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Abstract

In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of
information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and
number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of
the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles
of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a
configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance
slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low
correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory
systems, whether these are biological or biomimetic.
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Introduction

Animals’ sense of smell has been shaped over evolutionary time

to perceive the environment and extract essential information for

their survival. It provides relevant information to locate food,

detect potential dangers such as predators or rotten food, and to

mediate in reproductive behavior. The sense of smell is a

wonderful general purpose chemical sensing system. For certain

figures of merit such as specificity, response time, detection limit,

coding capacity, time stability, robustness, size, power consump-

tion and portability, it clearly outperforms analytical chemical

instrumentation. Electronic noses appeared in the early 90s as

smart chemical sensing instruments with an architecture inspired

by the olfactory pathway [1]. However, insufficient understanding

of the chemical information coding and information processing in

the biological system means that biomimetics are reduced to a

superficial level. It has been argued that an increased level of

bioinspiration in the design of these instruments could lead to new

paths of innovation [2].

The olfactory system is thought to be adapted to the statistical

properties of the set of chemicals to which it is exposed. The

‘‘efficient-coding hypothesis’’ [3] has been explored by Kostal

et al. [4] focusing on intensity coding with the use of information

theory techniques. However, the analysis of quality coding, i.e. the

early olfactory system’s ability to detect and discriminate different

odors, in an information theory framework has received less

attention. In this paper, we explore the performance of the

olfactory system in identifying the quality of the input stimuli and

we use the term coding capacity to quantify the number of

odorants that can be coded with a set of receptors.

The input stage of the olfactory system consists of a complex

arrangement of Olfactory Receptor Neurons (ORNs) distributed

over the nasal epithelium to detect airborne chemicals. Individual

ORNs express a single type of Odorant Receptor (OR) [5–6]. The

number of types of OR depends on the species and varies from a

few tens in insects to several hundreds in vertebrates (e.g. 387 types

of functional ORs in humans and 1,035 types in mice. [7–8]).

There is a large body of evidence based on electrophysiology

that has consistently indicated that each olfactory neuron can

respond to a variety of odorants and each odorant can bind to

different receptors [9]. Since different neurons respond to a

different set of odorants, this establishes the principle of the

combinatorial code [10]. This principle also applies to other

biological senses where a large set of stimuli must be discriminated

by a set of different receptors. In particular, the coding capacity

problem in the senses of vision [11–12] and taste [13–14] has also

attracted the interest of the scientific community.

Even though statistical techniques have been applied to predict

the specificity of OR [15], the distribution of OR selectivities in

mammals still remains unclear. ORs can be specific and respond

selectively to one single steroid [16] or detect odorants that share

particular physicochemical properties such as molecular size or

structure [17]. In fact, broadly tuned ORs have also been

identified [18–19]. Moreover, receptors have been reported to be

very specific for certain molecular features, but very unspecific for

others. [20]. Therefore, each odorant seems to bind with a
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collection of ORs of different specificity levels and the combined

response of the ORs mediates in odor identification.

Experimental analyses focusing on the study of the specificity of

olfactory receptors have been presented in the past. Duchamp-

Viret et al. used sixteen pure odor compounds as stimuli in rats

and the response of ninety ORNs was recorded. The Receptive

Range (RR) according to a 6-odor subset showed a broad

distribution of receptors [21]. Hamana et al. isolated 2,740 mouse

receptor neurons and studied their specificity to a chiral pair of

odorants showing that more than 80% of the responsive receptors

have sensitivity overlap [22]. Araneda et al. stimulated different

octanal receptors with nine odorants to reveal that some receptors

have broad RR while others were activated only by octanal [23].

Soucy et al. studied the similarity of receptors, which directly

measures the overlap between the RRs of different receptors, to

show that nearby glomeruli tend to have very diverse odor

sensitivities in rats and mice [24]. In a very comprehensive study,

Hallem measured individual olfactory receptors of the drosophila

antennae with a panel of over 100 odors. The results showed that

Dmelanogaster receptors range continuously from narrowly tuned to

broadly tuned [25].

