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cintillation and beam-wander analysis in an optical
round station–satellite uplink

ederico Dios, Juan Antonio Rubio, Alejandro Rodrı́guez, and Adolfo Comerón

In an optical communication link between an optical ground station and a geostationary satellite the
main problems appear in the uplink and are due to beam wander and to scintillation. Reliable methods
for modeling both effects simultaneously are needed to provide an accurate tool with which the robustness
of the communication channel can be tested. Numerical tools, especially the split-step method �also
referred to as the fast-Fourier-transform beam propagation method�, have demonstrated their ability to
deal with problems of optical propagation during atmospheric turbulence. However, obtaining statis-
tically significant results with this technique is computationally intensive. We present an analytical–
numerical hybrid technique that provides good information on the variance in optical irradiance with an
important saving of time and computational resources. © 2004 Optical Society of America

OCIS codes: 010.1300, 010.1330, 010.3310.
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. Introduction

he intrinsic turbulence of the atmosphere repre-
ents the main obstacle to setting reliable optical
ommunication channels both for horizontal paths
nd for those designed to link with geostationary or
ther types of satellite. The first effect to take into
ccount is scintillation, which by nature is the same
ffect that one observes in looking at the stars at
ight or looking at city lights from a certain distance
way. The twinkling of the light is due to small-
cale eddies formed in the atmosphere. The scintil-
ation phenomenon has been the object of an
mportant body of work.1–11

Atmospheric turbulence has also another dimen-
ion, which may be considered the typical maximum
ize of individual eddies formed in the atmosphere.
he larger eddies, which are crossed by the entire
ptical beam, cause some degree of refraction, and
hus the beam deviates slightly from its original path.
his phenomenon is known as beam wander.5,10,12

Beam wander is negligible in the downlink from
atellites. This is so because turbulence eddies
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uch smaller than the beam size do not displace the
eam’s centroid significantly, and the downlink opti-
al beam arrives at the atmosphere with a width
uch larger than any turbulent eddy. Instead, the
avefront tilt at the receiver produced by the atmo-

pheric turbulence gives rise to the so-called angle-
f-arrival fluctuations.2,5–7,10

The situation is different in the uplink. The beam
idth remains smaller than the outer scale of the tur-
ulence during its atmospheric path, and the beam
ay leave the atmosphere with a significant change in

irection. An analysis of the variations in optical ir-
adiance that are due to the combined effect of scintil-
ation and beam wander is the subject of this research.

We have made use of existing models and approx-
mate expressions. The atmospheric air mass that
s traversed in a typical ground–satellite link �in the
irection of the zenith� is equivalent to that encoun-
ered in a few-hundred-meter-long horizontal
round-level path. Then we can expect weak or
oderately strong turbulence, for which available
odels are sufficiently accurate.
We briefly present the theoretical results that we

sed in our simulations. Although in this paper we
imit our simulation results to collimated beams, the

ethod could easily be extended to converging or
iverging beams, as the subject theory may be gen-
ralized to these other cases.

. Rytov’s Theory and Beam Wander

t this point it is necessary to clarify what the rela-
ionship is between the Rytov approximation and the
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eam-wander phenomenon. In the earliest analysis
f optical propagation through atmospheric turbu-
ence, as the problem was solved for plane and spher-
cal waves, such a question did not exist. In the first
orks that dealt with Gaussian beams, such as those

f Schmeltzer13 and Ishimaru,14 the Rytov method
as retained as the basic tool of the analysis, al-

hough it was not clear whether the beam-wander
ffect was actually considered within the model. In
act, to our knowledge this point has not been re-
olved to date; the scientific community has not posed
t explicitly as a question to be clarified. In our ex-
erience it seems that most researchers have as-
umed as a matter of fact that beam wander is in
ome way included within analyses following Rytov,
hereas others maintain doubt that this is so.15

