 4(a) we see two cliques with only three edges
connecting them, in Figure 4(b) we see a more uniformly structured community closing
more triangles. We see that WCC scores Figure 4(b) higher, since the community is more
structurally intraconnected, eventhough there are two cliques in Figure 4(a).

i

(a) 0.444 (b) 0.511

Fig. 4. Consequences of the internal structure on the WCC

4.2. Property 2: Linear Community Cohesion

Communities are groups of vertices with a significant level of cohesion, that is, the number
of triangles closed by the vertices forming the community is high. This means that, as
long as the size of the community increases, the number of links between a vertex and a
community has to increase in order to maintain the level of cohesion of the community. This
simple restriction limits the community growth if there is not a significant cohesion among
its members. Therefore, the number of connections needed between a vertexr r and
a set S, so that f({SU{x}}) > f({S,{z}}), must grow linearly with respect to the
size of S. If it grew sublinearly, the larger the communities, the easier it would be for a
vertex to join that community with respect to the size the community. On the other hand,
if it grew faster than linear, the communities would have a maximum possible size, since
after a certain point, the number of necessary links between a vertex and the rest of the
community would be larger than the possible number of links.
WCC is crafted to verify this property by means of he following theorem:

THEOREM 1. Let G = (V, E) be a random graph of order r in which each edge occurs
independently with probability p and closes at least one triangle. Let v & V be a vertex

connected to and forming at least one triangle with d > 2 wvertices of V. Consider the two
partitions Py = {V U {v}} and P2 = {V,{v}}. Then,

(i) (r+1)WCC(Py) = (r —1)p+2dr~*.

) B d ((r=1p+1)(r—1)(r—2)p°
(it) (r+ HWCC(P2) = (r —d)p + - (r—1)(r —2)p2+2(d—1)
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(iii) Forr large enough, WCC(P1) > WCC(P2) if and only if

d>rp(\/mf(1+p))/4.

For instance, in the particular case of the clique (where p = 1), it is necessary to connect
to roughly more than one third of the vertices to become a member of the community.

COROLLARY 1. Let S be a clique of order r. Given a vertex v, there must exist at least
0.37 -1 edges between v and S to hold WCC({SU{v}}) > WCC{S, {v}}).

In Figure 5 we show an example of Theorem 1, where we represent four groups of examples:
a-b, c-d, e-g and g-h. The left graph of each group (a,c,e and g), represents a partition
with one single community, while the right graph assumes a partition with two distinct
communities formed by a single vertex and a clique. We see that group a-b has a better
WCC score for distinct communities while group c-d for one community. Note that WCC
gives a better score for vertices connected to more than 0.37 vertices of a clique. The
same happens in examples e-f (four connections are less than 0.37 vertices), and g-h (6
connections are more than 0.37 vertices). This example illustrates the linear community
cohesion of WC'C, where the number of connections required by a vertex to become part
of a community, scales with its size.

(e) 0.897 (f) 0.907 (g) 0.923 (h) 0.885

Fig. 5. Examples showing the linear community cohesion of WCC

We empirically validated the lineality property of WC'C. We generated instances of graphs
formed by a vertex v and a community C, with a probability p;, for an edge to exist between
two vertices of C', and a probability p,,: for an edge to exist between v and a vertex of C.
We generated two types of graphs: one with a community of size 100, and another one with
a community of size 200. For each possible configuraion of p;,, and p,y: (in steps of 0.01), we
generated 100 instances of each type. Using the W C'C based algorithm proposed in Section 6,
we tested for which configurations the resulting partition was formed by a single community
containing both the original community and the vertex, and which did not. Figure 6(a) and
(b) show the theoretical threshold line of Theorem 1 for both sizes in dim white, and in
grey scale the results obtained by the algorithm. White means that the algorithm opted to
merge the communities into a single one for all the instances of that particular configuration,
while black means that a non merging configuration was always returned. From the figure
we can observe that the theoretical threshold is empirically observed, becoming sharper as
the size of the graph increases. The black region at the bottom of Figure 6 becomes smaller
as the graph grows, and as predicted in Theorem 1, it disapears for arbitrarily large graphs.
For small graphs and small p;,, the probability for a vertex to exist without closing any
triangle is large (especially the smaller p,,; is), and therefore the community is shattered
into smaller sub communities.
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pout pout
(a) (b)

Fig. 6. Empirical evaluation of Property 2.

4.3. Property 3: Bridges

The connections in real graphs are known not to be local, but can connect distant ver-
tices [Liben-Nowell and Kleinberg 2007]. A bridge is an edge that if it is removed from
the graph, it creates two connected separate components. A bridge is a very weak relation
between two sets of vertices that are unrelated, because it only affects one member of both
subsets of vertices. Therefore, an optimal community in social networks can not
contain a bridge. Optimal communities found by WCC' never contain bridges. We show
this based on the following observation:

THEOREM 2. Let Sy and So be two communities in a partition of graph G = (V, E) such
that:

(i) S1 and S are the set of vertices of two different connected components.
(il) WCCs(S1) > 0.

Then, the following inequality holds:
WOC({S],SQ}) > WCC({S] U SQ})

When an edge does not close any triangle, it does not affect the computation of WCC'. A
bridge does not close any triangle, hence, a bridge is never accounted by WC'C'. Thus, sets
of vertices connected by bridges are not merged into a community because of Theorem 2.
In Figure 7 (a-b), we show an example of the application of Theorem 2. We see that having
the two cliques separated is better than considering a single community with a bridge, in

terms of WCC.

4.4. Property 4: Cut Vertex.

A vertex is a cut vertex when its removal separates the graph into two (or more) connected
components. Cut vertices are weak links in a community, because there are no edges between
the separated components, and thus the components have no structural connectivity. If the
separated components have a strong internal structure, then it is more natural to split the
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Fig. 7. Example of the behavior of WCC' against bridges
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Fig. 8. Example of WCC against vertex cuts

components into several communities. Therefore, we require that an optimal community
does not contain a cut verter that separates two structurally intraconnected
sets3. In Figure 8(a-c), we show two cliques (note that the clique is the highest density
graph structure) of size five sharing a vertex. Here, W CC is able to separate the communities
for this particular case because the left and right sets of vertices have enough structural
intraconnectivity and isolation to become separate communities, assigning the cut vertex
to one of them. We prove this property for WCC' for the case where communities have the
highest possible density, which is the clique:

THEOREM 3. Let G = (V, E) be a graph of order n which consists of two cliques K, and
K of orders r and s, respectively, that intersect in a vertex t. Assume r > s > 4.
(i) If Py = {K, UK}, then
(r—=1)(r-1) 1 (s=1)(s—1)

n-WCC(P) = r+s—2 r4+s—2 r+s—2

; (4)

(i) if Py = {K,, K\ {t}}, then

| o - 1ir-2 (s~ 1)l —2)(s - 3)
n-WCC(Py) = ( 1)+(T—l)(r—2)—|—(s—1)(5—2)+ PR T (5)

(iii) of Ps = {K, \ {t}. {t}, Ks\{t}, then
n-WCC(P;) = (r=1D(r=2)(r=3) i (s=1)(s—2)(s—3), (6)

(r—1)(r—2) (s—1)(s—2)

(v) max{WCC(Py), WCOC(Ps), WCC(P3)} = WCC(Py).

This theorem illustrates the fact that WC'C avoids merging two very well defined commu-
nities (such as two cliques) because of a single vertex. The reason is that WCC' is a metric
that not only takes into account the vertices that are connected and forms triangles, but
also the vertices that do not. Thus, if the triangles inside the community are not distributed
evenly among all the vertices then the quality of the community is penalized.

3A vertex cut can be seen as an example of an overlapped community. However, it is not the aim of this
work to consider the problem of overlapping communities.
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5. COMPARISON WITH OTHER METRICS

In the state of the art we find other metrics which attempt to quantify the quality of a
community. However, these metrics do not fulfill one or more of the properties proposed
in this paper, which are fulfilled by WCC'. Therefore, optimizing those metrics locally or
globally does not guarantee structured communities.

Cut ratio and expansion: They are based on the external connectivity of the community,
that is, the lower the number of connections pointing outside of the community, the better.
Since, they do not pay attention to the internal connectivity, these metrics do not fulfill
Property 1, which means that they do not care about how the vertices in the community
are connected. Furthermore, cut ratio and expansion have an optimization problem. Given a
graph, the partition consisting of a single community containing all the vertices of the graph
obtains always the optimal score. This optimization problem implies that that properties 2,
3 and 4 are not fulfilled.

Conductance and Flake ODF': They are based on the internal versus the external con-
nectivity of the community. Although these metrics consider the internal edge density, they
do not consider how the internal edges are actually distributed, and hence they do not fulfill
Property 1. Conductance and Flake ODF have the same optimization problem as cut ratio
and expansion and thus, they neither fulfill properties 2, 3 and 4.

Internal edge density and TPR: Internal edge density and TPR focus on the internal
connectivity of the community. Internal edge density, like conductance and Flake ODF,
does not fulfill Property 1 because it does not consider the internal distribution of the
edges. On the other hand, internal edge density fulfills properties 2, 3 and 4. However,
optimizing internal edge density becomes problematic because it would only find maximal
cliques, which is too restrictive. Regarding TPR, it fulfills property 1, since it is dependant
on the triangles closed in the community and property 3, because closing one triangle with
the community implies closing a cycle of size three. However, it does not fulfill property 2,
because only a triangle between a vertex and a community is required for that vertex to
become part of the community. Finally property 4 is not fulfilled because as long as the cut
vertex forms a triangle with each of the communities it connects, the communities can be
taken as a single community according to the metric. Although TPR is similar to WCC' in
the sense that it is based on triangles, it lacks the precision and robustness that WCC' has,
as we will see in Section 9.1.