However, to the best of our knowledge, no classification of rats’

olfactory receptors according to their RRs when exposing them to

a large number of odorants has been reported before. The large

number of receptors and more significantly, the immense number

of potential ligands, require a titanic experimental effort to

comprehensively characterize and understand the interactions

between odorants and receptors [26].

Individual ORNs expressing the same type of receptor converge

in a very orderly fashion into one or two glomeruli of the Olfactory

Bulb (OB) [5–6]. Therefore, each odorant produces a specific

glomerular activity pattern [27]. As a consequence, the chemical

properties captured by the ORNs can be seen as a 2-dimensional

activity map at the glomerular level. Current trends in olfactory

research indicate that chemical information is captured not only

following a spatial code but also a temporal code [28]. At present,

the division of information content between the spatial activation

map and the temporal firing patterns remains unknown.

The role of the RR in different populations of ORNs has been

studied theoretically for odor coding analysis. Sánchez-Montañés

et al. applied multi-component chemical stimuli to a simple and

linear model of the sensory neuron response. The receptive field

was characterized by a pattern of sensitivities and they used

information theory tools to demonstrate that OR populations with

broadly tuned receptors perform better in estimations than

perfectly specific receptors [29].

Alkasab et al. presented a very simple and straightforward

approach for modeling the complete OR population [30]. They

explored how the information coding capacity of the system is

directly affected by the RR of the OR. The model is based on a

three-dimensional abstract finite space that represents the odor

space. In this model, every point in this space represents a different

odor and every receptor is represented by a cube. Receptors

provide significant response if the point representing the odorant

falls within the cube, whereas if the point falls outside the cube the

receptor is not responsive. So, receptors are binary entities and the

size of the cube represents the RR of the receptor. In this simple

model, every odor is characterized by only three molecular

descriptors (three-dimensional cube). The real dimensionality of

the input space is unknown and thousands of molecular descriptors

can be used to classify odorants. In any case, there is consistent

agreement that the dimensionality of this odorant space has to be

very large. Alkasab et al. distributed the input odorants (stimuli)

according to a uniform random distribution in the odor space.

Then, using Information Theory tools, they quantitatively studied

the capacity of the system to code the input stimuli depending on

the number, position and sizes of the cubes that model the

receptors [31].

The olfactory system is an appealing model for inspiration when

creating general purpose artificial chemical sensor systems due to

the excellent coding efficiency and the large number of odorants

that can be detected and discriminated [32–33]. This partially

motivates the work presented in this paper, where we analyze the

encoding of chemical information in the first stages of the olfactory

system. In particular, the aim of this paper is to study how the

coding capacity depends on the distribution of specificities, the RR

and the correlation among receptors. This is inferred from the

activity of a rat’s olfactory bulb when exposed to a large number of

odorants.

In this paper, instead of relying on simplified theoretical models,

we have applied Alkasab et al. approach to actual data from

biology. We have analyzed a dataset of glomerular activation in

rats across a large set of odorants to plot the distribution of

specificities of the ORs. We studied the different tuning of the

olfactory receptors and its contribution to the outstanding

performance of biological olfaction in terms of coding capacity.

We have quantitatively analyzed the odor coding capacity of

different sized ensembles and different types of receptors and

compared their performance to the theoretical model presented by

Alkasab et al. It is our belief that a better understanding of odor

coding in olfaction may provide valuable insights for the design of

general purpose Artificial Olfaction Systems.

Materials and Methods

Glomerular Activity Maps Dataset
To perform this study, we used the OB activity dataset compiled

by the group of Leon & Johnson at the University of California in

Irvine [34–36] and made publicly available through the Glomer-

ular Activity Response Archive website at http://gara.bio.uci.edu.

The activity across the entire glomerular layer of the rat OB was

systematically mapped using uptake of [14C]-radiolabeled 2-

deoxyglucose (2DG). They captured OB activity in response to a

large set of odorants with different chemical structures. We would

like to emphasize that mapping the entire glomerular layer, in

contrast to other techniques, is a particularly interesting facet of

this dataset. On the other hand, this technique fails to capture the

temporal information.