At a first glance there is a primary and strong
bjection to accepting that the displacement of the
eam as a whole can be appropriately modeled by
ytov’s theory: The reason is that the final beam

hat reaches the receiver plane is considered the dif-
racted, unperturbed beam plus several minor terms.
t is clear that in each particular instance of the
xperiment of launching a laser beam through tur-
ulence the weakly perturbed field cannot reproduce
he real beam because that beam can be tilted con-
iderably in an arbitrary direction, even with weak or
oderately strong turbulence. Things become more

omplicated if someone argues that a single instance
s not so important because we are interested primar-
ly in the statistical, long-term effect. As a conse-
uence, and given that the beam wander tends to
ancel itself on average, the Rytov technique or any
ther perturbative technique could validly deal with
ropagation problems, including beam wander. In
his respect we are still not in a position to give a
efinitive answer, however, several conclusions can
e drawn:

�i� Hufnagel16 mentioned some discrepancies be-
ween theory and experiment in propagation of
aussian beams through turbulence, and he con-

luded that perhaps this is not surprising because,
resumably, beam-wander effects are not accounted
or in the Rytov approximation.

�ii� Titterton17 was the first author, to our knowl-
dge, who dealt with the scintillation and beam-
ander phenomena simultaneously and, in fact, as

wo independent effects. He showed that the power
uctuations caused by beam tilt can be substantially
reater than those caused by scintillation.
�iii� As is well known, formulations proposed for the

haracterization of beam wander,18,19 as it occurs
ith fluctuations in the angle of arrival in the down-

ink, are deduced through physical considerations
nd mathematical tools that are entirely different
rom Rytov or other perturbative techniques. So it
s implicitly recognized that no perturbative tech-
ique can treat such a phenomenon as beam wander.
�iv� Finally, the statement that the Rytov method

n some way contains the beam-wander effect could
erhaps be accepted as a hypothesis in the long-term
nalysis, assuming that the average beam motion
ancels. However, there are at least two important
ifficulties to be solved: the first is that it should be
roved that the statistical nature of atmospheric tur-
ulence effectively forces cancellation of the average
eam wander in any situation; the second is that it
ust be determined to what point or under what

onditions beam wander is included in the Rytov or
ther perturbative technique.

In this study we started from the negative position;
hat is, that the beam-wander phenomenon has to be
dded explicitly to the Rytov approximation or to any
ther formulation based on the Rytov approximation.
ur numerical calculations seem to confirm this
oint of view, at least for uplink, in which the beam is
raveling through increasingly weaker atmospheric
urbulence.

. Beam Effects

he most important part of the scientific literature
evoted to optical propagation in atmospheric turbu-
ence has been focused on the scintillation phenome-
on. The classic models used for describing the
ropagation of optical radiation are plane and spher-
cal waves. The finite transverse dimensions of real
aser beams require that other phenomena in addi-
ion to scintillation must to be taken into account.

There are three characteristic magnitudes to be
onsidered in beam propagation through a turbulent
edium. These are short exposure, or short-term

verage beam width; long exposure, or long-term
eam width; and beam wander.5 On the assumption
f weak turbulence, it is possible to find approximate
nalytical expressions for all three quantities.
The first effect of turbulence on the optical beam is

hat diffraction seems to be somewhat larger than
hat which occurs in free space. As a consequence,
he average physical width, or short-term beam
idth, is larger than that predicted by the theory of
aussian beams. The second effect is the beam
andering described above. The centroid of the spot
ances about the vacuum propagation center in the
eception plane. The random displacement of the
pot centroid appears to follow a Rayleigh distribu-
ion of probability.5

The resultant long-term spot size becomes a super-
osition of the instantaneous spots that reach the
eceiver. This long-term spot represents the aver-
ge field or irradiance in the statistical problem, and
t will tend, theoretically, to a Gaussian distribution.
he following relation5,6,10 is well known:

