
Semantically Inactive Multiplicatives and Words as Types?

Glyn Morrill & Oriol Valentı́n

Universitat Politècnica
de Catalunya

morrill@lsi.upc.edu & oriol.valentin@gmail.com

Abstract. The literature on categorial type logic includes proposals for semantically inactive
additives, quantifiers, and modalities Morrill (1994[17]), Hepple (1990[2]), Moortgat (1997[9]),
but to our knowledge there has been no proposal for semantically inactive multiplicatives.
In this paper we formulate such a proposal (thus filling a gap in the typology of categorial
connectives) in the context of the displacement calculus Morrill et al. (2011[16]), and we give
a formulation of words as types whereby for every expression w there is a corresponding
type W(w). We show how this machinary can treat the syntax and semantics of collocations
involving apparently contentless words such as expletives, particle verbs, and (discontinuous)
idioms. In addition, we give an account in these terms of the only known examples treated by
Hybrid Type Logical Grammar (HTLG henceforth; Kubota and Levine 2012[4]) beyond the
scope of unaugmented displacement calculus: gapping of particle verbs and discontinuous
idioms.

1 Introduction

Examples of collocations are as follows. Expletives:

(1) a. It rains.
b. There came a man.

Discontinuous idiom:

(2) Mary gives Peter the cold shoulder.

Particle verb:

(3) a. Mary calls Peter up.
b. Mary calls up Peter.

(Observe in (3) the non-determinism of the position of the object Peter with respect to the conjunct
calls up.) We give an account of such collocations which respects the intuition that the constructions
derive from content words (rains, came, gives, calls) which require certain other words without
content in their grammatical context.1 Furthermore we do this in such a way that it is possible
to give an account of gapping as (almost) like type coordination which includes coverage of
examples such as (4c, d), for which Kubota and Levine (2012[4]) invoke Hybrid Type Logical
Grammar.
? Research partially supported by an ICREA Acadèmia 2012 to the alphabetically first author, and by

BASMATI MICINN project (TIN2011-27479-C04-03) and SGR2009-1428 (LARCA). Many thanks to three
anonymous LACL referees for valuable comments and suggestions.

1 As a referee points out, gives . . . the cold shoulder and calls . . . up are not completely frozen expressions:
Mary gives the same cold shoulder to Peter, Mary calls Peter right up. Based on such observations Wasow, Sag
and Nunberg (1983[20]) claim that the elements of such constructions should be assigned semantic
interpretations. If this is the case the present paper presents a solution to a problem which does not exist,
but we think that although the present paper is not the last word, such observations do not dissolve
the reality of the qualitative difference between normal compositional semantics and idiomatic semantics
with reduced content.

2

(4) a. Peter sees Mary and Robin, Clark.
b. Peter calls up Mary and Robin, Clark.
c. Peter calls Mary up and Robin, Clark.
d. Peter gives Mary the cold shoulder and Robin, Clark.

Thus the technically and conceptually independently motivated machinery of semantically inac-
tive multiplicatives and words as types accounts for the only known application of HTLG beyond
the scope of displacement calculus.

In Section 2 we present the machinery. In Section 3 we give our empirical accounts. We
conclude in Section 4.

2 Displacement Categorial Logic

The syntactic types of our categorial logic are sorted according to the number of points of dis-
continuity their expressions contain. Each type predicate letter will have a sort and an arity which
are naturals, and a corresponding semantic type. Assuming ordinary terms to be already given,
where P is a type predicate letter of sort i and arity n and t1, . . . , tn are terms, Pt1 . . . tn is an (atomic)
type of sort i of the corresponding semantic type. Compound types are formed by connectives
as indicated in Figure 1, and the homomorphic semantic type map T associates these with se-
mantic types. Note the new semantically inactive concatenative (continuous) and intercalative
(discontinuous) multiplicatives in the middle of the table.

The set O of configurations of (hyper)sequent calculus for our categorial logic is defined as
follows, where Λ is the metalinguistic empty string and 1 is a metalinguistic placeholder:

(5) O ::= Λ | 1 | F0 | Fi>0{O : . . . : O︸ ︷︷ ︸
i O’s

} | O,O | [O]

The sort sA of a type A is the i ∈ N such that A ∈ Fi. The sort of a configuration Γ is the number
of placeholders 1 that Γ contains.

Where Γ is a configuration of sort i and ∆1, . . . , ∆i are configurations, the fold Γ⊗ 〈∆1, . . . , ∆i〉 is
the result of replacing the successive 1’s in Γ by ∆1, . . . , ∆i respectively.