The two-dimensional activity map (44x80 pixels) is obtained

after blank subtraction and the data across rats exposed to the

same stimulus was averaged to obtain the activity maps. To test

the variability across individuals exposed to the same odorant,

indices of pattern dissimilarity were calculated with the data

resulting from 35 rats exposed to different stimuli [37]. The pairs

of rats exposed to the same odorant showed lower pattern

dissimilarity values compared to the pairs of rats exposed to

different stimuli. The difference between same-odorant and

different-odorant pairs was tested under a Mann-Whitney U-test

and it showed that the difference is statically significant

(U = 12240, P,0.0001).

Compounds that show constant odor quality in humans with

stimulus concentration were systematically exposed to rats at

different concentrations. The olfactory bulb was mapped and the

activity patterns evoked were constant when expressed in units of

z-scores. However, odorants that show different odor quality in

humans for different stimulus concentration gave different activity

patterns when exposed to rats at different concentrations [38].

Units in each data matrix were, therefore, normalized to z-scores

Encoding Information in the Olfactory Pathway
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relative to the mean response and the standard deviation of values

across that matrix to eliminate the dependence of the OB activity

with the odorant concentration. That is, by using z-scores the

analysis focuses on odor quality coding, while rejecting variations

due to odorant concentration.

Therefore, the Leon & Johnson dataset is suitable for statistical

analyses and study of the OB activity evoked by different odorants.

However, due to the limitations of the imaging technique, the

present study disregards the time coding and only considers the

spatial component of the response code.

The complete dataset includes 472 group-averaged activity

maps in response to 339 different odorants, some of them at

different concentrations, with some replications of the same

exposure conditions. However, repetitions of the same odorant in

the dataset could bias our conclusions. Therefore, for each

chemical we limited the activity maps to the lowest concentration

measurement for a total analysis of 339 different patterns.

Sectioning perfectly is a challenge, particularly in the ventro-

caudal and dorsal parts of the OB, and minor tissue damage may

occur. Therefore, as a consequence of the experimental procedure,

most of the activity maps contain missing values, mainly

distributed in the ventro-caudal and dorsal parts and on the

border of the activity map. In order to have the same odor input

space for all the receptors, we considered only the pixels that were

not damaged in any of the activity maps measured and thus show

significant response (positive or negative) to all the odorants. The

result is that we obtained maps of 1,778 active pixels for 339

different odorants. In addition, due to difficulties related to image

alignment, the variance in mounting the tissue prior to sectioning

and the different size and shape of each rat OB, a minor

uncertainty in pixel position has to be taken into account in

subsequent discussions. In our analysis, since no chemotopic order

is apparent and distant and nearby glomeruli show the same odor

sensitivity variability [24], every pixel in the image is considered as

if it were a chemical receptor type.

To use the Alkasab et al. methodology approach based on

binary receptors, a pixel was considered as a ‘‘positive response’’ to

one odorant if its value is positive and a ‘‘null response’’ if the pixel

response is negative. In this work, we define the RR of the

receptors as the ratio between the number of analytes at which the

receptor shows a ‘‘positive response’’ and the total number of

odorants (339). Please take into account that further discussions

concerning the role of the RR in coding capacity are dependent on

the definition used in this work.

Calculation of Mutual Information
We studied the capabilities of different subsets of receptors to

capture information about the stimuli presented. We created

different combinations of receptors, chosen according to their RR,

and estimated the capacity of the subset to encode the odorants of

our database.

The main information measurement is entropy. This quantifies

the difficulty in predicting the state of a system with no other

information. The average entropy S can be expressed as:

s~{
XN

i~1

p xið Þlog2p xið Þ ð1Þ

where N states are possible and p(xi) is the probability of presenting

state xi. When the log is taken to base two, the entropy is in units of

bits.

On the other hand, Mutual Information (MI) determines the

information of a random variable contained in another related

random variable and quantifies how the uncertainty of the first

variable is reduced when the state of the second variable is known.