WLT
2� z� � WST

2� z� � 2��2�, (1)

here WLT�z� and WST�z� are the long-term and the
hort-term beam widths, respectively, z is the prop-
gation direction, and ��2� is the second-order mo-
ent of the beam displacement. In this paper we

efine the beam width as the width for which the
lectric field decays by 1�e with respect to its maxi-
um.
1 July 2004 � Vol. 43, No. 19 � APPLIED OPTICS 3867
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. Long-Term Beam Spread

t has been shown5 that the average irradiance width
n a long exposure may be obtained, for collimated
eams, as

WLT
2� z � L� � W0

2�1 �
L2

Z0
2� � 2� 4L

k0 r0,s
�2

, (2)

here W0 is the beam waist at the origin, k0 is the
ave number, Z0 is the Rayleigh distance, L is the
ropagated distance to the receiver, and r0,s is the
oherence diameter for spherical waves in the turbu-
ent atmosphere. The last-named parameter gives a

easure of the strength of the turbulence, and it is
ritten as5

r0,s � �0.42k2 �
0

L

Cn
2� z��L � z

L �5�3

dz��3�5

(3)

or the uplink.
Cn

2�z� is the structure constant of the refractive-
ndex distribution, which diminishes with height.
or this function several parametric models have
een proposed, and it may be measured in each spe-
ific site with the appropriate experimental set-
ps.6,10,16 Andrews et al.20 gave another expression

or the long-term beam width that was derived from
he second-order Rytov approximation21:

WLT�L� � W�L��1 � Gu, (4)

here W�L� is the diffraction-limited beam width in
ree space and

Gu � 4�2k0
2 �

0

L

�
0

	


�n� z, 
�

� �1 � exp��
�L
2

k0
�1 �

z
L�

2��d
dz, (5)

here �n�z, 
� is the refractive-index power spec-
rum, 
 is the spatial frequency, and � is a beam
arameter in the form

� �
2L

k0 W2�L�
. (6)

n our calculations we tested both Eqs. �2� and �4�,
nd the results were similar, as we show in Section 6
elow.

. Short-Term Beam Spread

t is common to accept the approximate expression
erived by Yura for the short-term beam spread,22

ST:

WST
2� z � L� � W0

2�1 �
L2

Z0
2� � 2

� �4.2L
kr �1 � 0.26�r0,s

W �1�3��2

, (7)

0,s 0

868 APPLIED OPTICS � Vol. 43, No. 19 � 1 July 2004
hich is valid when the condition 0.26�r0,s�W0�1�3 
is satisfied. Sometimes the factor of 4.2 in Eq. �7�

s approximated by 4; in fact, the results are nearly
dentical.

. Beam Wander

he random displacements of the centroid of the
ropagated beam along the X and Y coordinates, �x
nd �y, are normal random variables, with zero mean
nd equal standard deviation.5 We have

��X

2 � ��Y

2 � ��x
2� � ��y

2�. (8)

he relations to the absolute displacement of the cen-
roid, however, are

� � ��x
2 � �y

2 (9)

��x
2� � ��y

2� � 1⁄2 ��2�. (10)

The approximate expression for the second-order
oment, assuming that the turbulence is weak and

hat the beam maintains its Gaussian profile, is23

��2� � 2.07 �
0

L

Cn
2� z��L � z�2� 1

Ws� z��
1�3

dz. (11)

. Scintillation

rom the earlier works of Tatarski2 an important
heoretical and experimental body of work has been
eveloped in the past several decades. As was said
bove, most of the theory that has been developed
as devoted to plane and spherical optical waves.
he first studies that dealt with scintillation in laser
eams are those due to Schmeltzer13 and to Ishi-
aru.14

We use the expressions derived later by Andrews et
l.20 Although we follow closely the study described
n that reference, we rewrite some of the expressions
o avoid confusion, because there are some errata and
athematical errors in the original work. By “scin-

illation” we shall understand the fluctuations of op-
ical power received by a point photodetector after the
ave has crossed over a turbulent medium. Usually

hat term is used, however, to define irradiance fluc-
uations, in which the features of a particular photo-
etector, especially the size of the reception area, are
ot taken into account.
Scintillation is measured by means of the so-called

cintillation index, that is, the irradiance variance
ormalized to mean unity. Then its general expres-
ion is