The usual configuration distinguished occurrence notation ∆(Γ) signifies a configuration
∆ with a distinguished subconfiguration Γ, i.e. a configuration occurrence Γ with (external)
context ∆. In the hypersequent calculus the distinguished hyperoccurrence notation ∆〈Γ〉 sig-
nifies a configuration hyperoccurrence Γ with external and internal context ∆ as follows: the
distinguished hyperoccurrence notation ∆〈Γ〉 abbreviates ∆0(Γ ⊗ 〈∆1, . . . , ∆i〉).

Where ∆ is a configuration of sort i > 0 and Γ is a configuration, the leftmost metalinguistic
wrap is given by

∆ |
+
Γ =d f ∆ ⊗ 〈Γ, 1, . . . , 1︸ ︷︷ ︸

i−1 1’s

〉

i.e. the configuration resulting from replacing by Γ the leftmost placeholder in∆; and the rightmost
metalinguistic wrap is given by

∆ |
−
Γ =d f ∆ ⊗ 〈1, . . . , 1︸ ︷︷ ︸

i−1 1’s

, Γ〉

i.e. the configuration resulting from replacing by Γ the rightmost placeholder in ∆.
The figure −→A of a type A is defined by:

(6) −→A =

A if sA = 0
A{1 : . . . : 1︸ ︷︷ ︸

sA 1’s

} if sA > 0

3

F0 ::= W(w) T(W(w)) = > words as types
F j ::= Fi\Fi+ j T(A\C) = T(A)→T(C) suffix [7]
Fi ::= Fi+ j/F j T(C/B) = T(B)→T(C) prefix [7]
Fi+ j ::= Fi•F j T(A•B) = T(A)&T(B) concatenation product [7]
F0 ::= I T(I) = > concatenation product unit [6]
F j ::= Fi+1

↓
±
Fi+ j T(A↓

±
C) = T(A)→T(C) infix [16]

Fi+1 ::= Fi+ j
↑
±
F j T(C↑

±
B) = T(B)→T(C) circumfix [16]

Fi+ j ::= Fi+1�±F j T(A�
±
B) = T(A)&T(B) intercalation product [16]

F1 ::= J T(J) = > intercalation product unit [16]
Fi ::= Fi&Fi T(A&B) = T(A)&T(B) additive conjunction [5, 10]
Fi ::= Fi⊕Fi T(A⊕B) = T(A)+T(B) additive disjunction [5, 10]
Fi ::=

∧
VFi T(

∧
vA) = F→T(A) 1st order univ. qu. [17]

Fi ::=
∨

VFi T(
∨

vA) = F&T(A) 1st order exist. qu. [17]
Fi ::= 2Fi T(2A) = LT(A) universal modality [11]
Fi ::= 3Fi T(3A) = MT(A) existential modality [9]
Fi ::= []−1

Fi T([]−1A) = T(A) univ. bracket modality [12, 8]
Fi ::= 〈〉Fi T(〈〉A) = T(A) exist. bracket modality [12, 8]
Fi+ j ::= Fi+ j|F j T(B|A) = T(A)→T(B) contr. for anaph. [3]
F j := Fi(Fi+ j T(A(C) = T(C) if T(A) = > left sem. inactive under
Fi := Fi+ j�F j T(C�B) = T(B) if T(C) = > left sem. inactive over
F j := Fi�Fi+ j T(A�C) = T(A) if T(C) = > right sem. inactive under
Fi := Fi+ j�F j T(C�B) = T(C) if T(B) = > right sem. inactive over
Fi+ j ::= FiG#F j T(AG#B) = T(B) if T(A) = > right sem. inactive conc. product
Fi+ j ::= FiH#F j T(AH#B) = T(A) if T(B) = > right sem. inactive conc. product

F j := Fi

�

±
Fi+ j T(A

�

±
C) = T(C) if T(A) = > lower sem. inactive infix

Fi := Fi+ j (± F j T(C (

±
B) = T(B) if T(C) = > lower sem. inactive circumfix

F j := Fi

(
±
Fi+ j T(A

(

±
C) = T(A) if T(C) = > upper sem. inactive infix

Fi := Fi+ j �± F j T(C �

±
B) = T(C) if T(B) = > upper sem. inactive circumfix

Fi+ j ::= Fi

H#

±
F j T(A

H#

±
B) = T(B) if T(A) = > lower sem. inactive interc. product

Fi+ j ::= Fi

G#

±
F j T(A

G#

±
B) = T(A) if T(B) = > upper sem. inactive interc. product

Fi ::= FiuFi T(AuB) = T(A) = T(B) sem. inactive additive conjunction [17]
Fi ::= FitFi T(AtB) = T(A) = T(B) sem. inactive additive disjunction [17]
Fi ::= ∀VFi T(∀vA) = T(A) sem. inactive 1st order univ. qu. [17]
Fi ::= ∃VFi T(∃vA) = T(A) sem. inactive 1st order exist. qu. [17]
Fi ::= �Fi T(�A) = T(A) sem. inactive universal modality [2]
Fi ::= �Fi T(�A) = T(A) sem. inactive existential modality
Fi ::= /−1