The MI of two completely independent variables is zero and, at

the other extreme, if the variables are identical MI equals the

entropy. For two discrete random variables X and Y, MI can be

expressed as [39]:

MI~
X

i,j

p i,jð Þlog2

p i,jð Þ
px ið Þpy jð Þ ð2Þ

where px(i) and py(j) are the marginal probability distribution

functions of variables X and Y and p(i,j) is the joint probability

distribution function. For discrete variables (or continuous

variables after a quantization step), MI can be estimated from

the histogram approximation of the probability density function,

that is, by counting the number of points falling into the various

bins. Hence, MI is determined by simply counting the points

falling into the ith bin of X, into the jth bin of Y, and into their

intersection [40].

In the study of odor coding and with the hypothesis of equal

priors for the different odorants, the entropy is S = log 2 N; where N

is the number of possible stimuli (odorants) presented to the system

(subset of receptors). So, MI quantifies the information about the

stimulus X (odor quality) given by the state of the receptors Y

(binary response word). Therefore, MI measures the ability of the

complete set of receptors to make discriminations over repeated

stimulus applications and quantifies the uncertainty reduction of

guessing the stimulus presented. The MI has, therefore, a direct

relationship with the number of stimuli that can be coded by the

set of receptors (coding capacity) since it is possible to code 2MI

different odors. When MI reaches S, the response of the ensemble

of receptors is able to perfectly encode the presence of any

individual stimulus in the system.

Our dataset comprises 339 different odorants (possible stimuli).

However, for the sake of simplicity and clarity, the MI was

calculated with random subsampling using sets of 256 different

stimuli, which limits the maximum performance of the receptor

array to 8 bits. We assumed that all the odorants appear with the

same frequency in nature and, therefore, we selected the stimuli

according to a uniform distribution.

Figure 1 shows the routine used to calculate the MI, which is

analogous to the method proposed by Alkasab et al [30]. Firstly,

we set the number and the mean RR of the receptors. In the

second step, the receptors and 256 stimuli are randomly chosen

from our database. For the receptors, minor variations around the

target RR are permitted to avoid repetitions (the receptors were

randomly chosen from those that show ‘‘positive response’’ to the

same number of odorants 63). In step 3, the binary response of

the ensemble of receptors to the stimuli is evaluated to determine

the stimulus-response map. At this point we obtain a table with

256 binary words, each of them representing the binary response

of a receptor to the 256 stimuli. The table is reversed in step 4 to

obtain the response-stimulus map, that is, the response for a

stimulus across receptors. We list the codes evoked with the

associated stimuli to calculate the MI. Then, a new set of receptors

and stimuli are chosen and the cycle is repeated one thousand

times. In step 5, we obtain the histogram of MI and we calculate

the mean value and the standard deviation. Finally, we change the

type and/or the number of receptors and compute the routine

again (back to step 1). In step 6, we plot the performance of the

ensemble of receptors against the receptor type.

Encoding Information in the Olfactory Pathway
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Results

Receptive Range Distribution of the Receptor Type
Population

The RR directly determines the selectivity of the receptors. On

the one hand, very narrowly-tuned receptors show a positive

response to a low number of odors and their specificity is high. On

the other hand, broadly-shaped receptors cover a larger area of the

odor space and show a response to a significant number of odors.

However, as the receptors’ RR increases, the potential overlap

between receptors is higher and the receptors could have greater

correlation. Figure 2 (top) shows the trade-off between the

selectivity and the coverage of the odor space for narrowly-tuned

receptors (left) and the sensor correlation for very unspecific

receptors (center) for a 10-receptor array. However, eventually we

may have narrowly-tuned receptors that remain correlated (right).

As explained in the Methods section, a pixel is considered to

respond to one odorant if its activity is over the mean activity

across the image for this particular chemical. Figure 3 (left) shows

the activity maps obtained for 2-ethylfuran (top) and 1,7-octadiene

(bottom) and illustrates the variability of the glomerular activity for

these odorants. Figure 3 (right) shows the corresponding binary

activity.

We analyzed the selectivity of the chemical receptor population

with the activity maps for 339 different odorants and sorted the

receptor types (pixels) according to their RR. When considering all

odorants, the most selective receptors show a ‘‘positive response’’

to only a few species (to 40 different odorants, i.e. 10% of the RR).

