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ABSTRACT 12 

 13 

Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct 14 

acoustic units. Apart from the well-known example of birdsong, other animals such as insects, 15 

amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex 16 

acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear 17 

(e.g., mate attraction and territorial defence). More often however, researchers have only begun to 18 

characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses 19 

abound, but there is little agreement as to how sequences should be defined and analysed. Our work here 20 

aims to forge such an agreement on key hypotheses, to outline suitable methods for testing these 21 

hypotheses, and to describe the major limitations to our current and near-future knowledge on questions 22 

of acoustic sequences. 23 

This review and prospectus is the result of a collaborative effort between 43 scientists from the 24 

fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative 25 

linguistics, and information theory, who gathered for a 2013 workshop entitled, “Analysing vocal 26 

sequences in animals”. Our goal is to present not just a review of the state of the art, but to propose a 27 

methodological framework that summarises what we suggest are the best practices for research in this 28 

field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most 29 

promising algorithmic approaches for analysing sequences. 30 

We divide our review into three sections: describing the different ways that information can be 31 

contained within a sequence, identifying the distinct units of an acoustic sequence, and analysing the 32 

structure of that sequence. Each of these sections is further subdivided to address the key questions and 33 

approaches in that area. 34 

We propose a uniform, systematic, and comprehensive approach to studying sequences, with the 35 

goal of clarifying research terms used in different fields, and facilitating collaboration and comparative 36 
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studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important 37 

questions in the evolution of communication and sociality.  38 

 39 

Keywords: acoustic communication,  information, information theory, machine learning, Markov model, 40 

meaning, network analysis, sequence analysis, vocalisation 41 

 42 
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I. INTRODUCTION 69 

 70 

Sequences are everywhere, from the genetic code, to behavioural patterns such as foraging, as well as the 71 

sequences that comprise music and language. Often, but not always, sequences convey meaning (and can 72 

do so more effectively than other types of signals; Shannon et al., 1949), and individuals can take 73 

advantage of the information contained in a sequence to increase their own fitness (Bradbury & 74 

Vehrencamp, 2011). Acoustic communication is widespread in the animal world, and very often 75 

individuals communicate using a sequence of distinct acoustic elements, the order of which may contain 76 

information of potential benefit to the receiver. In some cases, acoustic sequences appear to be ritualised 77 

signals where the signaller benefits if the signal is detected and acted upon by a receiver. The most 78 

studied examples include birdsong, where males may use sequences to advertise their potential quality to 79 

rival males and to receptive females (Catchpole & Slater, 2003). Acoustic sequences can contain 80 

information on species identity (e.g., in many frogs and insects; Gerhardt & Huber, 2002), on individual 81 

identity and traits (e.g., in starlings Sturnus vulgaris, Gentner & Hulse, 1998; wolves Canis lupus, Root-82 

Gutteridge et al., 2014; dolphins Tursiops truncatus, Sayigh et al., 2007; and hyraxes Procavia capensis, 83 

Koren & Geffen, 2011), and in some cases, on contextual information such as resource availability (e.g., 84 

food calls in chimpanzees Pan troglodytes, Slocombe & Zuberbühler, 2006), or predator threats (e.g., in 85 

marmots Marmota spp., Blumstein, 2007; primates, Schel, Tranquilli & Zuberbühler, 2009; Cäsar et al., 86 

2012b; and parids, Baker & Becker, 2002). In many cases, however, the ultimate function of 87 

communicating in sequences is unclear. Understanding the proximate and ultimate forces driving and 88 

constraining the evolution of acoustic sequences, as well as decoding the information contained within 89 

them, is a growing field in animal behaviour (Freeberg et al., 2012). New analytical techniques are 90 

uncovering characteristics shared between diverse taxa, and offer the potential of describing and 91 

interpreting the information within animal communication signals. The field is ripe for a review and a 92 

prospectus to guide future empirical research.  93 
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Progress in this field has been somewhat hampered in the past partly by inconsistent terminology, 94 

conflicting assumptions, and different research goals, both between disciplines (e.g., between biologists 95 

and mathematicians), and also between researchers concentrating on different taxa (e.g., ornithologists 96 

and primatologists). Therefore, we aim to do more than provide a glossary of terms. Rather, we build a 97 

framework that identifies the key conceptual issues common to the study of acoustic sequences of all 98 

types, while providing specific definitions useful for clarifying questions and approaches in more narrow 99 

fields. Our approach identifies three central questions: What are the units of which the sequence is 100 