Modularity: Modularity suffers from resolution limits [Fortunato and Barthélemy 2007;
Good et al. 2010]. This resolution problem is exemplified in Figure 9, where the optimal
communities for modularity are groups of two cliques. In this example, the communities with
the optimal modularity contain a bridge, and thus they do not verify Property 3. However,
the natural communities which are the groups of five vertices forming cliques are the optimal
communities for WCC. The WCC value of the five vertices clique is one, so having a
partition with each clique as a community has the maximum WCC value. Furthermore,
is has been shown [Bagrow 2012] that trees, can have arbitrarily large modularity, while
WCC scores them with zero since they cannot be intuitively considered communities. We
show that WCC' is a metric that sees the communities in a local fashion, focusing on the
internal density and the connections with their surroundings instead of the whole graph.
Modularity assumes that graphs are homogeneous, whereas they are not.

6. COMMUNITY DETECTION ALGORITHM

In this section we describe Scalable Community Detection (SCD), a community detection
algorithm based on WCC' and designed to scale on SMP machines. SCD takes a graph
G as input, and generates a partition of G resulting from a WCC optimization process.
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Fig. 9. Ring with 24 cliques of 5 vertices each (shaded circles). Setting each clique as a community has a
modularity of 0.8674, but merging adjacent cliques has modularity 0.8712 [Good et al. 2010].

[

The algorithm is divided into three phases: graph cleanup, initial partition and partition
refinement, which are described in the following paragraphs.

6.1. Graph cleanup

Once the graph is loaded into memory, we perform a cleanup process aimed at removing
the unnecessary edges and computing a set of statistics that will be helpful during the
next phases. The process consists of computing first the number of triangles each edge
in the graph closes. Then, we remove from the graph those edges that do not close any
triangle, as these are irrelevant from the point of view of WCC, that is, do not have any
effect during the WCC' computation. By removing these edges we reduce the memory
consumption and improve the performance of SCD. Furthermore, we can also simplify the
heuristic proposed in Section 6.4 (which we use to improve the performance of the partition
refinement step) since we can assume that each edge closes at least one triangle. Among
the statistics computed are the clustering coefficient of the graph and each vertex, and the
number of triangles each vertex belongs to.

6.2. Initial partition

The goal of this step is to find an initial partition which can be later refined. This initial
partition is computed by a fast heuristic process, described in Algorithm 1. We first sort
the vertices of the graph by their clustering coefficient decreasingly (which was computed
during the graph cleanup step). For those vertices with equal clustering coefficient, we use
the degree as a second sorting criterion (Line 2). Then, the vertices are iterated and, for
each vertex v not previously visited, we create a new community C' that contains v and all
the neighbors of v that were not visited previously (Line 6 to 12). Finally, community C' is
added to partition P (Line 13) and all the vertices of the community are marked as visited.
The process finishes when all the vertices in the graph have been visited.

This heuristic is built on top of the following intuition: the larger the clustering coefficient
of a vertex, the larger the number of triangles the vertex closes with its neighbors, and the
larger the probability that its neighbors form triangles among them. Hence, considering
Equation 3, the larger the clustering coefficient of a vertex, the larger is the probability that
the WCC of its neighbors is large if we include them in the same community.

6.3. Partition refinement

Algorithm 2 describes the partition refinement step. It takes the initial partition computed
in the “Initial partition” step and refines it by following a hill climbing strategy, that is,
in each iteration, a new partition is computed from the previous one by performing a
set of modifications (movements of vertices between communities) aimed at improving the
WCC of the new partition. The algorithm repeats the process until the WCC' of the new
partition does not percentually improve over the best WCC' observed so far more than
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ALGORITHM 1: Phase 1, initial partition.

Data: Given a graph G(V,E)
Result: Computes a partition of G

1 Let P be a set of sets of vertices;
2 S + sortByCC( V );

3 foreach v in S do

4 if not visited(v) then

5 markAsVisited(v);

6 C+ v

7 foreach wu in neighbors(v) do
8 if not visited(u) then
9 markAsVisited(u);
10 C.add(u);
11 end
12 end
13 S.add(C);
14 end
15 end

16 return P;

a given threshold, and a set of lookahead iterations has been performed. These lookahead
iterations are used to make the algorithm more robust against local maxima. In our tests,
setting the threshold to 1% and the lookahead to five iterations provided a good tradeoff
between performance and quality.

In each iteration, for each vertex v of the graph, we use the bestMovement function to
compute the movement of v that improves most the WCC' of the partition most (Line 8).
There are four types of possible movements:

— NO_ACTION: leave the vertex in the community where it currently is.

— INSERT: insert a singleton vertex into an existing community. Remove the empty com-
munity resulting from this movement.

— REMOVE: remove the vertex from its current community and create a new singleton
community formed by the vertex.

— TRANSFER: remove the vertex from its current community (source) and insert it into
another one (destination).

Note that bestMovement does not modify the current partition, and that the best move-
ment of each vertex is computed independently from the others. This allows computing in
parallel the best movements for all the vertices. Once we compute the best movement of all
the vertices of the graph, we apply all of them simultaneously (applyMovements Line 10).
Finally, we update the WCC of the new partition (Line 11) and check whether it improved
compared to the last iteration.

Before describing function bestMovement in detail, we first introduce some auxiliary func-
tions that are used in it. The proofs of the theorems introduced in this section can be found
in the Appendix.

— WCC;(v,C, P) computes the improvement of the WCC' of a partition P when vertex v
(which belongs to a singleton community of P) is inserted into community C of P.
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ALGORITHM 2: Phase 2, refinement.

Data: Given a graph G(V,E) and a partition P
Result: A refined partition P’

1 bestP «+ P;

2 bestWCC <+ computeWCC(P);

3 triesRemaining <— lookAhead;

4 repeat

5 triesRemaining - -;

6 M «+ 0;

7 foreach v in V do

8 | M.add( bestMovement(v,P) );
9 end
10 P «+ applyMovements(M,P);
11 newWCC «+ computeWCC(P);
12 if (newWCC — bestWCC')/bestWCC >t then
13 bestP + P;
14 best WCC + newWCC;
15 triesRemaining < lookAhead;
16 end
17 until triesRemaining > 0;
18 return bestP;

THEOREM 4. Let P = {Cy,Cs,...,Cx,{v}} and P' = {C],C4,...,Cy} be partitions
of a graph G = (V, E) where C{ = Cy U{v}. Then,
WCC(P')—-WCC(P)=WCCi(v,Cy,P) =

1

= 7 > oo, WOC(@,CF) ~ WOC (@, )] +

1 /
7] WeCw. e,

— WCCgr(v,C, P) computes the improvement of the WCC' of a partition P when vertex
v is removed from community C' of P and placed as a singleton community.

THEOREM 5. Let partitions P = {C1,Cs,...,Cr} and P' = {C},Cs,...,Cy,{v}} of
a graph G = (V, E) where C; = C{U{v}. Then,

WCC(P') = WCC(P) = WCCr(v,Cy, P) = —WCCy(v,C}, P').

— WCCr(v,Cq,Cs, P) computes the improvement of the WCC of a partition when vertex
v is transfered from community C; and to Cs.

THEOREM 6. Let P ={C1,Cs,...,Cr_1,Cr}, P ={C1{,Cy,...,Cr_1,Ck,{v}} and
P’ ={C1,Cy,...,Cr_1,C}} be partitions of a graph G = (V, E) where C; = C} U {v}
and Cj, = Cy U{v}. Then,

wWCC(P")—-WwCC(P)=WCCr(v,C1,Ck, P)
:WCCR(U,Cl,P) + WCC](U,Ck,P).
=— WOC](’U,CLP/) + WCCy(v,Cy, P).
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ALGORITHM 3: bestMovement.
Data: Given a graph G(V,E) a partition P and a vertex v
Result: Computes the best movement of v.
m < [NO_ACTIONJ;
sourceC + GetCommunity(v,P);
wee_r + WCCg(v,sourceC,P);
wee_t < 0.0;
bestC <« 0;
Candidates + candidateCommunities(v,P);
for c¢ in Candidates do
if size(sourceC) > 1 then
| aux < WCCr(v,sourceC,c,P) ;
else
| aux « WCCr(v,c,P) ;
end
if aux > wce_t then
wcee-t <— aux;
bestC « c;
end
end
if wee_r > weet and wee_r > 0.0 then
| m «+ [REMOVE];
else if wcc_t > 0.0 then
if size(sourceC) > 1 then
| m « [TRANSFER , bestC];
else
| m « [INSERT , bestC];
end
end
return m;
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From Theorem 4, we conclude that computing the improvement of WCC' resulting from
inserting a vertex v (i.e. a singleton community) into a community C, we only need to re-
compute the WCC of vertex v and those vertices in C'. Therefore, when computing WCCy ()
for a vertex and a community, only a very local portion of the graph needs to be accessed,
and the number of computations performed is small compared to computing the WCC' of
the whole partition. Furthermore, Theorems 5 and 6 show that we can express any of the
movements needed by the algorithm (more concretelly INSERT, REMOVE and TRANS-
FER), in terms of function WCC}(), which in turn simplifies the implementation of the
algorithm.