It is quite possible that there are ORNs more selective than this,

but our results are probably limited by the experimental technique

(the reader should take into account that every single image

corresponds to an average image over a few animals).

At the other extreme, broadly-tuned receptor types exhibit a

‘‘positive response’’ for most of the odorants (up to 90% of the

RR). Figure 2 (bottom) shows a histogram of the RR (related to the

selectivity of the receptor type) for the 1,778 receptors when

exposed to all the odorants. From this figure we can conclude that

the ORN distribution continuously covers a wide range of RR,

from very selective to very unspecific ORN. This distribution is

consistent with the pattern encountered in previous studies for the

drosophila [25], measuring a panel of over 100 odors and in rats

using few odorants [21] and it suggests that very different species

share a broad RR distribution.

Coding Capacity of Homogenous Receptor Type
Ensembles

We selected different groups of n receptors with similar RR and

explored the corresponding coding capacity when changing the

RR from 12% to 88%, and when increasing the number of

receptors.

As described in the methods section, for each ensemble the

receptors were randomly chosen with minor variations in the RR.

We calculated the MI of these receptor-type ensembles with sets of

256 stimuli chosen according to a uniform distribution. Conse-

quently, the entropy of the discrimination task is 8 bits.

Figure 4 (left) shows the mean performance for different sizes (4,

5, 6, 7, 8, 9, 10, 11, and 12 receptors) and different RR (from 12%

to 88%) of homogenous receptor-type ensembles, after 1,000

random subsampling cycles for each ensemble cardinality. Figure 4

Figure 1. Method to estimate the coding capacity of groups of receptors. This is the routine to calculate the MI for different receptor type
ensembles. In step 1 we set the number and the RR of receptors. In step 2 we randomly select the stimuli and receptors from the database. In step 3,
the stimulus-response map is calculated, and reversed in step 4 to calculate MI. We select a new set of receptors (of the same type) and stimuli and
repeat the cycle thousands of times. We obtain the histogram of MI and we calculate the mean value and the standard deviation of the values
obtained for the same type of receptors (step 5). Then, we change the number and the RR of receptors (step 1) and compute the routine again.
Finally, in step 6, we plot the performance of the ensemble across the type of receptors.
doi:10.1371/journal.pone.0037809.g001
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(right) shows the performance distribution of a 12 receptor-type

ensemble.

Several conclusions can be drawn from figure 4. On the one

hand, it shows that the coding capacity increases with the number

of receptors, even if the incremental gains become smaller the

bigger the sensor array is (see figure 5). On the other hand, it is

clear that there is an optimum coding capacity when the RR is

about 50%. More selective (less RR) or less selective (more RR)

receptor types show a degraded coding capacity. Obviously, at the

extreme of highly selective receptors, the ability to code for odors is

equal to the number of receptors, while for perfectly correlated

sensors they can only code a single odor.

It may be argued that this result is related to the fact that the

number of codes for a certain receptor set is maximal when half of

the receptors are active:

n
2
~arg max

m

n

m

� �� �
ð3Þ

However, this argument looks at codes across pixels, whereas the

receptor range measures the code across the odorants. We could

envision a situation whereby codes have 50% of the binary digits

set to 1, but these receptors are extremely correlated. In this

situation, the coding capacity of the array would be minimal

although the number of potential codes would be very high.

In the theoretical model presented by Alkasab et al. [30], the

optimum RR is shifted to smaller values, especially for arrays with

many receptors (optimum RR = 25% for 128 sensors). From our

analysis, this may be a model artifact due to an imposed restriction

in the location of the three-dimensional cube that models the RR,

which must be completely inside the finite volume considered

(odor space). As the cube (RR) becomes larger, the probability of

containing the region at the centre increases. The result is that if

the stimuli fall in a central region, they activate all the receptors

and the stimuli become undistinguishable. Therefore, the coding

capacity of the modeled sensor array starts to drop before

RR = 50%.

Figure 5 shows the maximum homogenous ensemble perfor-

mance of different sized ensembles. Adding more receptors to the

array increases the performance of the ensemble since the new

receptor types can cover new areas of the olfactory space.