composed? How do we assess the structure with which these units are combined? How is information 101 

contained within the sequence? Figure 1 illustrates a conceptual flow diagram linking these questions, and 102 

their sub-components, and should be broadly applicable to any study involving animal acoustic 103 

sequences. 104 

Our aims in this review are as follows: (1) to identify the key issues and concepts necessary for 105 

the successful analysis of animal acoustic sequences; (2) to describe the commonly used analytical 106 

techniques, and importantly, also those underused methods deserving of more attention; (3) to encourage 107 

a cross-disciplinary approach to the study of animal acoustic sequences that takes advantage of tools and 108 

examples from other fields to create a broader synthesis; and (4) to facilitate the investigation of new 109 

questions through the articulation of a solid conceptual framework.  110 

In Section II we ask why sequences are important, and how information may be embedded within 111 

them. We present this section first, rather than in the order shown in Figure 1, because it is necessary 112 

early on to define and establish the significance of the terminology that will follow in the review. In 113 

Section III, we examine the questions of what units make up a sequence and how to identify them. In 114 

some applications the choice seems trivial, however in many study species, sequences can be represented 115 

at different hierarchical levels of abstraction, and the choice of sequence “unit” may depend on the 116 

hypotheses being tested. In Section IV, we examine the structure of the sequence, the mathematical and 117 

statistical models that quantify how units are combined, and how these models can be analysed, 118 

compared, and assessed. In Section V, we provide some case studies that illustrate our approach, describe 119 
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some of the evolutionary and ecological questions that can be addressed by analysing animal acoustic 120 

sequences, and look at some promising future directions and new approaches. 121 

  122 
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 123 

II. THE CONCEPTS OF INFORMATION AND MEANING  124 

 125 

The complementary terms, “meaning” and “information” in communication, have been variously defined, 126 

and have long been the subject of some controversy (Dawkins & Krebs, 1978; Stegmann, 2013). In this 127 

section we explore some of the different definitions from different fields, and their significance for 128 

research on animal behaviour. The distinction between meaning and information is sometimes portrayed 129 

with meaning, on the one hand, as activity, and information, on the other hand, as form, or structure 130 

(Bohm, 1989). 131 

Philosophical understanding of meaning is rooted in studies of human language and has a variety 132 

of schools of thought. Philosophers consider intension (a meaning or sense, e.g., a chair is something that 133 

one sits on) and extension (objects that are instances of an intension, e.g., a particular lounge chair), 134 

prototype theory, whether meaning is innate or learned, mental representations, and cognitive content. 135 

Philosophers also view meaning as computational/functional, as atomic or holistic, as bound to both 136 

speaker and audience, as speech act and performance, as rule bound or as referentially based, as 137 

description, as conventional, and as a game dependent on a form of life, among other examples 138 

(Christiansen & Chater, 2001; Martinich & Sosa, 2013).  139 

Biologists (particularly behavioural ecologists), and cognitive neuroscientists have different 140 

understandings of meaning. For most biologists, meaning relates to the function of signalling. The 141 

function of signals is examined in agonistic and affiliative interactions, in courtship and mating decisions, 142 

and in communicating about environmental stimuli, such as the detection of predators (Bradbury & 143 

Vehrencamp, 2011). Behavioural ecologists study meaning by determining the degree of production 144 

specificity, the degree of response specificity, and contextual independence (e.g., Evans, 1997). Cognitive 145 

neuroscientists generally understand meaning through mapping behaviour onto structure-function 146 

relationships in the brain (Chatterjee, 2005). 147 
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Mathematicians understand meaning by developing theories and models to interpret the observed 148 

signals. This includes defining and quantifying the variables (observable and unobservable), and the 149 

formalism for combining various variables into a coherent framework (e.g., pattern theory; Mumford & 150 

Desolneux, 2010). One approach to examining a signal mathematically is to determine the entropy, or 151 

amount of structure (or lack thereof) present in a sequence.  152 

The amount of structure measured does not indicate meaning, nor does measuring the amount of 153 

structure quantify the complexity of the meaning, if it is present. As an example, the structure may be 154 

indicative of meaning, but it could also be related to a strategy to ensure acoustic propagation in an 155 

adverse environment. A distinction is often made between a signal’s “content”, or broadcast information, 156 

and its “efficacy”, or transmitted information – the characteristics or features of signals that actually reach 157 

receivers (Wiley, 1983; Hebets & Papaj, 2005). This is basically the distinction between bearing 158 

functional information and getting that information across to receivers in conditions that can be adverse 159 

to clear signal propagation. A sequence may also contain elements that do not in themselves contain 160 

meaning, but are intended to get the listeners’ attention, in anticipation of future meaningful elements 161 