Algorithm 3 describes the bestMovement function. First, we compute the improvement
of removing vertex v from its current community (Line 3). Then, we obtain the set of
candidate communities, formed by those communities containing the neighbors of v (Line 6).
After that, we calculate which is the candidate community where inserting or transferring
vertex v (depending whether the v forms a singleton community or not) improves the
WCC most (Lines 7 to 17). Finally, we select whether the best improvement is obtained
from removing the vertex from its current community (REMOVE) or inserting/transferring
it into a new community (INSERT/TRANSFER) (Lines 18 to 26). If neither of the two
movements improves the W C'C of the partition, we keep the vertex in the current community
(NO_ACTION) (Line 1).
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Fig. 10. Model used for estimating the WCCf.

6.4. WCC; Estimation

We have seen that we can express any movement by means of WCC;. Computing
WCC(v,C, P) requires computing the triangles v and those vertices in C' close with the
other vertices in C' and v. For a vertex, this operation is bound by the number of neighbors
that have (d), which has a complexity of O(d?) (for each neighbor in C'U{v} we have to test
against all of its other neighbors in C'U {v}). Also, since real graphs typically have power
law distributions, this cost is large for the highest degree vertices in the graph. Finally,
considering that the number of times WCCf is called is bounded by the number of edges
m of the graph, it quickly becomes the most time consuming part of the algorithm. In this
section, we propose a model to estimate WCC[() with a constant time complexity function
(given some easy to compute statistics) that we call WCC}().

WCC() stands as the approximated increment of WCC when vertex v is inserted into
a community C. In Figure 10, we depict the simplified model on top of which WCC%() is
built. For a given vertex v, we only record the number of edges that connect it to community
C. For each community C, we keep the following statistics: the size of the community r; the
edge density of the community §; and the number of edges b that are in the boundary of the
community. We also use the clustering coefficient of the graph w, which is constant along all
the community detection process and has been computed during the “Graph cleanup” step.
The clustering coefficient of the graph is equivalent as the observed probability that two
given edges that share a vertex close a triangle. These statistics homogenize the community
members and allow the computation of WCC/() as follows:

THEOREM 7. Consider the situation depicted in Figure 10, with the following assump-
tions:

— FEwvery edge in the graph closes at least one triangle.
— The edge density inside community C' is homogeneous and equal to § .
— The clustering coefficient of the whole graph equals to w.

Then,
WCC(P') — WCC(P) = WCC (v, C)
1
= V . (dzn@l'i‘(f'—dm) '@2"‘63), (7)
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where,
. (r—1)6+1+q
SR e B G Gy X g M ot g e gy e ey R G A I
0, — o (rfl)(r72)53 . (r—1)0+q
2= r—1)(r=2)6+q(¢—Dw+q(r—1)éw ~ (r+q)(r—1+q)’
0; = din(din—1)0 din+dout .

din(din_1)5+dout(dout_l)w"l‘doutdinw ’ r+dcout ’
and g = (b—din)/r.

Conceptually, ©1, ©5 and O3 are the W CC' improvements of those vertices in C' connected
to v, those vertices in C' not connected to v, and vertex v respectively, when v is added to
community C. The evaluation of Equation 7 is O(1) given all the statistics. And, the update
of all statistics is only performed when all communities are updated, with a cost O(m) for
the whole graph. Note that we use aggregated statistics to estimate the number of triangles,
and thus we are not computing the triangles when we compute WCC}().

6.5. Complexity of the Algorithm

Let n be the number of vertices and m the number of edges in the graph. We assume that
the average degree of the graph is d = m/n and that real graphs have a quasi-linear relation
between vertices and edges O(m) = O(n -logn). Then, the complexity of each of the steps
of the algorithm is the following;:

Graph Cleanup: In the graph cleanup phase, for each edge in the graph, we compute
the triangles that each edge participates in. The triangles are found by intersecting the
adjacency lists of the two connected vertices. Since we assume sorted adjacency lists, the
complexity of computing the intersection is O(d). Finally, we compute the local clustering
coefficient of each vertex and and the number of triangles each vertex closes, which has a
cost of O(m) once we have the triangles each edge participates in. Since the average degree
is m/n, we have that the cost of the first phase is O(m - d +m) = O(m -logn + m).

Initial Partition: The cost of this step is the cost of sorting the vertices of the graph based
on the local clustering coefficients computed in the previous phase, which is O(n - log(n)).

Partition Refinement: Let o be the number of iterations required to find the best parti-
tion P’, which in our experiments is between 3 and 7. In each iteration, for each vertex v
of the graph, we compute, in the worst case, d + 1 movements of type WCC'(I) that have
a cost O(1). Then, the computation of the best movement for all vertices in the graph in
an iteration is O(n - (d 4+ 1)) = O(m). The application of the all the movements is linear
with respect to the number of vertices O(n). We also need to update, for each iteration of
the second phase, the statistics 0, cout, din and d,y; for each vertex and community, which
has a cost of O(m). Finally, the computation of the WCC' for the current partition is per-
formed by computing for each edge the triangles, which is O(m - logn) as already stated.
Hence, the cost of the refinement phase becomes O(a - (m +n+m+m-logn)), which after
simplification, becomes O(m - logn) assuming « as constant.

Finally, The final cost of the algorithm is the sum of the three phases: O(m -logn +n -
log(n) +m -logn) = O(m -logn).

7. DETECTABILITY ANALYSIS OF WCC

Recent studies have revealed the difficulties of existing community detection metrics, such
as modularity, to detect communities if they are not well defined [Decelle et al. 2011].
Typically, these studies use simplified graph models, being the Stochastic Block Model one
of the most widely used. This model assumes a graph with ¢ communities, where there is an
edge between two vertices with probability p;, if both belong to the same community, and
probability py,: if they belong to different communities. The question is whether a given
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community detection metric is able to detect the communities of the model for a given set
of configuration parameters (pin, Pout, 7, and ¢). In this section we analyze the level of
detectability of WCC' using the stochastic block model. For the sake of simplicity, in our
study we will stick to the case where we have a graph with n vertices, consisting of ¢ = 2
communities of size 3.

Given a stochastic block model graph G of size n and two communities of size 7, we
want to find the detectability threshold of WCC, that is, the point in the relation between
Pin and Py where maximizing WCC' obtains the expected communities of the model.
Actually, this can be also seen in terms of intraconnectivity and isolation: the value of p;,
models the intraconnectivity of the communities of the model (the larger p;,, the better the
intraconnectivity) while p,,¢ models the isolation of the communities (the lower pe,; is, the
better the isolation). The detectability threshold of WCC' is defined in Theorem 8, whose
proof can be found in Appendix F.

THEOREM 8. Let G be a an arbitrarily large graph with n vertices with two communities
A and B of size § each. Let C(x) be the community where vertex  is assigned. Two vertices
x andy are connected with probability p;, if C(x) = C(y), and with probability pyu: if C(x) #
C(y). Let P be any possible partition of the graph, being P1 = {A, B} and P, = {AU B}
particular instances of that partition. Then:

(i)

(% B 1)(% - 2) pz3n ) ((% B 1) * Pin + % 'pout)
WCC(P1) =
P = GG 5+ (5 Db P23 Pou + 5 D)
(i)
((g - ]-) Pin + % 'pout)
n—1

(i) argmaxp WCC(P) € {P1, P2} if and only if pin > Dout;

(iv) WCC(P1) > WCC(P2) if and only if

\/(2 -2 'pout)(pout + 1) * Pout
1- Pout

(8)

Pin >

Theorem 8 states that the partition with optimal WCC for these particular graphs is
either that containing the original communities ({A, B}) or that taking the graph as a single
community ({A U B}), and the transition point between the former and the later, is that
expressed by Equation 8. In other words, WCC'is able to recover the original communities
if and only if the condition in Equation 8 (the detectability threshold) holds.

7.1. WCC’s detectability discussion

The question is whether the detectability threshold of WCC' is good or not. Intuitively,
according to the informal community definition, one would expect a community detection
metric to detect communities whenever p;, > pou:. However, this definition is incomplete
and, in practice, p;n, > Pout is not a sufficient condition to define a community. As an
example, suppose a clique of size n. Just removing an edge of the clique would imply a con-

figuration with two communities of size 5, with pi, = 1 > pour = %, if we strictly adhere

to the informal community definition. Therefore, a community metric with a detectability
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Fig. 11. Transition point for WCC' and different values of p;, and pout

threshold of p;;, > pour would potentially only detect communities with a perfectly uniform
edge distribution. Otherwise, these would break up into smaller subcommunities with a uni-
form density. Clearly, this is not practical in a real application, as real graphs are typically
not uniform and situations such as that described above appear frequently. Therefore, the
actual transition point between detectable and non-detectable configurations for a given
metric is a direct consequence of the community definition of that metric, and whether this
is good or bad is determined by the application in use. In the case of WCC| the application
is social networks and, as shown in Section 9, SC'D, the algorithm proposed in Section 6,
outperforms the current state of the art algorithms in this same domain.

Besides this, several desirable properties are observed from the detectability threshold of
WCC, that are good indicators of the behavior of the metric. First, it is independent of the
size of the graph, as already proven in Property 2. This means that the balance between
intraconnectivity and isolation for a given configuration, is constant regardless of the size
of the community. This is not the case, for instance, for modularity, whose detectability
threshold is ¢i, — Cout = 2+/Cin + Cout, Where ¢in = 5 - pin, and Cout = % - Pout- In this
case, the smaller the graph, the larger c¢;, needs to be compared to c,,: to be able to
correctly identify the communities. This issue is related to the known resolution problems
of modularity, which is unable to detect small and well defined communities once the size
of the graph increases.