�I
2 �

�I2� � �I�2

�I�2 , (12)

here I is the irradiance at some point in the detector
lane.
The scintillation index for a laser beam at a certain

istance L can be divided into two terms: the first is
he scintillation on axis, at the center point of the
eam, and the second takes into account the depen-
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ence of the scintillation on the distance to the center
f the spot.20 Then we have

�I
2�r, L� � �I

2�0, L� � �I,r
2�r, L�. (13)

he expression for the on-axis scintillation is

�I
2�0, L� � 8�2k0

2 �
0

L

�
0

	


�n� z, 
�

� exp��
�L
2

k0
�L � z

L �2�
� (1 � cos�L
2

k0
�L � z

L �
� �� �

�1 � �� z
L ��)d
dz, (14)

here �n�z, 
� is the spatial power spectrum of the
efractive-index fluctuations, 
 is the spatial fre-
uency, k0 is the wave number in free space, and �
nd � are parameters of the laser beam:

� �
2L

k0 W2�L�
, � � �1 � � L

Z0
�2��1

, (15)

ssuming that the beam is initially collimated.
If we take the classic Kolmogorov index power spec-

rum, �n�z, 
� � 0.033Cn
2�z�
�11�3, integration in

patial frequency 
 may be performed, with the result
hat

�I
2�0, L� � 4�2k0

2���
5
6� � 0.033 �

0

L

Cn
2� z�

� �A� z��5�6(1 � �1 � �B� z�

A� z��
2�5�12

� cos�5
6

arctan�B� z�

A� z���)dz, (16)

here

A� z� �
�L
k0

�L � z
L �2

, (17)

B� z� �
L
k0

�L � z
L ��� �

�1 � �� z
L � . (18)

The scintillation term that depends on the trans-
erse radius in the horizontal plane, r, is

�I,r
2�r, L� � 8�2k0

2 �
0

L

�
0

	


�n� z, 
�

� exp��
�L
2

k0
�L � z

L �2�
� �I0�2�
r�L � z

L �� � 1�d
dz, (19)
here I0� � is a modified Bessel function of first class
nd zero order. Again, on the assumption that the
urbulence follows the Kolmogorov spectrum, inte-
ration may be carried out with respect to 
, with the
esult that

�I,r
2�r, L� � 4�2k0

2���
5
6�0.033 �

0

L

Cn
2� z��A� z��5�6

� �1 F1��
5
6

, 1,
2r2

W 2�L�� � 1�dz, (20)

here 1F1 is the Kummer confluent hypergeometric
unction.

. Simulation Procedure

o analyze the behavior of the detected optical signal
n the uplink of a ground–satellite channel we have
eveloped a straightforward procedure in which we
pply the analytical expressions shown in the preced-
ng sections. The idea is to generate the necessary
equence of random variables to simulate numeri-
ally the irradiance seen by a point detector in the
atellite.
The irradiance at the receptor plane at any instant

f time will have the form

� x, y, L� � I0 exp��2
� x � �x�

2 � � y � �y�
2

WST
2�L� � , (21)

here �x and �y are normal random variables that
efine the beam wander. I0 will be also a random
ariable because of scintillation. We can write

I0 � exp�2�����, (22)

here ���� is the �partial� log amplitude of the beam.
e use the term “partial” because the Gaussian spa-

ial variation is not included in it. Variable ����
akes its dependence on the beam displacement from
he variation in scintillation index with the position.

e are interested in the study of the irradiance vari-
tions at the detector position, in the theoretical cen-
er of the beam. So the measured irradiance will be

I�0, 0, L� � exp�2�����exp��2
�2

WST
2�L�� . (23)

he point detector will see the variation of the optical
rradiance that is due to beam wander, and, more-
ver, the variation in scintillation index that is due to
ts dependence on its relative position in the beam.