(e.g., Richards, 1981; Call & Tomasello, 2007; Arnold & Zuberbühler, 2013).  162 

Context has a profound influence on signal meaning, and this should apply to the meaning of 163 

sequences as well. Context includes internal and external factors that may influence both the production 164 

and perception of acoustic sequences; the effects of context can partially be understood by considering 165 

how it specifically influences the costs and benefits of producing a particular signal or responding to it. 166 

For instance, an individual’s motivational, behavioural, or physiological state may influence response 167 

(Lynch et al., 2005; Goldbogen et al., 2013); hungry animals respond differently to signals than satiated 168 

ones, and an individual in oestrus or musth may respond differently than ones not in those altered 169 

physiological states (Poole, 1999). Gender may influence response as well (Tyack, 1983; Darling, Jones 170 

& Nicklin, 2006; Smith et al., 2008; van Schaik, Damerius & Isler, 2013). The social environment may 171 

influence the costs and benefits of responding to a particular signal (Bergman et al., 2003; Wheeler, 172 

2010a; Ilany et al., 2011; Wheeler & Hammerschmidt, 2012) as might environmental attributes, such as 173 
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temperature or precipitation. Knowledge from other social interactions or environmental experiences can 174 

also play a role in context, e.g., habituation (Krebs, 1976). Context can also alter a behavioural response 175 

when hearing the same signal originate from different spatial locations. For instance in neighbour-stranger 176 

discrimination in songbirds, territorial males typically respond less aggressively toward neighbours 177 

compared with strangers, so long as the two signals are heard coming from the direction of the 178 

neighbour’s territory.  If both signals are played back from the centre of the subject’s territory, or from a 179 

neutral location, subjects typically respond equally aggressively to both neighbours and strangers (Falls, 180 

1982; Stoddard, 1996).  Identifying and testing for important contextual factors appears to be an essential 181 

step in decoding the meaning of sequences.  182 

Qualitatively, we infer meaning in a sequence if it modifies the receiver’s response in some 183 

predictable way. Quantitatively, information theory measures the amount of information (usually in units 184 

of bits) transmitted and received within a communication system (Shannon et al., 1949). Therefore, 185 

information theory approaches can describe the complexity of the communication system. Information 186 

theory additionally can characterise transmission errors and reception errors, and has been 187 

comprehensively reviewed in the context of animal communication in (Bradbury & Vehrencamp, 2011). 188 

Considerable debate exists over the nature of animal communication and the terminology used in 189 

animal communication research (Owren, Rendall & Ryan, 2010; Seyfarth et al., 2010; Ruxton & 190 

Schaefer, 2011; Stegmann, 2013), and in particular the origin of and relationship between meaning and 191 

information, and their evolutionary significance. For our purposes, we will use the term “meaning” when 192 

discussing behavioural and evolutionary processes, and the term “information” when discussing the 193 

mathematical and statistical properties of sequences. This parallels (but is distinct from) the definitions 194 

given by Ruxton & Schaefer (2011), in particular because we wish to have a single term (“information”) 195 

that describes inherent properties of sequences, without reference to the putative behavioural effects on 196 

receivers, or the ultimate evolutionary processes that caused the sequence to take the form that it does. In 197 

the remainder of this section on information and meaning, we address the question of how information 198 

can be embedded into signal sequences. 199 
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 200 

(1) Information embedding paradigms 201 

A “sequence” can be defined as an ordered list of units. Animals produce sequences of sounds through a 202 

wide range of mechanisms (e.g., vocalisation, stridulation, percussion), and different uses of the sound-203 

producing apparatus can produce different sound “units” with distinct and distinguishable properties. The 204 

resulting order of these varied sound units may or may not contain information that can be interpreted by 205 

a receiver, irrespective of whether or not the signaller intended to convey meaning. Given that a sequence 206 

must consist of more than one “unit” of one or more different types, the delineation and definition of the 207 

unit types is clearly of vital importance. We discuss this question at length in Section III. However, 208 

assuming that units have been successfully assigned short-hand labels (e.g., A, B, C, etc.), what different 209 

methods can be used to arrange these units in a sequence, in such a way that the sequence can contain 210 

information?   211 

 Although it seems intuitively obvious that a sequence of such labels may contain information, this 212 

intuition arises from our own natural human dispensation to language and writing, and may not be 213 

particularly useful in identifying information in animal sequences. We appreciate birdsong, for instance, 214 

as a complex combination of notes, and may be tempted to compare this animal vocalisation to human 215 

music (Baptista & Keister, 2005; Araya-Salas, 2012; Rothenberg et al., 2013). An anthropocentric 216 

approach, however, is not likely in all cases to identify structure relevant to animal communication. 217 