Second, the implicit community definition proposed by WCC' is not static, that is, it
does not impose either a minimum level of intraconnectivity or isolation to a set of vertices
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Fig. 12. Detectability of the proposed algorithm for stochastic block model graphs of different sizes with
different configuration parameters (p;n and pout). The closer to white the color is, the better the NMI
between the detected partition and that expected by the model. The closer to black, the more different.

to be detected as a community. This is better observed in Figure 11, where we plot three
well defined regions, corresponding to the different configuration spaces where WC'C' is able
to detect the communities, where it is not able to detect them and where communities do
not exist (pin, < pout). We also show the detectability threshold of WCC, which delimits
the detectable and non-detectable regions. We see that the threshold establishes a relation
between p;,, (intraconnectivity) and poy: (isolation), in such a way that the more intracon-
nected the communities are (the larger p;, is), the less isolated (the larger p,,:) these can
be and vice versa. This means that WCC' is a metric that is not static but locally identifies
relevant sets of vertices, thus adapting to the heterogeneous nature of real graphs. Finally,
we see that W CC' does not detect the original communities whenever they do not exist —
i.e. when p;, < pout —, which is desirable in a community detection metric not to detect
false positives.

In Figure 12 we show a numerical validation of the detectability threshold of WCC.
We test different configurations of stochastic block model graphs (p;, and pyy: from 0
to 1 in steps of 0.01, for different values of n) with two communities using the WCC
maximization algorithm proposed in [Prat-Pérez et al. 2014]. We generated 100 graphs for
each tested configuration, executed the algorithm, and compared the resulting partition with
that expected from the model using the Normalized Mutual Information (NMI) [Fortunato
2010]. Each point in the graph corresponds to the average NMI of those 10 executions. The
whiter the color, the closer to one the average NMI is (the algorithm finds the expected
communities), and the darker the color, the closer to zero the NMI is (the communities
found by the algorithm are very different from those expected from the model). We also
draw the detectability threshold.

We see the detectability threshold line fits very well with the empirical results obtained,
with a very well defined transition point between the detectable and non-detectable regions.
The larger the size of the graph, the better this fitness, because the larger the graph, and
as a consequence, the larger the communities, the more uniform the internal edge density
of these is. Furthermore, we also empirically confirm that when communities do not exist
(Pin < Pout), WCC does not detect them. These empirical validation also suggests that
the algorithm proposed in [Prat-Pérez et al. 2014] is able to produce results close to the
optimal, even though it does not formally guarantee to produce an optimal solution.

7.2. The community detection paradox and WCC

Another issue that affects modularity maximization based algorithms is the so called com-
munity detection paradox [Radicchi 2014]. Counterintuitively, the paradox states that the
worse defined the communities are, the easier it is for the algorithms to detect them, while
the better defined they are, the harder it is. In order to test W CC'is not affected by this issue
or not, we first need to define what is a good and a bad community in terms of WCC', and
then, test whether in situations where we have bad communities, they are harder or easier
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Fig. 13. Accuracy of SCD to detect a community with a uniform vs binomial degree distribution, for
different expected values of p;,.

to detect. More concretely, for WCC'|, a well defined community shows both a good isolation
and intraconnectivity. Also, a bad community is not well isolated nor intraconnected?.

We first analyze the case where a community is perfectly isolated, that is, it does not
have external edges connecting its vertices to other communities. The detectability threshold
shows that when the internal degree of the vertices of the community is uniform, the larger
the p;, is, the larger the p,,: can be and the community can still be detectable up to a
certain point. In the case that the degree of the vertices is not uniform, some vertices might
be well intraconnected, while others might not close enough triangles to be part of the
community. If this happens, the community structure is not so well defined and thus, we
expect WCC to fail at identifying the community.

Figure 13 shows the accuracy SC'D, when the degrees of the vertices follow a Binomial
distribution compared to when the degrees of the vertices are uniform, for different values of
Pin, and communities of size n = 100 and n = 200 vertices. In this case the graph consists of
a single community, thus p,,; is zero. For each configuration, we have randomly generated
100 graphs, executed the algorithm and averaged the results. An accuracy of one means
that the algorithm is able to fully recover the communities for all of the 100 generated
instances, while an accuracy of zero means that it was not able to recover the communities
in some of them. We see that as long as the value of p;, increases, there is a transition
point for both distributions where the algorithm starts to correctly detect the community
for all the instances of the graph. This transition point is seen earlier for the uniform graph
than for the binomial. In the case of WCC, one would expect this transition point not
to exist for perfectly uniform graphs and always detect the communities, as predicted in
Theorem 1 where the number of edges required between a vertex and a community tends
to zero as p;, approaches zero. However, this is the case for arbitrarily large graphs, but
not for small graphs where having perfectly uniformly distributed edges is more difficult as
these either exist or not. Therefore, the smaller p;, is, the larger the probability a vertex
not having enough edges with the community or even not closing any triangle with it exists.
This probability is larger for the case of the binomial distribution, where degrees are less

homogeneous.

4Note, that in the case of modularity and other state of the art algorithms these definitions change, and a
community is usually considered to be well defined when its vertices have more internal edges than external

edges.
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Fig. 14. Accuracy of SCD to detect two communities with a uniform degree distribution with density
pin = 0.5, and a uniform vs binomial out degree distribution, for different expected values of poy.

We also tested the situation where we have two well intraconnected and uniform com-
munities, but the out degree distribution connecting both communities is not uniform but
follows a Binomial distribution. In this case, we expect that for the Binomial distribution
the communities will be harder to detect, as some observed vertices will have a larger out
degree than that expected, making them less isolated from the rest of the graph, even some-
times being more intraconnected with vertices of the other community. Figure 14 shows
the accuracy of the community detection algorithm based on WC'C' optimization, when the
two communities have a uniform distributed internal degree with p;, of 0.5, and the out
degree follows a Binomial and a uniform degree distribution, for different values of p,,:. In
this case, we see that when the out degree follows a Binomial distribution, the transition
point between detectable configurations and non-detectable configurations is seen earlier
(for smaller values of poyt).

In conclusion, we see that W(C'C'is sensitive to how the edges are internally and externally
distributed. The more uniformly distributed these are, the easiest is for WCC' to detect the
communities. If some vertices do not have enough intraconnection or isolation, then WCC'
will not classify them in the correct community, as expected.

8. EXPERIMENTAL SETUP

We select the most relevant algorithms in the state of the art in order to detect the commu-
nities in real world graphs. Then, we prove that there is a correlation between WCCy and
different statistical indicators, that is, communities with good WC'C, have good statistical
indicators, while communities with bad WCCy fail at one or more of those statistical in-
dicators. Finally, we compare the existing algorithms using ground truth communities and
SCD, and show that not only SC'D obtains the best results and performs better, but also
there is a strong correlation between WCC' and the quality of the communities.

The selected algorithms of the state of the art are Infomap [Rosvall and Bergstrom 2008],
which is based on random walks; Louvain [Blondel et al. 2008], which is based on multilevel
maximization of modularity locally; Label Propagation Method (LPM) [Raghavan and Albert
2007], which finds communities using a label propagation approach. We choose Infomap
and Louvain because they are the best for detecting disjoint communities in social networks
according to [Lancichinetti 2009], and LPM because it has become very popular in the
literature due to its linear time complexity. We suggest reading the reference paper for
each algorithm to understand them in detail. Our selection covers algorithms following
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Table I. Real-world graphs with ground truth data.

Vertices Edges Communities

Amazon 334,863 925,872 151,037
Dblp 317,080 1,049,866 13,477
Youtube 1,134,890 2,987,624 8,385
LiveJournal 3,997,962 34,681,189 287,512
Orkut 3,072,441 117,185,083 6,288,363
Friendster 65,608,366  1,806,067,135 957,154

diverse strategies to test the validity of WCC but it does not intend to be an evaluation
survey of all community methods. Besides, other popular approaches in the literature, such
as [Lancichinetti et al. 2011; Ahn et al. 2010; Palla et al. 2005] among others, aim at
overlapping communities which are also out of the scope of this paper. The implementation
of all the algorithms has been taken from their author’s web site.

For the experimentation, we used six real networks covering different aspects of real world
data, mostly social networks®. All chosen networks have ground truth communities associ-
ated with them. The first is a network representing which products from Amazon have been
copurchased by clients. In this dataset, the ground truth communities match the different
categories of products. The second is a graph of the DBLP network representing coau-
torship relations between authors, where ground truth communities correspond to authors
that have published in the same journals and conferences. The third graph is a graph of
Youtube, where ground truth communities correspond to the groups of users in youtube.
The fourth , fifth and sixth datasets are graphs of the Livejournal, Orkut and Friendster
social networks, where ground truth communities correspond to the groups created by the
users. The characteristics of these graphs are summarized in Table I.

Finally, we used a machine with the following characteristics: 2xIntel Xeon E5-2609 @
2.40GHz, with 4 cores each making a total of 8 cores, 128 GB ram and Linux 2.6.32-5-amd64.
The used disks are regular 1TB spinning disks at 7200 rpm.

9. EXPERIMENTAL RESULTS
9.1. Statistical Indicators analysis

In this section, we show the correlation between communities with good WCC' values and
good statistical indicators. As statistical indicators, we have taken a selection of existing
metrics described in Section 2, that include representatives of each of the different categories
of metrics. Furthermore, we added a new category composed of structural properties. The
formal definitions can be found in Appendix K.