However, as the number of receptors in the array increases, the

addition of more receptors contributes less to the ensemble

performance because there is an upper boundary given by the

difficulty of the discrimination task set at 8 bits (256 stimuli).

Sensor Diversity: Coding Capacity of Heterogeneous
Receptor Type Ensembles

Figure 2 (bottom) shows that the selectivity of the olfactory

neurons covers from RR = 10% to RR = 90%. In this section, we

report results concerning the odor coding capabilities of hetero-

geneous receptor-type arrays compared to homogenous receptor-

type ensembles.

Heterogeneous ensembles of 8 and 12 receptors were made by

mixing receptors of RR = 41.3% and RR = 59.0%. In Figure 6 the

performance of these arrays across the degree of mixing when

exposed to 256 stimuli are presented.

We found a heterogeneous mixture of types of receptors (half of

the receptors with RR = 41.3% and the other half with

Figure 2. Interrelationship among receptive range, selectivity
and correlation of olfactory receptors. Top: Selectivity and
correlation of olfactory receptors. The odor space and the RR of
the receptors are represented by the dashed-square and the black
squares respectively. Two different 10-receptor arrays are created: with
narrowly (left) and broadly (center) tuned receptors. Narrowly tuned
receptors may be less correlated, while broadly tuned receptors cover a
larger area of the odor space and respond to a larger number of
odorants. While broad RR receptors could be more correlated (more
overlap between receptors), receptors with small RR may also be
correlated (right). Bottom: Receptive range distribution. Receptive
range (RR) distribution for the 1,778 active receptors. More selective
receptors respond to a lower number of odorants (low RR) and broadly
tuned receptors show a ‘‘positive response’’ to most of the odorants
(high RR). Total of different odorants tested: 339.
doi:10.1371/journal.pone.0037809.g002

Figure 3. Olfactory bulb activity images. The olfactory bulb
activity measured gives a pattern obtained using uptake of [14C]-2DG
when exposed to 2-ethylfuran (up, left) and exposed to 1,7-octadiene
(bottom, left). The corresponding binary map of the olfactory bulb
activity for 2-ethylfuran (top, right) and for 1,7-octadiene (bottom,
right). Red: ‘‘positive response’’, sky-blue: ‘‘null response’’, dark-blue:
background.
doi:10.1371/journal.pone.0037809.g003
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RR = 59.0%) that performs at least 0.15 bits better than the best

configuration of homogenous ensembles (all the receptors with the

same RR of about 50%; see figure 4, left).

We can conclude that increasing the diversity of RR in the

ensembles of receptors improves the coding capacities of the

biological olfactory system, but only with a very minor incremental

gain. The increase that we found by using heterogeneous

ensembles is less than the improvement presented by Alkasab

et al. in his theoretical model [30]. This higher increase in the

theoretical model can be explained by exploring the correlation

between receptors.

Receptor Type Correlation
Correlation among receptor types could have a clear impact on

the coding capacity of the receptor ensemble. On the one hand,

correlation can increase redundancy and noise robustness, but on

the other hand, the coding efficiency will probably be reduced. See

figure 2 for a better understanding.

Figure 7 shows the Pearson correlation for pairs of receptor

types exposed to 256 odorants, for both the Alkasab et al. [30]

model and the measured glomerular activity data.

The most interesting conclusion from figure 7 is that biological

data shows low correlation values (always below 0.4). Although the

methodology is slightly different, these results are in agreement

with the results reported by Soucy et al. [24], whose results show

Figure 4. Mutual Information for odor coding. Top: Mean performance of different sized arrays of receptors and different receptive
range. Mean and standard deviation (after 1,000 repetitions) of the evaluated coding capacity for homogenous groups of 4, 5, 6, 7, 8, 9, 10, 11, and
12 receptors for different RR of the receptors. The MI was calculated with sets of 256 stimuli, which limit the maximum array performance to 8 bits.
The coding capacity increases with the number of receptors and there is an optimum coding capacity when the RR is about 50%. More selective (less
RR) or less selective (more RR) gives a degraded performance. Bottom. Performance distribution of a 12-receptor array. Distribution of
calculated MI for a 12-receptor array and 53% RR, after 1,000 trials. The histogram corresponds to step 5 of the routine (see figure 1) and is used to
calculate the mean performance and standard deviation of the ensemble (top).
doi:10.1371/journal.pone.0037809.g004