Furthermore, wide variation can be expected between the structure of sequences generated by different 218 

taxa, from the pulse-based stridulation of insects (Gerhardt & Huber, 2002) to song in whales (reviewed 219 

in Cholewiak, Sousa-Lima & Cerchio, 2012), and a single analytical paradigm derived from a narrow 220 

taxonomic view is also likely to be inadequate. A more rigorous analysis is needed, one that indicates the 221 

fundamental structural properties of acoustic sequences, in all their diversity. Looking for information 222 

only, say, in the order of units can lead researchers to miss information encoded in unit timing, or pulse 223 

rate. 224 
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We suggest a classification scheme based on six distinct paradigms for encoding information in 225 

sequences (Figure 2): (a) Repetition, where a single unit is repeated more than once; (b) Diversity, where 226 

information is represented by the number of distinct units present; (c) Combination, where sets of units 227 

have different information from each unit individually; (d) Ordering, where the relative position of units 228 

to each other is important; (e) Overlapping, where information is conveyed in the relationship between 229 

sequences of two or more individuals; and (f) Timing, where the time gap between units conveys 230 

information. This framework can form the basis of much research into sequences, and provides a useful 231 

and comprehensive approach for classifying information-bearing sequences. We recommend that in any 232 

research into animal acoustic communication with a sequential component, researchers first identify the 233 

place(s) of their focal system in this framework, and use this structure to guide the formulation of useful, 234 

testable hypotheses. Considering the formal structures of possible information embedding systems may 235 

provide supportive insights into the cognitive and evolutionary processes taking place (Chatterjee, 2005; 236 

Seyfarth, Cheney & Bergman, 2005). Of course, any particular system might have properties of more than 237 

one of the six paradigms in this framework, and the boundaries between them may not always be clearly 238 

distinguished. Sperm whale Physeter macrocephalus coda exchanges (Watkins & Schevill, 1977) provide 239 

an example of this. A coda is a sequence of clicks (Repetition of the acoustic unit) where the Timing 240 

between echolocation clicks moderates response.  In duet behaviour, Overlap also exists, with one animal 241 

producing and another responding with another coda (Schulz et al., 2008). Each of these paradigms is 242 

now described in more detail below. 243 

 244 

(2) Six information embedding paradigms 245 

1. Repetition: Sequences are made of repetitions of discrete units, and repetitions of the same unit 246 

affect receiver responses. For instance, the information contained in a unit A given in isolation may 247 

convey a different meaning to a receiver than an iterated sequence of unit A (e.g., AAAA, etc.). For 248 

example, greater numbers of D notes in the chick-a-dee calls of chickadee species Poecile spp. can be 249 

related to the immediacy of threat posed by a detected predator (Krams et al., 2012). Repetition in alarm 250 
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calls are related to situation urgency (meerkats Suricata suricatta: Manser, 2001, marmots Marmota spp.: 251 

Blumstein, 2007, colobus monkeys Colobus spp.: Schel, Candiotti & Zuberbühler, 2010, Campbell’s 252 

monkeys Cercopithecus campbelli: Lemasson et al., 2010, lemurs Lemur catta and Varecia variegata: 253 

Macedonia, 1990). As an additional example, many frog species produce pulsatile advertisement calls 254 

consisting of the same repeated element. If it is the case that both number of pulses and pulse rate affect 255 

receiver responses, as shown in some hylid treefrogs (Gerhardt, 2001), then information is being 256 

embedded using both the Repetition (1) and the Timing (6) paradigms simultaneously. Such use of 257 

multiple embedding techniques may be quite common, for instance in intrasexual competitive and 258 

intersexual reproductive contexts (Gerhardt & Huber, 2002).  259 

 260 

2. Diversity: Sequences of different units (e.g., A, B, C) are produced, but those units are 261 

functionally interchangeable, and therefore ordering is unimportant. For instance, many songbirds 262 

produce songs with multiple different syllables. In many species, however, the particular syllables are 263 

substitutable (e.g., Eens, Pinxten & Verheyen, 1991; Farabaugh & Dooling, 1996, but see Lipkind et al., 264 