Fi T(/−1A) = T(A) left projection [15]
Fi ::= .−1

Fi T(.−1A) = T(A) right projection [15]
Fi ::= /Fi T(/A) = T(A) left injection [15]
Fi ::= .Fi T(.A) = T(A) right injection [15]
Fi+1 ::=

±̌
Fi T(

±̌
A) = T(A) split [14]

Fi ::=
±̂
Fi+1 T(

±̂
A) = T(A) bridge [14]

Fi ::= Fi+ j÷F
p
j T(B÷A) = T(A)→T(B) nondet. division [16]

Fi+ j ::= Fi×F j T(A×B) = T(A)&T(B) nondet. concatenation product [16]
F j ::= Fi+1⇓Fi+ j T(A⇓C) = T(A)→T(C) nondet. infix [16]
Fi+1 ::= Fi+ j⇑F j T(C⇑B) = T(B)→T(C) nondet. circumfix [16]
Fi+ j ::= Fi+1}F j T(A}B) = T(A)&T(B) nondet. intercalation product [16]

Fig. 1. Categorial logic types

4

A sequent Γ⇒ A comprises an antecedent configuration Γ of sort i and a succedent type A of
sort i. The hypersequent calculus for the categorial logic has the following identity axiom and Cut
rule:

(7) id−→A : x⇒ A: x
Γ⇒ A:φ ∆〈

−→A : x〉 ⇒ B:ψ
Cut

∆〈Γ〉 ⇒ B:ψ{φ/x}

The set T of semantic types of the semantic representation language is defined on the basis of
a set δ of basic semantic types and includes:

(8) T ::= δ | > | T&T | T→T

A semantic frame comprises a family {Dτ}τ∈δ of non-empty basic type domains and this induces a
non-empty type domain Dτ for each type τ such that:

(9) D> = {∅}
Dτ1&τ2 = Dτ1 ×Dτ2

Dτ1→τ2 = D
Dτ1
τ2

Semantically labelled semantically active multiplicative rules are given in Figure 2. The term
0 is interpreted as the unique inhabitant of type >.

2.1 Semantically inactive multiplicatives

Semantically labelled semantically inactive concatenative and intercalative multiplicative rules
are given in Figures 3 and 4 respectively.

2.2 Words as types

Let Σ be the lexical vocabulary. The semantic type for types W(w) where w ∈ Σ∗ is >; the standard
syntactical interpretation for types W(w) is:

[[W(w)]] =def {w}

Notice that in particular the interpretation of the continuous unit I coincides with the interpreta-
tion of W(ε), i.e.:

[[I]] = [[W(ε)]] = {ε}

Therefore we postulate the following logical rules related to W(ε):

∆〈Λ〉 ⇒ A:φ
W(ε)L

∆〈W(ε): x〉 ⇒ A:φ
W(ε)R

Λ⇒W(ε): 0

In addition:

∆〈W(w1): x,W(w2): y〉 ⇒ A:φ
W(w)L

∆〈W(w1+w2): z〉 ⇒ A:φ

Γ1 ⇒W(w1):φ Γ2 ⇒W(w2):ψ
W(w)R

Γ1, Γ2 ⇒W(w1+w2): 0

This added machinary is clearly sound with respect to the syntactical interpretation given to
displacement calculus (Morrill et al. [16]). Cut-elimination applies as well.

5

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω

\L
∆〈Γ,
−−−→A\C: y〉 ⇒ D:ω{(y φ)/z}

−→A : x, Γ⇒ C:χ
\R

Γ⇒ A\C:λxχ

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

/L
∆〈
−−→C/B: x, Γ〉 ⇒ D:ω{(x ψ)/z}

Γ,
−→B : y⇒ C:χ

/R
Γ⇒ C/B:λyχ

∆〈
−→A : x,−→B : y〉 ⇒ D:ω

•L
∆〈
−−−→A•B: z〉 ⇒ D:ω{π1z/x, π2z/y}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ
•R

Γ1, Γ2 ⇒ A•B: (φ,ψ)

∆〈Λ〉 ⇒ A:φ
IL

∆〈
−→I : x〉 ⇒ A:φ

IR
Λ⇒ I: 0

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω

↓
σL

∆〈Γ |σ
−−−→
A↓σC: y〉 ⇒ D:ω{(y φ)/z}

−→A : x |σ Γ⇒ C:χ
↓
σR

Γ⇒ A↓σC:λxχ

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

↑
σL

∆〈
−−→
C↑σB: x |σ Γ〉 ⇒ D:ω{(x ψ)/z}

Γ |σ
−→B : y⇒ C:χ

↑
σR

Γ⇒ C↑σB:λyχ

∆〈
−→A : x |σ

−→B : y〉 ⇒ D:ω
�
σL

∆〈
−−→A�σB: z〉 ⇒ D:ω{π1z/x, π2z/y}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ
�
σR