Internal connectivity based indicators (I): We use the average edge density, the tri-
angle density, and the TPR to measure the level of intraconnectivity of the communities.

External connectivity based indicators (E): We use the expansion [Radicchi et al.
2004] to measure level of isolation of the communities.

Internal and external connectivity based metrics (I+-E): We use the average inverse
edge cut, which is the average fraction of internal edges out of the total number of edges of
a vertex, the Flake ODF [Flake et al. 2000] and the conductance [Kannan et al. 2004], as a
tradeoff between intraconnectivity and isolation.

Graph model comparison based indicators (M): We use the modularity per com-
munity [Newman and Girvan 2004}, because it measures how relevant is a community, and
because of its popularity in the literature.

5Downloaded from SNAP (http://snap.stanford.edu). We cleaned the original graphs by removing the self
loops.
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Structural indicators (S): We use the bridge ratio, the normalized diameter and the size
of the communities, to obtain a better insight into the characteristics of the communities.

We created a pool of communities by running Infomap, Louvain and LPM on the
first four real world networks described above®. We sorted all the communities in the pool
by their WCCy value decreasingly although they have not been found with such metric.
Then, we divided the communities into 20 groups in steps of five percentiles according to
their WCCy and plotted for these 20 groups their corresponding statistical indicators in
Figure 15. In all the charts, the x axis represents the group identifier (e.g. the leftmost
group is always the 95 percentile that contains the top 5% communities in terms of their
WCCy) while the y axis shows the corresponding statistical value. The communities of size
one and two, are omitted since their WCCj value is always zero. As shown in Figure 15(a),
the leftmost communities have high WCCy values, and the rightmost communities have
the lowest WCCy values. Since these communities were not computed with WCCy, we
analyze both good and bad communities.

Broadly speaking, we observe two sections in each plot of Figure 15: from groups 1 to
11, the trend for all statistical indicators show that communities with higher W CC} have
better properties; from groups 12 to 20 this trend apparently changes in some statistical
indicators. We focus first on groups 1-11 and we analyze groups 12-20 later.

Groups 1-11: In Figures 15(b) and (c) we see that the larger the WCCj of a community,
the larger the average edge density and the triangle density. The transitive relations between
the vertices (Property 1) indicate the presence of communities with a defined homophilic
structure. Note that these communities have been found with metrics that do not search
for triangles and yet, they contain more such structures. Similarly, Figure 15(d) shows
that the larger the WCC, the larger the TPR. However, we see that TPR has precision
limitations, since it scores as good communities (with scores close to one), some communities
that might not be that good according to other metrics such as the average edge density
(Figure 15(b)), the expansion (Figure 15(e)), the average inverse edge cut (Figure 15(f))
and the conductance (Figure 15(g)). Finally, in Figures 15(e), (f) and (g), we see that the
larger the WC'Cy, the smaller the expansion, the larger the average inverse edge cut, and the
smaller the conductance, which means that the number of external connections decreases
for the first, and that the communities are denser internally than externally for the last
two. However, while having a large internal density and few external connections is a good
starting point to identify a good community, it does not imply an internal structure as we
will show when discussing groups 12-20.

In Figure 15(h-i) we compare WCCs with the most used metrics in the state of the
art: conductance and modularity. We see that for these groups, there is a correlation be-
tween communities with good WCCj values, modularity and conductance (note that for
conductance, the lower, the better).

Figure 15(j) shows that bridges penalize the WCCj score. A large bridge ratio is a symp-
tom of the presence of whiskers or treelike structures, which are inherently sparse and hence
do not have the type of internal structure that one would expect from a community. A small
diameter is another feature that any good community should have. In Figure 15(k) we see
that large WC'Cy implies smaller diameters for the communities. This means that any ver-
tex in the community is close to any other vertex, which translates to denser communities.
Finally, in Figure 15(1), we show the sizes of the communities.

Groups 12-20: We see that there is a trend change in some statistical indicators for those
groups that have WC'Cy close to 0. This behavior can be explained by Figures 15(c), (d) and
(j)- These figures reveal that the communities after group 15 are treelike: communities hardly
contain triangles and almost all the edges in the community are bridges. Such structures

6We used the first four as they where the only ones where all the algorithms succeded to execute
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Fig. 15. Statistics of communities from real world networks in 20 groups sorted by WCC,. The x-axis
represents the 5% percentile groups showing that with the largest WCC on the left and that with the
smallest W CC' on the right. The y-axis represents the value achieved for each of the metrics shown in the
plots

cannot be accepted as good communities. Although some communities in groups 15-20 are
isolated, we note that this is not a sufficient condition for them to be good communities.
For example, most communities in groups 13-20 are trees with three vertices which have
a good conductance. W(C'Cj is able to score these communities as bad communities while
conductance does not. A similar behavior is seen for modularity. In Figure 15(i), we see that
the communities in groups 13-20, which are tree-like, have a larger modularity than other
sets with a more community-like structure than those. As described in [Bagrow 2012], tree
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Fig. 16. F1Score, NMI and WCC.

like networks can have high modularity and hence, algorithms maximizing it can lead to
misleading results.

To sum up, while state of the art metrics fail to correctly rank communities under specific
circumstances, WCCy shows to be robust, that is, it is able to globally capture all the
desirable characteristics a community should contain.

9.2. Evaluating WCC using Ground Truth

In the previous section, we correlated W CCs with a set of statistical indicators which show
the presence of a community structure. In this section, we use ground truth communities to
correlate WC'C with those communities found in real data. With this objective, we test the
quality of the partitions obtained by the algorithms on the different datasets and compare
them to the available ground truth communities. Inspired by the methodology of [Yang and
Leskovec 2013], the quality of a partition with respect to a ground truth is measured using

the Average F1Score (F7) and NMI. The F1Score of a set A with respect to a set B is
defined as the harmonic mean (H) of the precision and the recall of A with respect to B:

|[ANB| |AﬂB|
precision(A, B ——— recall(A, B
(4,B) = Al (4,B) = B
2-a-b
H =
(0.0) = =2

Fi(A, B) = H(precision(A, B),recall(A, B))

Then, the average F1Score of two sets of communities C; and Cy (which in our case are
the partition and the ground truth communities respectively) is given by:

Fi(AC) = argmaxFl(A,C’i)7 ceC={Cy, - ,Cn}

(01702 2|O| Z Fl clacl 2|C/ Z Fl cl»

c; eC c; eC’

We also compare the quality of the results obtained using the Normalized Mutual In-
formation (NMI), which is widely used in the community detection literature [Fortunato
2010].

Figure 16 shows the Average F1Score, NMI and WCC of the partition obtained by the
different algorithms, in the tested graphs. Those missing bars are from executions that were
not able to finish within a week or consumed too much memory. We observe that there is a
strong correlation between WC'C, and the F1Score and NMI obtained, that is, in general,
the larger the WCC', the better the F1Score and NMI obtained.

In order to quantify the correlation between F1Score, NMI and WCC, we computed
the Pearson Coefficient of variation that resulted 0.91 and 0.83 for F1Score and NMI
respectively. This indicates a very strong agreement between both metrics and WC'C' since
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it is close to 1, which is the maximum value. Therefore, W C'C proves to be a solid metric
for evaluating the quality of community detection algorithms.

9.3. SCD Performance and Scalability

In Figure 17(a) we show the excution times of the different algorithms single threaded, for
the different graphs. We see that SCD is the fastest algorithm for the smaller graphs, and
the second fastest after LPM and Louvain when these become larger. However we see that
the execution times are still competitieve compared with the implementations of the state
of the art algorithms used. Again, those missing bars belong to those executed that were
unable to finish in less than a week or due to memory consumption.

We parallelized SCD in order to exploit the resources of current multi-core and many-
core processors. More concretely, we parallelized the two most time consuming parts of the
algorithm: the computation of the global and local clustering coefficient of the vertices during
the graph clean up phase and the whole refinement phase. In the former, we parallelized
the loop that computes, for each edge, the number of triangles that the edge closes. In
the later, we parallelized both the loop in Line 7 of Algorithm 2, which calls the function
bestMovement for each of the vertices in the graph and the computation of WCC' for the
partition at the end of the iteration (which can be paralelized for each vertex). Since all the
parallel code is in the form of loops, we used OpenMP with dynamic scheduling, using a
chunk size of 32. Figure 17(b) shows the normalized execution times of SCD with different
number of threads. In this experiment, we have excluded the time spent in 1/O, which
includes reading the graph file and printing the results.

Broadly speaking, we see that with a simple OpenMP based parallelization, SCD is able
to achieve very good scalability, specially for the larger graphs which are also those with a
larger average degree. The larger the average degree of the graph, the larger the cost of those
parts that have been parallelized: the larger the cost of computing WCC' and the larger the
number of movements to test between vertices and communities). These two parts quickly
become dominant over the sequential ones. This means a better scalability due to a direct
application of Ahmdal’s Law.

We see then that for large graphs, our implementation of SCD is able to exploit all
the processor’s resources available. The configuration with eight threads of SCD keeps the
eight cores of the processor active most of the time, obtaining between six and seven fold
improvement over the single threaded version. These results show that SCD is an algorithm
easy to parallelize and capable of exploiting multi-core architectures efficiently, especially on
those cases (large graphs) where this is more appreciated. More specifically, SCD processes
the Friendster graph using eight threads in just 7.5 hours.

Figure 17(c) shows the execution time of SCD with respect to the number of edges of
the graph. Each point represents the time spent by the eight thread version of SCD for
the different graphs. We see that SCD shows a quasi linear scalability, as described in
Section 6.5.