Figure 5. Maximum Mutual Information across a number of
receptors. The coding capacity increases for larger ensembles of
receptors. However, the MI is bound by the maximum entropy of the
discrimination task, in this case 256 stimuli (8 bits).
doi:10.1371/journal.pone.0037809.g005

Figure 6. Array performance of heterogeneous ensembles.
Mean and standard deviation (after 1,000 repetitions) when mixing
receptors with RR = 59.0% and receptors with RR = 41.3%. Dashed
horizontal lines show the maximum performance for 8 and 12 receptors
when limited to homogenous arrays. Heterogeneous mixtures perform
0.15 bits better than homogenous arrays.
doi:10.1371/journal.pone.0037809.g006
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mean correlation values for glomeruli below 0.3.

The maximum performance of homogenous arrays is RR = 25–

30% for the Alkasab et al. model and RR = 47–53% for biological

data, which corresponds to a correlation of r= 0.35 and r= 0.06

respectively. Alkasab et al. made heterogeneous ensembles by

mixing receptors with RR = 10–15% (r= 0.2) and RR = 50–55%

(r= 0.55). However, we mixed receptors with RR = 41.3%

(r= 0.07) and RR = 59.3% (r= 0.06), which are scarcely corre-

lated. Hence, it is difficult to find sets of heterogeneous receptors

that significantly improve the performance of the optimum

homogenous ensemble since they are already highly uncorrelated.

On the other hand, for the theoretical model the best performance

by homogenous ensembles is made with relatively correlated

receptor types and therefore, when mixing less correlated

receptors (RR = 10–15% and RR = 50–55%), the final ensemble

performs significantly better.

Receptor Distribution in the OB
Figure 8 shows the RR of the measured rat olfactory receptors

across the olfactory bulb. We can conclude that the less selective

receptors are grouped in the medial-caudal and lateral-caudal

parts of the olfactory bulb. Hence, these regions of the olfactory

bulb show significant response to most of the odorants and the

selective receptors - which surprisingly are significantly correlated

(see Figure 7) - are located in the ventral region.

Discussion

We explored the odor coding capabilities of biological systems

using measured activity maps in the rat olfactory bulb across a

large set of odorants. From this study, we can infer a number of

lessons learned that may help when designing or even analyzing

the performance of Artificial Olfaction Systems as general purpose

gas and volatile sensing systems.

We estimated the RR of the receptors as the ratio between the

number of odorants at which the receptor shows a positive

response and the total number of odorants. We encountered a

wide diversity of RR, from 10% to 90%, and we found that less

selective types of receptors (high RR) are grouped in the medial-

caudal and lateral-caudal of the olfactory bulb whereas more

selective receptors are in the ventral region. These results are in

agreement with experimental studies that show the non-specificity

and the RR diversity of the odorant receptors [17] [20–23] [25].

In this study we used a public database where the activity in the

glomerular layer of the rat OB was mapped using uptake of

radiolabeled 2DG. The activity was recorded for a large set of

odorants with different chemical properties. We assumed that each

pixel corresponds to a single glomerulus and that the same pixels

across different images correspond to the same glomerulus. Both

approximations are necessary to compare the activity of different

stimuli. However, statistical techniques applied to different

individuals and stimuli validated these approximations [37].

Due to the limitations of the experimental technique used to

acquire the activity map in the rat OB, our study does not consider

the information contained in the temporal dynamics of the ORN.

Recently, Raman et al. [28] presented a model of the insect

antennal lobe to show that odorants are coded as spatiotemporal

maps. However, the temporal significance of the ORN responses

to code different stimuli has not been fully elucidated yet.

Moreover, the contribution to the temporal pattern is twofold:

on the one hand it is evoked internally by the temporal dynamics

of the neurons, and on the other hand it is driven by the active

sensing behavior and fluid dynamics [41]. Therefore, for a better

understanding of temporal coding, new databases must be

completed defining the temporal signal using microstimulation

before system stimulation [42].