Γ1 |σ Γ2 ⇒ A�σB

∆〈1〉 ⇒ A:φ
JL

∆〈
−→J : x〉 ⇒ A:φ

JR
1⇒ J: 0

Fig. 2. Semantically labelled multiplicative rules

3 Syntax and semantics of collocations

3.1 Expletives, discontinuous idioms and particle verbs

Expletives Consider the following lexical entry for the verb rains in (1a) which needs the seman-
tically dummy expletive pronoun it:

(10) rains: W(it)(S: rain

(11)
W(it): x⇒W(it): x S: z⇒ S: z

(L
W(it): x,W(it)(S: y⇒ S: y

The proof (11) gives the derivational semantics y, and then with the lexical semantics in (10), we
get S: rain.2

2 Two referees object that this treatment requires two types for seems to generate both It seems to rain and
John seems to smile whereas if we assume a special N category N(it) we can get by with a single type
∀x((N(x)\S)/(N(x)\Sinf)). However, this single syntactic category fails to reflect that the semantics must
be treated differently in the two cases.

6

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω

(L
∆〈Γ,
−−−−→A(C: y〉 ⇒ D:ω{y/z}

−→A : x, Γ⇒ C:χ
(R

Γ⇒ A(C:χ

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

�L
∆〈
−−−−→C�B: x, Γ〉 ⇒ D:ω{0/z}

Γ,
−→B : y⇒ C:χ

�R
Γ⇒ C�B:λy0

∆〈
−→A : x,−→B : y〉 ⇒ D:ω

G#L
∆〈
−−−→AG#B: z〉 ⇒ D:ω{z/y}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ
G#R

Γ1, Γ2 ⇒ AG#B:ψ

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω

�L
∆〈Γ,
−−−−→A�C: y〉 ⇒ D:ω{0/z}

−→A : x, Γ⇒ C:χ
�R

Γ⇒ A�C:λx0

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

�L
∆〈
−−−−→C�B: x, Γ〉 ⇒ D:ω{x/z}

Γ,
−→B : y⇒ C:χ

�R
Γ⇒ C�B:χ

∆〈
−→A : x,−→B : y〉 ⇒ D:ω

H#L
∆〈
−−−→AH#B: z〉 ⇒ D:ω{z/x}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ
H#R

Γ1, Γ2 ⇒ AH#B:φ

Fig. 3. Semantically labelled semantically inactive conc. multiplicative rules

Discontinuous idioms The idiom gives . . . the cold shoulder in (2) can be generated with the
following lexical assignment:

(12) gives: (N\S)/(NH#W(the+cold+shoulder)): shun

We are able to generate example (2) in labelled ND format as follows:

mary: N: m

gives: (N\S)/(NH#W(the+cold+shoulder)): shun

peter: N: p

the: W(the): 0

cold: W(cold): 0 shoulder: W(shoulder): 0
W(w) I

cold+shoulder: W(cold+shoulder): 0
W(w) I

the+cold+shoulder: W(the+cold+shoulder): 0
H# I

peter+the+cold+shoulder: NH#W(the+cold+shoulder): p
/E

gives+peter+the+cold+shoulder: N\S: (shun p)
\E

mary+gives+peter+the+cold+shoulder: S: (shun p m)

Particle verbs Particle verbs like calls . . . up can be accounted for with the following lexical
assignment:

(13) calls: (N\S)/(NH#W(up)): phone

The lexical assignment (13) generates (3a) as follows in labelled ND format:

(14)
mary: N: m

calls: (N\S)/(NH#W(up)): phone

peter: N: p up: W(up): 0
H#I

peter+up: NH#W(up): p
/E

calls+peter+up: N\S: (phone p)
\E

mary+calls+peter+up: S: (phone p m)

If one wants to account for the non-determinism of examples (3a) and (3b), we need a more
general assignment with a semantically inactive additive, for example:

(15) calls: (N\S)/((NH#W(up))t(W(up)G#N)): phone

7

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω �

σ L

∆〈Γ |σ
−−−→

A

�

σ C: y〉 ⇒ D:ω{0/z}

−→A : x |σ Γ⇒ C:χ �

σ R
Γ⇒ A

�

σ C:λx0

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

(

σ L
∆〈
−−−→

C (σ B: x |σ Γ〉 ⇒ D:ω{x/z}

Γ |σ
−→B : y⇒ C:χ

(

σ R
Γ⇒ C (σ B:χ

∆〈
−→A : x |σ

−→B : y〉 ⇒ D:ω H#

σ L
∆〈
−−−→

A

H#

σ B: z〉 ⇒ D:ω{z/y}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ H#

σ R
Γ1 |σ Γ2 ⇒ A

H#

σ B:ψ

Γ⇒ A:φ ∆〈
−→C : z〉 ⇒ D:ω (

σ L

∆〈Γ |σ
−−−→

A

(

σ C: y〉 ⇒ D:ω{y/z}

−→A : x |σ Γ⇒ C:χ (

σ R
Γ⇒ A

(

σ C:χ

Γ⇒ B:ψ ∆〈
−→C : z〉 ⇒ D:ω

�
σ L

∆〈
−−−→

C �σ B: x |σ Γ〉 ⇒ D:ω{0/z}

Γ |σ
−→B : y⇒ C:χ

�

σ R
Γ⇒ C �σ B:λy0

∆〈
−→A : x |σ

−→B : y〉 ⇒ D:ω G#

σ L
∆〈
−−−→

A

G#

σ B: z〉 ⇒ D:ω{z/y}

Γ1 ⇒ A:φ Γ2 ⇒ B:ψ G#

σ R
Γ1 |σ Γ2 ⇒ A

G#

σ B:ψ

Fig. 4. Semantically labelled semantically inactive interc. multiplicative rules

3.2 Interaction with Gapping

We turn now to gapping as like-category coordination. The standard type assignment for gapping
(Morrill et al. 2011[16]) in the displacement calculus is the following:3

(16) and: ((S↑
+
TV)\(S↑

+
TV))/ˆ(S↑

+
TV):λPλQλz[(P z) ∧ (Q z)]

However, as noted by Kubota and Levine (2012[4]), the lexical assignment (16) cannot generate
cases with complex transitive verbs like discontinuous idiomatic transitive verbs or particle verbs.

The HTLG account The set of types in HTLG is the smallest set which includes a denumerable
set of atomic types closed by the standard Lambek divisions and the vertical slash |. This vertical
slash allows HTLG to account for several complex phenomena of discontinuity. In particular,
scoping interactions with gapping are elegantly and successfully explained.

HTLG’s proof machinery is based on a labelled natural deduction system (LND) with the
following constraints:

– Types the principal connective of which is Lambekian are inhabited by concatenations of
syntactical (or prosodic) constants.

– Types the principal connective of which is the vertical slash | are inhabited by string lambda
terms.

Despite the linguistic flexibility of the LND of HTLG, there are problems with the definition
of types like (CN\CN)/(S|N) for a relative pronoun where the higher order argument subtype

3 We use the defined connective bridge, ˆA =d f A

G#

+ I, for which the derived Right rule is:

(i)
Γ⇒ A:φ

ˆR
Γ |+ Λ⇒ ˆA:φ

8

would be a string lambda term and therefore its concatenation is not defined. It follows that the
algebra of types of HTLG is not free (M. Moortgat, p.c.) and requires a sorting discipline such as
that “|” always outscopes “\” and “/”. In HTLG a type for the relative pronoun would be then
(CN|CN)|(S|N).

The lexical entry proposed in HTLG for standard (simple transitive verb) gapping is the
following:
(17) λΦλΨλv[(Ψ v)+and+(Φε)]: ((S|TV)|(S|TV))|(S|TV):λPλQλw.[(Q w) ∧ (P w)]

For a complex transitive verb like a particle verb, the type entry proposed is:
(18) ((S|(TV|N))|(S|(TV|N)))|(S|(TV|N))

The type assignment for standard gapping in the displacement calculus is:
(19) ((S↑

+
TV)\(S↑

+
TV))/ˆ(S↑

+
TV)

If one assumes that in the displacement calculus the type of a complex transitive verb is (N\S)↑
+
N

(cf. [16]), there is no possibility to make an extraction of this type as in the case of standard
gapping:

(20)
N, 1{N} ⇒ S↑

+
((N\S)↑

+
N)
∗

N, ((N\S)↑
+
N){N} ⇒ S

Thus, provided it assumes two gapping lexical entries, HTLG is able to account for standard
gapping and generalized gapping respectively whereas, apparently, displacement calculus can
account for only the former. Here however, using the limited machinery which we have added to
the displacement calculus, we will see that we are able to account for gapping with simple and
complex transitive verbs, and furthermore do so with a single gapping lexical entry.