2013) and receivers attend to the overall diversity of sounds in the songs or repertoires of signallers 265 

(Catchpole & Slater, 2003). Large acoustic repertoires have been proposed to be sexually selected in 266 

species such as great reed warblers Acrocephalus arundinaceus and common starlings Sturnus vulgaris 267 

(Eens, Pinxten & Verheyen, 1993; Hasselquist, Bensch & von Schantz, 1996; Eens, 1997), in which case 268 

diversity embeds information (that carries meaning) on signaller quality (e.g., Kipper et al., 2006). 269 

Acoustic "diversity" has additionally been proposed as a means of preventing habituation on the part of 270 

the receiver (Hartshorne, 1956; Hartshorne, 1973; Kroodsma, 1990) as well as a means of avoiding 271 

(neuromuscular) "exhaustion" on the part of the sender (Lambrechts & Dhondt, 1987; Lambrechts & 272 

Dhondt, 1988). We do note that these explanations remain somewhat controversial, especially if the 273 

transitions between acoustic units are, indeed, biologically constrained (Weary & Lemon, 1988; Weary et 274 

al., 1988; Weary & Lemon, 1990; Weary, Lambrechts & Krebs, 1991; Riebel & Slater, 2003; Brumm & 275 

Slater, 2006).  276 
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 277 

3. Combination: Sequences may consist of different discrete acoustic units (e.g., A, B, C) each of 278 

which is itself meaningful, and the combining of the different units conveys distinct information. Here, 279 

order does not matter (in contrast to the Ordering paradigm below) – the sequence of unit A followed by 280 

unit B has the same information as the sequence of unit B followed by unit A. For example, titi monkeys 281 

Callicebus nigrifrons (Cäsar et al., 2013) use semantic alarm combinations, in which interspersing avian 282 

predator alarms calls (A-type) with terrestrial predator alarm calls (B-type) indicates the presence of a 283 

raptor on the ground. In this case, the number of calls (i.e. Repetition) also appears to influence the 284 

information present in each call sequence (Cäsar et al., 2013). 285 

 286 

4. Ordering: Sequences of different discrete acoustic units (e.g., A, B, C) each of which is itself 287 

meaningful and the specific order of which is meaningful. Here, order matters – and the ordered 288 

combination of discrete units may result in emergent responses. For instance, A followed by B may elicit 289 

a different response than either A or B alone, or B followed by A. Examples include primate alarm calls 290 

which, when combined, elicit different responses related to the context of the predatory threat (Arnold & 291 

Zuberbühler, 2006a; Arnold & Zuberbühler, 2008). Human languages are a sophisticated example of 292 

ordered information encoding (Hauser, Chomsky & Fitch, 2002). 293 

 294 

5. Overlapping: Sequences are combined from two or more individuals into exchanges for which the 295 

order of these overlapping sequences has information distinct from each signaller’s signals in isolation. 296 

Overlapping can be in the time dimension (i.e., two signals emitted at the same time) or in acoustic space 297 

(e.g., song type matching, Krebs, Ashcroft & Orsdol, 1981, and frequency matching, Mennill & Ratcliffe, 298 

2004) For example, in different parid species (Paridae: chickadees, tits, and titmice), females seem to 299 

attend to the degree to which their males’ songs are overlapped (in time) by neighbouring males’ songs, 300 

and seek extra-pair copulations when their mate is overlapped (Otter et al., 1999; Mennill, Ratcliffe & 301 

Boag, 2002). Overlapping is also used for social bonding, spatial perception, and reunion, such as chorus 302 
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howls in wolves (Harrington et al., 2003) and sperm whale codas (Schulz et al., 2008). Overlapping as 303 

song type matching (overlapping in acoustic space) is also an aggressive signal in some songbirds (Akçay 304 

et al., 2013), though this may depend on whether it is the sequence or the individual unit that is 305 

overlapped (Searcy & Beecher, 2011). Coordination between the calling of individuals can also give 306 

identity cues (Carter et al., 2008). 307 

 308 

6. Timing: The temporal spacing between units in a sequence can contain information. In the 309 

simplest case, pulse rate and interpulse interval can distinguish between different species, for example in 310 

insects and anurans (Gerhardt & Huber, 2002; Nityananda & Bee, 2011), rodents (Randall, 1997), and 311 

primates (Hauser, Agnetta & Perez, 1998). Call timing can indicate fitness and aggressive intent, e.g., 312 

male howler monkeys Alouatta pigra attend to howling delay as an indicator of aggressive escalation 313 