Equation �13� sets the value of the scintillation
ndex, assuming that the irradiance average is unity
n each position on the beam taken one by one, but we
ave to deal with the whole beam at a time. The
verage of the irradiance may be written as

�I�r, L�� � exp��2
r2

W 2�L�� , (24)

LT

1 July 2004 � Vol. 43, No. 19 � APPLIED OPTICS 3869
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nd the scintillation index normalized in such a way
hat irradiance is unity at the beam center results in

�I,Gb
2 � ��I

2 � �I,r
2��I�2, (25)

here Gb means Gaussian beam.
Apart from the effect of beam wander, it is known

hat the irradiance that is due to the scintillation
henomenon, at least in weak to moderate turbu-
ence strength, follows a log-normal probability-
ensity function.24 Then the �partial� log amplitude
s a normal random variable, and these relations are
pproximately satisfied:

��� � ���
2,

��
2 � 1⁄4 ln�1 � �I,Gb

2�, (26)

ssuming that the mean irradiance is unity at the
eam center.
So the simulation procedure is as follows:

�a� The second-order moment ��2� is calculated
y means of Eq. �11�, and from Eq. �10� we obtain the
ariance of the displacements of the beam center
long the transverse axes.

�b� We generate a sequence of normal random
ariables, �x and �y, with zero mean and the appro-
riate variance.

�c� With each generation of a random pair ��x, �y�
�i� We obtain a random position � of the beam

enter. With this value we calculate the off-axis
erm of the scintillation index from Eq. �20�, and the
verage irradiance from Eq. �24�, with r � �. The
n-axis term, Eq. �16�, must also be calculated, al-
hough it is invariant with the position of the beam
enter.

�ii� The variances of the irradiance fluctuations
re obtained from Eq. �25�.

�iii� The partial log-amplitude mean and vari-
nce are obtained now from Eq. �26�.

�iv� A single instance of a � random variable is
btained.

�d� With a large enough sequence of instances of
and � an irradiance sequence is obtained as

I � exp�2��exp��
2�2

WST
2�L�� (27)

t the expected position of the beam center, where the
oint detector is assumed to be located.

�e� Finally, we express the irradiance as a func-
ion of the total log amplitude, including the beam-
ander effects. From the random sequence of

rradiance values obtained in the previous step, the
otal log amplitude or irradiance variance is calcu-
ated statistically.

. Numerical Results

or all the calculations that we make in this section,
Kolmogorov spectrum and the index structure con-
870 APPLIED OPTICS � Vol. 43, No. 19 � 1 July 2004
tant model Cn
2�h� given in Ref. 20 have been as-

umed. This model is

Cn
2�h� � 0.00594�v�27�2�h � 10�5�10exp��h�1000�

� 2.7 � 10�16exp��h�1500�

� Aexp��h�100�, (28)

ith A � 1.7 � 10�14 m�2�3 and v � 21 m�s.
We made several comparisons with the split-step

umerical method �or fast-Fourier-transform beam
ropagation method �FFT-BPM�� to check the valid-
ty of the theoretical expressions that describe the
eam effects in our particular conditions. We for-
ulated the FFT-BPM in spherically diverging coor-

inates, and it uses �20 fractal, 256 � 256 point,
hase screens to simulate the atmospheric turbu-
ence.25,26 The number of simulations was at least
00 for each calculated point. The phase screens
ere chosen to be not uniformly spaced; they were

loser to one another at the beginning of the uplink
ath, where the turbulence is more intense. We as-
umed that the satellite was in a geostationary orbit,
ith L � 36 � 106 m, and the limit of the atmosphere
as taken at 20 km. The wavelength was � � 0.84
m. The optical ground station was at sea level, and

he analyses were performed for two elevation angles
nd for different waists for the laser beam, which we
ave taken as collimated.
In Fig. 1 the long-term beam width, in agreement
ith Eqs. �2�, �4�, and �5�, is plotted as a function of

he initial beam waist. Results are compared with
hose obtained by means of the FFT-BPM in spheri-
ally diverging coordinates. Figures 1–4 have been
alculated for an elevation angle of 90°.