Generalized gapping in D with words as types and semantically inactive multiplicatives Here
we propose a new gapping coordinator lexical assignment which can generate both gapping
with simple transitive verbs and gapping with complex transitive verbs. Let there be the following
abbreviations for types:
(21) GTV(w) := (N\S)/(NH#W(w))

X(w) := (S↑
+
GTV(w)) �

−
W(w)

We propose the following generalized gapping lexical entry:
(22) and:∀u((X(u)\X(u)/ˆ̂ X(u)):λPλQλz[(P z) ∧ (Q z)]

Notice the crucial use of both continuous and discontinuous semantically inactive connectives,
as well as the use of the semantically inactive universal quantifier ∀. With this type for the
coordinator we are able to generate the following instances of gapping:
(23) a. Peter sees Mary and Robin, Clark.

b. Peter calls up Mary and Robin, Clark.
c. Peter calls Mary up and Robin, Clark.
d. Peter gives Mary the cold shoulder and Robin, Clark.

Notice the following important equivalence:
(24) (N\S)/(NH#W(ε))⇔ TV

The proof of TV⇒ GTV(ε) uses the Left rule for W(ε), while the proof of GTV(ε)⇒ TV uses the
Right rule for W(ε):

(25) a.

N,TV,N⇒ S
W(ε)L

N,TV,N,W(ε)⇒ S
\R

TV,N,W(ε)⇒ N\S
H#L

TV,NH#W(ε)⇒ N\S
/R

TV⇒ GTV(ε) = (N\S)/(NH#W(ε))

b.

N⇒ N
W(ε)R

Λ⇒W(ε)
H#R

N⇒ NH#W(ε) N\S⇒ N\S
/L

GTV(ε),N⇒ N\S
/R

GTV(ε)⇒ (N\S)/N

9

Derivations of generalized gapping Using the lexical entry for generalized gapping (22), we are
able to account for standard gapping examples (simple transitives) like (23a) as well as gapping
instances with for example a particle verb like (23c). For (23c) we have:

(26)

N⇒ N W(up)⇒W(up)
H#R

N,W(up)⇒ NH#W(up)

N⇒ N S⇒ S
\L

N,N\S⇒ S
/L

N,GTV(up),N,W(up)⇒ S
↑
+
R

N, 1,N,W(up)⇒ S↑
+
GTV(up)

�

−
R

N, 1,N, 1⇒ X(up) = (S↑
+
GTV(up)) �

−
W(up)

ˆR
N,N, 1⇒ ˆX(up)

ˆR
N,N⇒ ˆ̂ X(up)

(27)

N⇒ N W(up)⇒W(up)
H#R

N,W(up)⇒ NH#W(up)

N⇒ N S⇒ S
�L

N,N\S⇒ S
/L

N,GTV(up),N,W(up)⇒ S
↑
+ R

N, 1,N,W(up)⇒ S ↑+ GTV(up)

�

−
R

N, 1,N, 1⇒ (S ↑+ GTV(up)) �

−
W(up)

W(up)⇒W(up)

GTV(up)⇒ GTV(up) S⇒ S
↑
+ L

(S ↑+ GTV(up)){GTV(up)} ⇒ S

�

−
L

(S ↑+ GTV(up)) �

−
W(up){GTV(up) : W(up)} ⇒ S

\L
N,GTV(up),N,X(up)\X(up)⇒ S

(28)

(26)

...

N,N⇒ ˆ̂ X(up)

(27)

...

N,GTV(up),N,X(up)\X(up)⇒ S
/L

N,GTV(up),N,W(up), (X(up)\X(up)/ˆ̂ X(up)),N,N⇒ S
∀L, u := up

N,GTV(up),N,W(up),∀u((X(u)\X(u))/ˆ̂ X(u)),N,N⇒ S

Where lexical lookup gives GTV(up) for call, (28) is a derivation of (23c). Using the lexical entry
(22) for generalized gapping, one can account for gapping with simple transitive verbs like in
sentence (23a), as derivation (29) shows:

(29)

(30)

...

N,N⇒ ˆ̂ X(ε))

(31)

...

N,TV,N,X(ε)\X(ε)⇒ S
/L

N,TV,N, (X(ε)\X(ε))/ˆ̂ X(ε)),N,N⇒ S
∀L, u := ε

N,TV,N,∀u((X(u)\X(u))/ˆ̂ X(u)),N,N⇒ S

We show below the derivations (30) and (31) used in derivation (29):

(30)

N⇒ N W(ε)⇒W(ε)
H#R

N,W(ε)⇒ NH#W(ε)

N⇒ N S⇒ S
\L

N,N\S⇒ S
/L

N,GTV(ε),N,W(ε)⇒ S
↑
+
R

N, 1,N,W(ε)⇒ S↑
+
GTV(ε)

�

−
R

N, 1,N, 1⇒ X(ε) = (S↑
+
GTV(ε)) �

−
W(ε)

ˆR
N,N, 1⇒ ˆX(ε)

ˆR
N,N⇒ ˆ̂ X(ε))

10

Notice in (31) the sub-derivation (25a) which gives a proof of TV⇒ GTV(ε). Finally, in the
appendix we give the derivation for (23d).