In our study we normalized the activity maps to eliminate the

dependence on the odor concentration since we are interested in

the odor quality recognition regardless of its concentration.

Separate studies showed that the activity patterns evoked were

constant for odors with the same odor quality in humans after z-

score normalization [38] and the normalization keeps the

information on odor quality constant despite odor concentration

[43].

Therefore, we compared our results with a theoretical model

presented by Alkasab et al [30], which only considers the spatial

activation in the OB. Alkasab receptors are binary detectors, being

independent of the odor concentration. Finally, Alkasab’s model

assumes equal probability for the input stimuli (odorants). Despite

the very simple theoretical model presented by Alkasab et al. [30],

they found that there is an optimum RR when the number of

receptors is finite. That is to say, very selective or very unselective

receptors performed poorly compared to medium RR receptors.

Additionally, in their model, arrays containing different sized

receptors perform better than uniform arrays. We found that the

Figure 7. Correlation between pairs of sensors of similar
receptive range. Mean correlation (after 2,000 repetitions) between
pairs of sensors of similar RR, for the theoretical model of Alkasab et al.
(blue) and for the measured data across the rat olfactory bulb (red).
Biological data show low correlation values (always below 0.4).
doi:10.1371/journal.pone.0037809.g007

Figure 8. Receptive range of the rat olfactory receptors
measured across the olfactory bulb. Less selective receptors are
grouped in the medial-caudal and lateral-caudal parts of the olfactory
bulb while selective receptors are located in the ventral region.
doi:10.1371/journal.pone.0037809.g008

Encoding Information in the Olfactory Pathway

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e37809



odor coding capacity of ensembles of olfactory receptors with the

same RR is maximized when RR = 50%. However, the ensemble

performance increases only slightly when mixing receptors of

different RR. The increase in the performance when using

heterogeneous ensembles is smaller compared to the theoretical

model due to the low correlation between olfactory receptors.

Finally, we found that adding more receptors to the ensemble

increases the odor coding performance.

This study has paid special attention to the role played by the

receptive range in chemical information encoding. As mentioned

before, an RR of 50% seems to be optimal to create systems with a

finite number of receptors. It is important for the receptor set to

have a good coverage of the odor space defined by the collection of

odorants of interest. This can be observed by the fact that all

odorants excite more than one pixel, giving redundancy and

resilience to receptor failure. However, biological systems do not

show homogeneous receptive ranges, but a large variety of them

from quite selective receptors to very broadly-tuned receptors.

There could be evolutionary reasons for this diversity, since the

detection of the different analytes probably does not have the same

biological relevance. One may easily envision that biology has

evolved toward a combination of more selective sensors for critical

odorants and a collection of less selective sensors to cover

maximum areas of the odorant space. An extreme case of this

evolutionary drive is the presence of highly specific sensors for

pheromone detection.

We would like to highlight, however, that there are additional

considerations. An additional look at the odorant/receptor

Cartesian matrix is provided by the correlation coefficient.

Biological sensors show a remarkably low correlation except for

very broad receptive ranges. Surprisingly, the analysis of these sets

of images also gives a non-negligible correlation for low RR

receptors. A deeper study is needed to understand if this

correlation is an experimental artifact or whether it has a deeper

meaning.

Separate studies [44] have shown that MOX sensors are highly

correlated. This is a major lesson for designing sensor arrays. In

fact, the advantages of heterogeneous sensor arrays were

recognized long ago in the sensor literature [45]. However, since

they are more expensive due to the complexity of the hardware, on

many occasions homogeneous ensembles of sensors in terms of

sensor technology are preferred.

Sometimes we claim that chemical sensors are not selective

enough. However, the present study shows that selectivity may not

be the most relevant parameter. While the biological system shows

a large degree of diversity in RR (in the main olfactory system), we

have demonstrated that the optimal performance corresponds to a

set of sensors with 50% RR, so they are not particularly selective.

Nevertheless, the biological system has a remarkably low

correlation and good coverage of the odor input space. For low

correlated sensors, adding sensors to the ensemble maximizes the

coding capacity of the system.
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