9.4. Memory Consumption

In Table II, we show the memory consumption in MB of SCD for each of the graphs divided
into three categories:

— Graph: the size of the data structure that stores the graph as a list of adjacencies.
The graph is stored in compressed sparse row format. We relabel the original ids of the
vertices to the range from 0 to n-1, and hence, we also account an array containing a
mapping between our internal vertex identifier and the original label used in the input
files.

— Triangles: an array with size equals to the number of vertices, which contains the number
of triangles each vertex belongs to.

, Vol. V, No. N, Article A, Publication date: January YYYY.



Put Three and Three Together: Triangle Driven Community Detection A:29

100000

1x10°

10000

)

- 100000

(s

ouvain

10000 1000

5

100

5
Execution Time

Execution Time (

’
7
7
7
)
4

S
Normalized Execution Time

A
N
N
N
N
N
N
N
N
\
‘N
|}
-\
:

¢ R

0.1 1 10 100 1000 10000
Million Edges

(a) ()

Fig. 17. (a) Execution times of the different algorithms single threaded. (b) SCD normalized execution
time with different number of threads. (¢) Execution time with eight threads vs number of edges.

Table Il. SCD Memory consumption in MB.

Graph  Triangles  Partitions Total
Amazon 11.4 1.3 16.0 28.7
Dblp 12.2 1.3 14.9 28.4
Youtube 37.5 4.5 68.9 110.9
Livejournal 325.4 16.0 197.7 539.1
Orkut 974.3 12.3 124.4 1111.0
Friendster 15235.8 262.4 3317.6  18815.8

— Partitions: accounts for the partition and its statistics. In this case, we report the
iteration with the largest memory consumption.

We see that the data structures (array of triangles and partitions) built by SCD scale
linearly with the number of vertices of the graph, and not with the number of edges. Fur-
thermore, since the number of statistics we store per vertex is small, the amount of memory
consumed by SCD is often dominated by the graph representation as its memory consump-
tion depends on the number of edges of the graph. This is observed by all the tested graphs
except Youtube, which has a very small average degree of 2.6. For the largest graphs, SCD
allocates only data structures for an additional 23% 23% (Friendster) and 14% (Orkut) of
the original graph. The amount of memory consumed for the Friendster graph is roughly
18GB, showing that much larger graphs could be processed with a comodity server with
the 128 GB of memory.

9.5. Use case

Finally, we have created a graph of journals, where the vertices are computer science journals
and where two journals are connected if they are similar in terms of topics (they share
authors, which are expected to work on similar topics) and size (have a similar number of
publishing authors). In order to construct the graph, we have used the DBLP data available
on their site [Dblp 2012]. This graph is actually a social graph, because the interests of
the authors and their collaborations are driven by the homophilic principle that has been
discussed all over this paper. We create an edge if the Jaccard Coefficient between the lists
of authors (the authors of those papers published in the journal) of two journals is above
a given threshold. This means that two journals are related, if the set of authors that have
published in both journals is large with respect to the total number of authors that have
published in one of the journals. We set the threshold at 0.04 (this number has been taken
after several experiments in order to obtain a representative graph).

Table III shows four examples of communities found by the use of WCC' in SCD on this
graph, related to the Knowledge Discovery , Databases, Graphics and Neuroscience topics.
We see that each community, is formed by journals of its topic, meaning that maximizing
WCC allows extracting meaningful communities.
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Table Ill. Examples of communities of journals found from maximizing WCC.

Data Mining Data Mining and Knowledge Management; Intell. Data Analysis; Knowledge In-
formation Systems; SIGKDD Explorations; Statistical Analysis and Data Mining;
TKDD.

Data Management ~ACM Trans. Database Syst.; Data Knowl. Eng.; Distributed and Parallel
Databases; IEEE Data Eng. Bull.; IEEE Trans. Knowl. Data Eng.; Inf. Syst.; Int.
J. Cooperative Inf. Syst.; J. Intell. Inf. Syst.; PVLDB; SIGMOD Record; VLDB
J.; World Wide Web.

Graphics ACM Trans. Graph.; Comput. Graph. Forum; Computer Aided Geometric Design;
Computer-Aided Design; Graphical Models; Graphics; IEEE Computer Graphics
and Applications; IEEE Trans. Vis. Comput. Graph.; Journal of Visualization and
Computer Animation The Visual Computer.

Neuroscience Biological Cybernetics; IEEE Trans. Neural Netw. Learning Syst.; IEEE Trans-
actions on Neural Networks; Int. J. Neural Syst.; Journal of Computational Neu-
roscience; Neural Computation; Neural Computing and Applications; Neural Net-
works; Neural Processing Letters; Neurocomputing.

10. CONCLUSIONS AND FUTURE WORK

Although different community metrics have been proposed, these do not guarantee cohesive
and structured communities from their optimization. Actually, the most popular metrics
applied in the state of the art fail at correctly ranking the quality of a community under
certain circumstances. The reason is that existing metrics do not consider the internal
structure of the community, but focus only on maximizing/minimizing global characteristics.
We observed that community detection metrics should fulfill a minimal set of properties,
guaranteeing communities with a minimal level of structure.

In this paper, we proposed WCC, a new community detection metric that quantifies
the quality of a community. By meeting the above mentioned properties, WCC' is able
to guarantee that the communities delivered from its optimization will be cohesive and
structured. We have shown experimentally that communities with a good WCC' are dense,
have small edge cuts, have transitive relations without bridges and small diameters. We have
also shown that looking only at the internal density and small edge cuts does not guarantee
well defined communities with internal structure, since it can lead to treelike communities.

We have also analyzed the detectability threshold of WC'C, and shown that it fulfills a
set of desirable properties, such as that it is independent of the size of the communities, or
that WC'C' does not find communities when these do not exist.

We have correlated WCC' with a set of statistical indicators, showing that communities
with a large WCC, have the characteristics expected from good communities. We have
empirically shown that WCC' is a metric correlated with real graph communities, and
hence serve as a good baseline to compare community detection algorithms when ground
truth data is not available.

Along with the metric, we have proposed a Scalable Community Detection(SCD), a com-
munity detection algorithm based on WCC' optimization. We have designed SCD with
parallelism in mind, and have shown its performance and scalability in practice using real
graphs.

In this paper, we have discussed the concepts of structural isolation and intraconnectivity.
The importance of these concepts is treated equally from the WC'C’s perspective. However,
some applications would prefer a metric more biased to isolation, while others would consider
more important the intraconnectivity. Future work will consist on adding a mechanism to
adjust the importance or weight of such concepts inside the WCC' definition. This will
allow WCC to be more flexible and to be adapted to a wider range of applications. Another
interesting problem is the search of overlapped communities in the graph. Some graph
patterns, such as cut vertices, can be naturally modeled as the overlap of two communities.
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This problem, similarly to the disjoint case, has similar deficiencies because there is not a
formalization of a minimal set of properties to be fulfilled by a metric. Our work will continue
towards extending the community definition and WCC for overlapping communities.
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A. PROOF OF PROPOSITION 3.1

PRrROOF. (i) This is a consequence of the inequalities t(x, S) < t(z,V) and vt(z, S) < vt(z, V),
vt(z, V) <wvt(z, V) + S\ {z}| — vt(z,5)

(ii) If WCCy(x,S) = 0, then at least one of the following three identities holds: ¢(z,V) = 0,
vt(z, V) = 0, and ¢(z,S) = 0. Now, each one of these conditions implies ¢(z,S) = 0. Reciprocally,
by definition, if ¢(x,S) = 0, then WCC,(z,S) = 0.

(iii) Assume WCCy(z, S) = 1. By (ii), t(z,S) # 0. Hence, there exists an edge {y, z} such that
y € S\ {z} and z € S\ {z} forming triangle with z. Then |S \ {z}| > 2. As the two fractions
defining WCC,(x, S) are < 1, the condition WCC,(z,S) = 1 implies that both fractions are 1.
Left fraction is 1 if and only if ¢(z, V) = ¢(z,S), which implies that vt(z, V) < |S\ {z}|, which
turns into an equality (and therefore right fractions becomes 1) if and only if vt(z, S) = |S\ {z}].

Reciprocally, the condition vt(z,V) = |S\ {z}| = vt(z,S) > 2 implies t(z,S) = t(z,V). As
vt(z, V) = vt(z,S) =[S\ {z} > 2, we have that both fractions in the definition of WCC,(z, S)
have denominator # 0 and both fractions are 1. Therefore, WCC,(z,S) =1. O

B. PROOF OF PROPOSITION 3.2

PROOF. The proofs are a consequence of Proposition 3.1. (i) Since 0 < WCC\y(z,S) < 1 for all
z €S, then 0 < WCC(S) < 1.

(ii) WCCs(S) = 0 implies that for all z € S WCC,(z,S) = 0. Since the condition for
WCCy(x,S) =0 is that t(z, S) = 0, then WCC,(S) = 0 implies that S has no triangles.

(iii) WCCs(S) = 1 implies that WCCy(x,S) =1 for all € S. This implies that a vertex x € S
such that vt(z, V) # vt(z,S) and vi(z,S) = |S \ {z}| does not exist. Thus, all the vertices = € S
form triangles only and with exactly all the vertices in S, which implies having an edge with all
the vertices in S, and hence forming a clique. O

C. PROOF OF THEOREM 1
PROOF. Let N be the set of neighbors of v.
(i) For z € V, we have WCC\y(z,V) = vt(z,V)/r. Now,

(r—1)p if z € V\N;
vt(z,V)=4¢ (r—1)p+1 ifz € N;
d

if z € {v}.
Then
(r + DWOC(P) =(r — )~ 4 = x4
=(r— 1)p+2g.