(31)

N⇒ N W(ε)⇒W(ε)
H#R

N,W(ε)⇒ NH#W(ε)

N⇒ N S⇒ S
\L

N,N\S⇒ S
/L

N,GTV(ε),N,W(ε)⇒ S
↑
+ R

N, 1,N,W(ε)⇒ S↑+ GTV(ε)

�

−
R

N, 1,N, 1⇒ (S↑+ GTV(ε)) �

−
W(ε)

W(ε)R
Λ⇒W(ε)

(25a)

TV⇒ GTV(ε) S⇒ S
↑
+ L

S↑+ GTV(ε){TV} ⇒ S

�

−
L

(S↑+ GTV(ε)) �

−
W(ε){TV : Λ} ⇒ S

\L
N,TV,N,X(ε)\X(ε)⇒ S

4 Conclusion

In this paper we have extended (displacement) categorial logic with semantically inactive mul-
tiplicatives and a proposal for words as types, innovations which fill existing technical and con-
ceptual gaps in the type logical categorial architecture, while remaining within that architecture,
and we have illustrated application to the syntax and semantics of collocations.

The semantically inactive multiplicatives are not indispensable, in that they can be simulated,
for example by the usual multiplicatives with vacuous abstraction, just as the other semanti-
cally inactive connectives can be simulated by their semantically active counterparts. But the
inactive variants provide for more economical grammatical specification. These proposals are
implementable in the parser/theorem-prover CatLog (Morrill 2012[13]): the new sequent rules are
of the same kind as existing ones and we only require by means of further addition lexical entries
v: W(v): 0 for each contentless word v of collocations.

We have also shown how the only published examples of HTLG (Kubota and Levine 2012[4])
beyond the scope of the displacement calculus can be simulated by this enriched apparatus. HTLG
is one of a family of categorial formalisms invoking higher-order syntactic abstraction (Oerhle
1994[19], de Groote 2002[1], Muskens 2003[18]). We think that such abstraction is problematic
because parsing a formalism which uses syntactic beta-reduction apparently requires computing
higher-order matching, which rapidly becomes intractable. This may explain why no parser yet
exists for such formalisms. The displacement calculus with this little extra formal machinery seems
to approximate the required expressivity given by HTLG, while maintaining implementability.

References

1. Philippe de Groote. Towards Abstract Categorial Grammars. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics (ACL), Toulouse, 2001.

2. Mark Hepple. The Grammar and Processing of Order and Dependency. PhD thesis, University of Edinburgh,
1990.

3. Gerhard Jäger. Anaphora and Type Logical Grammar, volume 24 of Trends in Logic – Studia Logica Library.
Springer, Dordrecht, 2005.

4. Yusuke Kubota and Robert Levine. Gapping as like-category coordination. In Denis Bchet and Alexander
Dikovsky, editors, Logical Aspects of Computational Linguistics, volume 7351 of Lecture Notes in Computer
Science, pages 135–150. Springer Berlin Heidelberg, 2012.

5. J. Lambek. On the Calculus of Syntactic Types. In Roman Jakobson, editor, Structure of Language and
its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics XII, pages 166–178. American
Mathematical Society, Providence, Rhode Island, 1961.

6. J. Lambek. Categorial and Categorical Grammars. In Richard T. Oehrle, Emmon Bach, and Deidre
Wheeler, editors, Categorial Grammars and Natural Language Structures, volume 32 of Studies in Linguistics
and Philosophy, pages 297–317. D. Reidel, Dordrecht, 1988.

7. Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154–170,
1958. Reprinted in Buszkowski, Wojciech, Wojciech Marciszewski, and Johan van Benthem, editors,
1988, Categorial Grammar, Linguistic & Literary Studies in Eastern Europe volume 25, John Benjamins,
Amsterdam, 153–172.

11

8. Michael Moortgat. Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3,
4):349–385, 1996. Also in Bulletin of the IGPL, 3(2,3):371–401, 1995.

9. Michael Moortgat. Categorial Type Logics. In Johan van Benthem and Alice ter Meulen, editors,
Handbook of Logic and Language, pages 93–177. Elsevier Science B.V. and the MIT Press, Amsterdam and
Cambridge, Massachusetts, 1997.

10. G. Morrill. Grammar and Logical Types. In Martin Stockhof and Leen Torenvliet, editors, Proceedings of
the Seventh Amsterdam Colloquium, pages 429–450, 1990. Also in G. Barry and G. Morrill, editors, Studies
in Categorial Grammar, Edinburgh Working Papers in Cognitive Science, Volume 5, pages 127–148: 1990.
Revised version published as Grammar and Logic, Theoria, LXII, 3:260–293, 1996.