Figure 2 shows the behavior of the short-term
eam width as a function of the initial beam waist.
he second-order moment of the beam wander is plot-
ed in Fig. 3. In both cases we again represented the
esults obtained with beam-propagation method sim-

ig. 1. Long-term beam spread at the reception plane situated in
geostationary orbit. Three methods were used for the calcula-

ion, as shown.
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�29�.
lations. We obtained numerical short-term beam
idth results by removing the beam displacement in

ach simulation and averaging the beam irradiance.
n Figs. 1–3 the analytical formulas and the simula-
ions gave similar but slightly different results; the
hort-term beam waist was the parameter that dif-
ered most.

To prove the consistency of the analytical formulas
nd of the numerical method, we define an error
erm, which is readily deduced from Eq. �1�:

ε � 	1 �
WST

2 � 2��2�

WLT
2 	 . (29)

n Fig. 4, error curves obtained for both analytical
nd numerical methods are shown. It seems that
he beam propagation method maintains higher ac-
uracy than the analytical expressions presented in
he preceding sections. Anyway, it has to be said
hat these error curves have only a limited validity
F
s
o
T
m
a

ecause throughout this paper and in particular in
qs. �1� and �29� it is assumed that the beam main-

ains its Gaussian shape along the propagation in the
urbulence, and this assumption is not exact.

In Fig. 5 some results obtained from the semiana-
ytical procedure presented in Section 4 are shown.
he log-amplitude variance is plotted versus the ini-
ial beam waist. Again, the results are compared
ith those worked out with the FFT-BPM. Calcu-

ations were performed for two values of the elevation
ngle. Dotted curves represent the on-axis scintil-
ation, which is the only important contribution for
mall values of W0, when the beam seems to be a
pherical beam as viewed from the satellite.
It can be seen that the agreement of the two meth-
ig. 2. Short-term beam width in a stationary orbit. The differ-
nces between the classic expression given by Yura22 and the FFT-
Fig. 3. Second-order moment of the beam wander.
ig. 4. Intrinsic error in the preceding calculations, following Eq.
ig. 5. Log-amplitude variance in the uplink of a geostationary
atellite as a function of the initial waist of a collimated beam,
btained by the semianalytical method presented in this paper.
he wavelength was 0.84 �m. The correspondence with the nu-
erical calculations �the asterisk curves� is good enough until the

ppearance of the saturation effect.
1 July 2004 � Vol. 43, No. 19 � APPLIED OPTICS 3871
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ds is good when there is weak turbulence. From
he critical value of ��

2 � 0.6 the curve generated
ith the beam propagation method shows the satu-

ation effect, whereas the approximate semianalyti-
al method does not take this fact into consideration.

The probability density function �pdfs� of both the
rradiance and the log amplitude are plotted in Fig. 6
or several values of the initial beam waist. Our
nalysis has shown that, for small values of the final
ariance, the � pdf is a normal curve; but such is not
he case, as could be expected, when the variance
ncreases because of the effect of beam wander.

Finally, we can observe the different behavior of
he log-amplitude variance as a function of wave-
ength �Fig. 7�. The influence of the beam wander
ppears earlier as the wavelength becomes smaller,
s could be expected.
872 APPLIED OPTICS � Vol. 43, No. 19 � 1 July 2004
. Conclusions

e have presented a new methodology with which to
imulate the combined effect of scintillation and
eam wander in the propagation of laser beams
hrough atmospheric turbulence. Although this
echnique, in the version presented here, does not
nclude the saturation effect, it provides enough good
esults in an important range of turbulence strengths
nd requires only a small computational effort. For
xample, the curves shown in Fig. 5 were generated
n few minutes with a desktop computer, whereas the
quivalent FFT-BPM simulations required 2 days on
he same machine.
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