(ii) For x € V\ N,

WO, (2, v) = 2@ Y) _ r=p _

r—1 r—1

(iii) For € N, we have

t(x,VU{v}) =

t(z, V) = <T2 1)193;
vt(z, VU {v}) =

VA Az} —vt(z,V)

_ (r=Dp+1(r = 1(r —2)p?
WeCu(@,V) = (r=1(r—-2p>+2(d-1))-r
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Moreover, WCC, (v, {v}) = 0. Then,

o d (= Dp+ )(r— 1)(r — 2)p°
(r+ WWCCPe) = r = dp+ = = e =+ 2d = 1)

(iv) We have,

_ i d_d((r=1p+1)(r—1)(r—2)p*
(r+1)(WCC(P1) —WCC(P2)) = p(d 1)+2r D)2 r2d 1)
and the condition WCC(Py) — WCC(P2) > 0 is equivalent to the condition

ad® +bd + ¢ > 0, 9)

where
a =2(2+pr),
b=p(p+1)r* — p(3p” + 3p + 4)r + 2p° + 2p” — 4,
c=—p*r® +3p°r? + 2p(1 — p2)r.

For short, let we denote by O(r™) a polynomial expression of degree at most n. Then, the greatest
solution of (9) is,

—P*(L+p)r? + O(r) + /P (p* + 2p + 9)r' + O(r?)

d =
’ 42 +pr)
and we get
o —p*(1+p) +p°/P>+2p+9
rodoo T 4p
VPP +2p+9—(1+p)
= 1 .

Thus, for a large enough r, the condition

a>rp(ViP T2 49— (1+p)) /4,

is equivalent to WCC(P1) > WCC(P2). O

Note that function p — p (\/p2 +2p+9-(1 +p)) /4 is increasing in p. A large value of p
means more edges in G, and then a large value of d/r is needed for WCC(P1) being greater than
WCC(Pz).

In the case of Corollary 1, p = 1, thus d > v/3 — 1/2 = 0.37.

D. PROOF OF THEOREM 2
PROOF. Let S = S; USs. For z € S;,i € {1,2} we have t(z,S;) = t(z,S), vt(z,V \ Si) =
vt(z,V'\ S) and |S; \ {z}| < |5\ {z}|. Then,

_ Uz, S) vt(z, V) t(z, Si) vt(z, V) - . S
WOC(@ 5) = 307) st V) 119\ o} = oi@.8) < V) vt V) 115\ {at| — ot 8y (= 5:).

Therefore,
|S]- WCC({S1,S52}) = |Si|- WCCs(S1) + |S2| - WCCs(S2)
= > WCCy(z,8)+ Y WCCy(x,8) > > WCCy(x,S)

zeSy zE€ Sy zeS
implies
WCC({51,S2}) > ﬁ Z WCCy(x,8) = WCCs(S) =WCCs(S1 U S2).
reS
O
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E. PROOF OF THEOREM 3

PrROOF. (i) For the r — 1 vertices z € K, \ {t}, we have WCCy(z,V) = vt(z,V)/(n — 1) =
(r—1)/(n—1). For the vertex t, we have WCC\ (v, V) = 1. Finally, for the s—1 vertices z € K\ {t},
we have WCCy(z,V)=(s—1)/(n—1). Asn—1=r+s— 2, we obtain the formula (4).

(ii) For the r — 1 vertices « € K, we have WCCy(z, K,) = 1. For the vertex ¢, we have

(3 n—1
wWCCy(z,K,) = (r;l) + (S;l) r—1 +s—1
(r—=1)(r—-2)

(r=1@r—-2)+(s—1)(s—2)
For the s — 1 vertices © € K, \ {t}, we have

(3) s—1_ (s—2)(s-3)
(3 s—1 (s=1(s—2)

WCCy(z, Ks \ {t}) =

This gives the formula (5).
(iii) For z € K, \ {t},

(39 r=1_(-2)(-3)
(T*I) r—1 (r—1)(r—2)’

2

WCCy(z, K\ {t}) =

for vertex t,

() n—1

(") 0+r—1+4+s-1
(1-1)(1-2)

:(r+s—2)(r+s—3) =0

WCC,(z, {t}) =

for x € K\ {t},
(s —2)(s—3)
v 5 Ks t = T, =\
WG o K\ (1) = (=)
This implies (6).

(iv) Define fi(r,s) = n-WCC(P1), f2(r,s) =n-WCC(P2), and f3(r,s) =n- WCC(Ps). The
expression of these functions are those in (4), (5) and (6), respectively. The goal is to show that
for all integers values r, s with r > s > 4 the inequality f3(r,s) < f2(r,s) holds. Clearly, the first
summand of f3(r, s) is smaller than the first summand of f2(r, s), and the last summands are equal.
As f3(r, s) has the second summand > 0, we have f3(r,s) < fa(r,s).

(v) We shall prove fa(r,s) — fi(r,s) >0forn>7and 4 <r <n-—3. We have s =n—r+1 and

(r— 1)2—1—(71—7“)2

fQ(TaS) 7f1(7",8) >n —4 —

n—1
=2+ (2+2n)r —5n+3
o n—1 '

The sign of fa(r,s) — fi(r,s) is the sign of the polynomial function —2r% 4+ 2(n + 1)r — 5n + 3,
which is a convex function on r with roots:

1

r1 zi(n—i—l— Vn? —8n+7);
1

r2 :§(n+1+\/n278n+7).

Now, for n > 7, we have r1 < 4 and 72 > n — 3. Therefore, for each r € {4,...,n — 3} we have
fa(rys) — fi(r,s) > 0. O

, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 A. Prat et al.

F. PROOF OF THEOREM 8

PROOF. Let x be any vertex of the graph G(V, E), and S the community of vertex z. Let’s
assume that all the edges of the graph close at least one triangle.

(i) For Py
n_q
_ 2 3.
t(CL’7S) - < 2 >pzn7

n_1 n no__ 1 n
t(z,V) = <22 >pfn+<§>pm-p§ut+<21 )(i)pm-piut;

vt(z,V) =

vt(z, V) + S\ {z}]| — vt(z,S) =

Then,

Pi (% — Dpin + Zpout)
1

_ -2)
CENCE 2)Pm + (5 = Dnpin - Pou) (5Pouwt + 5 — 1)

DO |3

2 51\ (% 2
Pin " Pout + 2 1 i Pin * Pout

. (1) (%), .
Pin * Pout + 1 1 Pin * Pout;

- )pzn + pouh

(e
- (e
<§

O w3

vt(z, V) =
vt(z, V) + |S\ {z}| —vt(z,S) =

Then,

(g - 1)pzn + %pout
n—1 '

WCC(P2) =

(iii) We numerically proof this statement. First, we need to compute the WCC' of P, which consist
of those partitions where s vertices of each of the two communities have been correctly placed.
More formally, let Ps = {A’, B’} be any partition of the graph with two communities A" and B’ of
size %, where [ANA'| =s and [BNB'|=s. Let o € {AN A"}, 2, € {BNB'}, va € {A"\ A} and
vy € {B'\ B}. That is, any partition with two communities of size % where 2s vertices have been

well placed.
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2
) Pin * Pout;

g
8]
2
>
Il
7N
w\:
)
—
N
%
/‘\
v
S
3
’B
Q
£
+
/\
= \
—_
~
/N
— |3

t(zy, V) =t
vi(za,V) = (5 -

vt(xy, V) = vit(zq,V);

vi(a, V) 4 |4\ {za}| = vi(wa, A') = (5 = Dpin+ 5Poue + (5 = 1= (s = Dpin — (
vt(xy, V) + | B\ {xp}| — vt(2p, B") = vt(xp, V) + [A\ {za}| — vt(za, A').

n _ o __ n __ _
t(va, A') = (2 28 1>pf’n+ <2 f 1) (i)pm-pout2+ <;>pm~pout2;

— $)Pout);

[

r_1 n no_ 1 n
_ 2 3 2 02 2 2 o2
t(va,V) - ( 2 )pzn+ <2>pm pout+< 1 ><1>p'”l Pout;
t(vp, V) = t(va,V);
n
vt(ve, V) = (5 Dpin + 2pout7
vt(vp, V) = vt(va, V);
n n
o0, V) + 1A\ v} = 000, A7) = (5 = i+ St + (5 =1 = (5 = Dpin — (5 = )pous):
vt(ve, V) + |B"\ {ws}| — vt(v, B') = vt(vp, V) + [A"\ {va}| — vt(va, A).
Then,
WCC(Ps) = l 2.5 (5_1)(5_2)79?”‘:(5_1)(*_s)pm paut+( 3)(2%_5_1)132@'“".
n ((2 *1)(572)1)”,‘4”(2 )TL Pin pout)
(% - 1)pin + %pout
(% - 1)pin + %pout + (% —-1- (S - 1)pin - (% - S)pout)
+
1y (59 (3 =9 =20 + (5= 9) = D5 pin P+ 5~ Dk pin
n 2 ((2 _1)(5 _2)171”“1‘(% _1)n'pin 'pgut)

(% - l)pin %pout
(5 = Dpin + 3Pout + (5 —1 = (5 — 5= 1)pin — 5 Pout)