11. Glyn Morrill. Intensionality and Boundedness. Linguistics and Philosophy, 13(6):699–726, 1990.
12. Glyn Morrill. Categorial Formalisation of Relativisation: Pied Piping, Islands, and Extraction Sites. Tech-

nical Report LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica
de Catalunya, 1992.

13. Glyn Morrill. CatLog: A Categorial Parser/Theorem-Prover. In LACL 2012 System Demonstrations, Logical
Aspects of Computational Linguistics 2012, pages 13–16, Nantes, 2012.

14. Glyn Morrill and Josep-Maria Merenciano. Generalising discontinuity. Traitement automatique des langues,
37(2):119–143, 1996.

15. Glyn Morrill, Oriol Valentı́n, and Mario Fadda. Dutch Grammar and Processing: A Case Study in TLG. In
Peter Bosch, David Gabelaia, and Jérôme Lang, editors, Logic, Language, and Computation: 7th International
Tbilisi Symposium, Revised Selected Papers, number 5422 in Lecture Notes in Artificial Intelligence, pages
272–286, Berlin, 2009. Springer.

16. Glyn Morrill, Oriol Valentı́n, and Mario Fadda. The Displacement Calculus. Journal of Logic, Language
and Information, 20(1):1–48, 2011. Doi 10.1007/s10849-010-9129-2.

17. Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht,
1994.

18. Reinhard Muskens. Language, lambdas, and logic. In Geert-JanM. Kruijff and RichardT. Oehrle, editors,
Resource-Sensitivity, Binding and Anaphora, volume 80 of Studies in Linguistics and Philosophy, pages 23–54.
Springer Netherlands, 2003.

19. Richard T. Oehrle. Term-labeled categorial type systems. Linguistics and Philosophy, 17(6):633–678, 1994.
20. Thomas Wasow, Ivan A. Sag, and Geoffrey Nunberg. Idioms: an interim report. In Shiro Hattori and

Kazuko Inove, editors, Proceedings of the XIIIth International Congress of Linguists, pages 102–15, Tokyo,
1983. CIPL.

12

Appendix: Derivation of Peter gives Mary the cold shoulder and Robin, Clark

N
⇒

N
W

(ε)
⇒

W
(ε)

H#
R

N
,W

(tcs)
⇒

N
H#

W
(tcs)

N
⇒

N
S
⇒

S
\L

N
,N
\S
⇒

S
/L

N
,G

T
V

(tcs),N
,W

(tcs)
⇒

S
↑+ R

N
,1,N

,W
(tcs)

⇒
S
↑+ G

T
V

(tcs)

�− R
N
,1,N

,1
⇒

(S
↑+ G

T
V

(tcs))

�− W
(tcs)ˆR

N
,N
,1
⇒

ˆX
(tcs)

ˆR
N
,1,N

,1
⇒

ˆ̂X
(tcs)

N
⇒

N
W

(ε)
⇒

W
(ε)

H#
R

N
,W

(tcs)
⇒

N
H#

W
(tcs)

N
⇒

N
S
⇒

S
\L

N
,N
\S
⇒

S
/L

N
,G

T
V

(tcs),N
,W

(tcs)
⇒

S
↑+ R

N
,1,N

,W
(tcs)

⇒
S
↑+ G

T
V

(tcs)

�− R
N
,1,N

,1
⇒

(S
↑+ G

T
V

(tcs))

�− W
(tcs)

W
(t)
⇒

W
(t)

W
(c)
⇒

W
(c)

W
(s)
⇒

W
(s)

W
(w

)R
W

(c),W
(s)
⇒

W
(cs)

W
(w

)R
W

(t),W
(c),W

(s)
⇒

W
(tcs)

G
T

V
(tcs)

⇒
G

T
V

(tcs)
S
⇒

S
↑+ L

S
↑+ G

T
V

(tcs){G
T

V
(tcs)}

⇒
S

�− L
(S
↑+ G

T
V

(tcs))

�− W
(tcs){G

T
V

(tcs):W
(t),W

(c),W
(s)}
⇒

S
\L

N
,G

T
V

(tcs),N
,W

(t),W
(c),W

(s),X
(tcs)\X

(tcs)
⇒

S
/L

N
,G

T
V

(tcs),N
,W

(t),W
(c),W

(s),(X
(tcs)\X

(tcs))/ˆ̂X
(tcs),N

,N
⇒

S
∀L
,u

:=
tcs

N
,G

T
V

(tcs),N
,W

(t),W
(c),W

(s),
∀u((X

(u)\X
(u))/ˆ̂X

(u)),N
,N
⇒

S