Figure 18 shows, for each configuration of p;n and pout, for different values of n, which partition
P € {P1, P2, Ps} is that with a maximum WCC'. In the case of Ps, we tested for all possible values
of s. We see that the statement is true, regardless of the the value of n.
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1.0
0.8,
0.6

=

X

0.4

0.2

06 08 10 °B0 02 o4

0.6 08 10 8o 02 02 0.4 . 06 08 10
Pout Pout

02 04
Pout

Fig. 18. The best partition found for different configurations of p;y, pout and n. All possible configurations
of Ps have been tested

(iv) We are interested in the transition point between P; and P2, that is, we want to know for
which values of pi, and pour, WCC(P1) — WCC(P2) = 0. Since we are interested in arbitrarily
large graphs, we compute the difference when n tends to infinitely large values :

. L (P2 - Pout + 2 Phur — P + 2 Pout) Pin + Pout)
L= lim WCCO(P)) — WCC(Py) = —~
ngl;o ( 1) ( 2) 2 (pout + 1)(173” + 2 : pgut)

If we solve £ = 0 for p;,, we obtain the following solutions:

\/(2 -2 pout)(pout + 1)pout \/(2 -2 pout)(pout + 1)pout
1 - pout ’ ]- - pout

—Pout; —
, being the third solution the only positive and valid one. O

G. PROOF OF THEOREM 4
PROOF.

WCC(P') = WOC(P) =
=11 (ICr U} - WCC(CLU o)) + 30 G- WCC(Ch)) -
ywi (16 wee(en + 30 1G] WOe(C) + WeC({u}))
=Y vi(IC1] - WCC(Cr)) = Yivi(ICi] - WCC(Ch) +0)

=1v| (Zzecg wWCC(z,C) + Zzec WCC(m,Cl))
=1v| (ZIECI WCC(z,C}) + WCC(v,C})—

> WCC(a, cl))

1

O

H. PROOF OF THEOREM 5

PROOF. As stated in the theorem assumptions, the partition P’ is build by removing v from
C1. Alternatively, the partition P can be build by removing vertex v to Cf in P’. Then, the two
following equalities hold:

WCC(P) + WCCr(v,C1) = WCC(P'),
WCC(P) = WCOC(P') + WCCr(v,Ct)
and thus: WCCg(v,C1) = —WCC(v, o)
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I. PROOF OF THEOREM 6

PRrROOF. Since WC(C is a state function, all paths from P to P’ have the same differential. Then,
we express the transfer operation as a combination of remove and insert:

WCC(P) 4+ WCCr(v,C1,Cy) = WCC(P')

WCC(P) 4+ WCCg(v,C1) + WCCi(v,Cy) = WCC(P")

WCC(P') - WCC(P) = -WCCr(v,C) + WCCr(v,Cy)
O

J. PROOF OF THEOREM 7

PRrROOF. Consider the situation depicted in Figure 10. Let N(z) be the set of neighbors of z.
Given that, we define sets F' = N (v)NC which contains those vertices in C' that are actual neighbors
of v, and G = (C'\ N(x)), which contains those vertices in C' that are not neighbors of v. Therefore,
from Theorem 4 we have:

WCCr(v,C) =
*I/W‘Z (WCC(x,C U {v}) — WCC(z,C))+
1/\V\WCC(U cuU{v})
_1/‘”2 (WCC(z,CU{v}) — WCC(x,C))+

V\V\Z (WCC(x,C U {v}) — WCC(z,C))+
1/\V\WCC v, C U {v})

We know that |F| = d;, and |G| = 7 — din, then we can define WCC} (v, C) with respect to three
variables ©1, ©2 and O3, which represent the W C'C' improvement of a vertex of F', a vertex of GG
and v respectively. Then,

WCCt(v,C) = Y v|(|F| - ©1 + |G| - ©2 + O3).

We define ¢ = (b — din)/r as the number of edges connecting each vertex in C' with the rest of the
graph excluding v. Then,
(i) If z € F, we have

t(x,C) =(r — 1)(r — 2)6%;
t(z,CU{v}) =(r — 1)(r — 2)6° + (din — 1)5;
tx, V) =(r — 1)(r — 2)6° + (din — 1)8 + q(r — 1)dw+
q(q — Dw + dowrw;

vt(z, V) =(r —1)0 + 1+ g;

vt(z, V) + |CU{v}\ {z}| —vt(z,{CU{v}}) =r+g
vt(z, V) + |C\ {z}| —vt(z,C)=r—14qg+1=r+g;

In t(z, C'), we account for those triangles that = closes with two other vertices in C'. Similarly, in
t(z,C U {v}) we account for those triangles that x closes with two other vertices in C, and those
triangles that x closes with v and another vertex in C. t(x, V') accounts for all triangles that vertex
z closes with the graph, which are: ¢(x,C U {v}) plus those triangles that vertex z closes with
another vertex of C' and a vertex of V'\ C, plus those triangles that vertex x closes with two other
vertices in V' \ C, plus those triangles vertex z closes with v and another vertex of V' \ C. Since we
assume that every edge in the graph closes at least one triangle, vt(z, V) accounts for the number
of vertices in C' that are actual neighbors of z plus 1 (for vertex v) and ¢ vertices that are connected
to x. Finally, we have that the union of vertices in C' and those vertices in V' with whom x closes
at least one triangle is r 4+ ¢. Therefore,
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0, = WCC(z,C U {v}) — WCOC(z, C)
t(z,CU{v}) vt(z,V) _
t(z,V) [CUu{vi\{z}+vt(z,V\{CU{v}})

t(@,C) | vt(z,V)
t(z,V)  [C\{z}|+vt(z,V\C)

= e V) (t(x,C U {v}) — t(z, C))

. (r—1)64+1+4¢q X
= D D=8 ({din — )5 +a(r 1) 8w F ala=1)w T doure)
(din—1)6.
(ii) If € B, we have
t(z,C) =(r = 1)(r — 2)(53,
t(z, C U {v}) =(r — 1)(r — 2)6°%;
t(z, V) =(r—1)(r — 2)63 +q(qg— 1w+ q(r — 1)dw;
vt(x, V) =(r —1)0 + ¢;

vt(z, V) + |[CU{v} \ {z}| —vt(z,{CU{v}}) =r+g;
vt(x, V) + |C\ {z}| —vt(z,C) =r—1+g;

t(z,C) accounts for those triangles that = closes with two other vertices in C. Since, z is not
connected to v, we have that ¢(z,C) = t(z,C U {v}). t(z, V) accounts for the number of triangles
that = closes with the rest of vertices in V. These are t(z,C) plus those triangles that vertex z
closes with another vertex of C' and a vertex of V' \ C, plus those triangles that vertex x closes
with two other vertices in V' \ C. vt(z, V) accounts for the number of vertices in V' with whom z
closes at least one triangle, which are the neighbors of z in C' and those ¢ vertices with whom x is
connected. Finally, we have that the union of vertices in C'U {v} and vertices in V with whom z
closes at least one triangle is r 4 ¢, and the union of vertices in C' and vertices in V' with whom z
closes at least one triangle is r + ¢ — 1. Therefore,

O, = wCC(z,CU{v}) —WCC(z,C)
t(z,CU{v}) | vt(xz,V) -
t(z,V) [CU{vi\{z}+vt(z,V\{CU{v}})
t(z,C) | vt(x,V) _
t(z,V) |C\{z}|+vt(z,V\C)
- _ (r=1)(r-2)s° . (r=1)d+q
T (r—1)(r—2)8%+q(g-Dwtg(r—1)dw  (r+q)(r—1+q) "

(iii) If = v we have

t(z, CU{v}) = din(dinn — 1)6;

t(x, V) = din(din — 1)0 + dout (dout — 1)w + doutdinw;
vt(z, V) = din + dout;

vt(z, V) 4+ |C\ {z}| — vt(z,C) = r + dout;

In this case, t(z, CU{v}) accounts for those triangles that « closes with C', with whom it is connected
to din vertices. t(z, V) are those vertices vertex x closes with V, which are those = closes with C'
plus those x closes with other two vertices in V' \ C. vt(z, V) accounts for the number of vertices
in V with whom z closes at least one triangle, which are d;, plus d,.: since we assume that every
edge closes at least one triangle. Finally, the union between the vertices in C' and those vertices in
V' with whom z closes at least one triangle is r + dou:. Therefore,
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WCC(v,CU{v})

O3
o t(z,CU{v}) | vt(z,V)
= W@ V) IO i@ NG —
din(din—1)8 L dintdout
i r+deout *

in(din —1)0+dout (dout —1)w+doutdinw

O
K. STATISTICAL INDICATORS
Given the following definitions:
— t(9S) is the number of triangles in set S.

— N(z) is the set of neighbors of x.
we formally define the statistical indicators used in this paper

Triangle Density:
3-t(S)
1SI-(ISI=1) - (IS| = 2)

Average Edge Density:
)N S|

ER M=

TPR:
{z € S :|t(z,S)] > 0}
S|
Expansion:
2wes IN(@) N (G S
S|
Conductance:
2ees IN(@) N (G S
D ees IN(@)]
Flake ODF:
{z € S:|N(x)NnS| < N(z)/2}|
S|
Average Inverse Edge Cut:
1 [N (z)N S|
S 2 V@)
Modularity per Community:
1 N(z) - N(y)
S IN@ns - 3 YE-NE)
[S]-(S1-1) IEI <zes = 2B

Normalized Diameter:
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diameter(S)
log(|S]) +1
Bridge Ratio:

2 - bridges(S)
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