(Kitchen, 2004). Additionally, when sequences are produced by different individuals, a receiver may 314 

interpret the timing differences between the producing individuals to obtain contextual information. For 315 

instance, ground squirrels Spermophilus richarsonii use the spatial pattern and temporal sequence of 316 

conspecific alarm calls to provide information on a predator’s movement trajectory (Thompson & Hare, 317 

2010). This information only emerges from the sequence of different callers initiating calls (Blumstein, 318 

Verneyre & Daniel, 2004). Such risk tracking could also emerge from animals responding to sequences of 319 

heterospecific alarm signals produced over time. 320 

 321 

We conclude this section with a discussion of two examples of how sequences of acoustic signals 322 

produced by signallers can influence meaning to receivers. These two examples come from primates and 323 

exemplify the Diversity and Ordering types of sequences illustrated in Figure 2. The example of the 324 

Diversity type is the system of serial calls of titi monkeys, Callicebus molloch, used in a wide range of 325 

social interactions. Here, the calls comprise several distinct units, many of which are produced in 326 

sequences. Importantly, the units of this call system seem to have meaning primarily in the context of the 327 

sequence – this call system therefore seems to represent the notion of phonological syntax (Marler, 1977). 328 
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One sequence has been tested via playback studies – the ‘honks-bellows-pumps’ sequence is used 329 

frequently by males that are isolated from and not closely associated with females and may recruit non-330 

paired females (Robinson, 1979). Robinson (1979) played back typical sequences of honks-bellows-331 

pumps sequences and atypical sequences of honks-pumps-bellows and found little evidence that groups of 332 

titi monkeys responded differently to the two playbacks (though they gave one call type – a ‘moan’, 333 

produced often during disturbances caused by other conspecific or heterospecific monkey groups – more 334 

often to the atypical sequences). Unfortunately, the playbacks were not done to groups at a distance to 335 

determine whether sequence order mattered to the question of recruitment of females.  336 

The second example relates to the Ordering type of sequence (Figure 2), and stems from two 337 

common calls of putty-nosed monkeys, Cercopithecus nictitans martini. ‘Pyow’ calls can be produced 338 

individually or in strings of pyows, and seem to be used by putty-nosed monkeys frequently when 339 

leopards are detected in the environment (Arnold & Zuberbühler, 2006a), and more generally as an 340 

attention-getting signal related to recruitment of receivers and low level alarm (Arnold & Zuberbühler, 341 

2013). ‘Hack’ calls can also be produced individually or in strings of hacks, and seem to be used 342 

frequently when eagles are detected in the environment, and more generally as a higher-level alarm call 343 

(Arnold & Zuberbühler, 2013). Importantly, pyow and hack calls are frequently combined into pyow-344 

hack sequences. Both naturalistic observational data as well as experimental call playback results indicate 345 

that pyow-hack sequences influence receiver behaviour differently than do pyow or hack sequences alone 346 

– pyow-hack sequences seem to mean “let’s go!”, and produce greater movement distances in receivers 347 

(Arnold & Zuberbühler, 2006b). The case of the pyow-hack sequence therefore seems to represent 348 

something closer to the notion of lexical syntax – individual units and ordered combinations of those units 349 

have distinct meanings from one another (Marler, 1977).  350 

These two examples of primate calls illustrate the simple but important point that sequences 351 

matter in acoustic signals – combinations or different linear orderings of units (whether those units have 352 

meaning individually or not) can have different meanings to receivers. In the case of titi monkeys, the call 353 
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sequences seem to serve the function of female attraction for male signallers, whereas in the case of putty-354 

nosed monkeys, the call sequences serve anti-predatory and group cohesion functions.  355 

We have so far been somewhat cavalier in how we have described the structures of call 356 

sequences, using terms like notes, units, and, indeed, calls. In the next section of our review, we describe 357 

in depth the notion of signalling ‘units’ in the acoustic modality. 358 

 359 

III. ACOUSTIC UNITS 360 

 361 

Sequences are made of constituent units. Thus the accurate analysis of potential information in animal 362 

acoustic sequences depends on appropriately characterising their constituent acoustic units. We recognise, 363 

however, that there is no single definition of a unit. Indeed definitions of units, how they are identified, 364 

and the semantic labels we assign them vary widely across researchers working with different taxonomic 365 

groups (Gerhardt & Huber, 2002) or even within taxonomic groups, as illustrated by the enormous 366 

number of names for different units in the songs of songbird species. Our purpose in this section is to 367 

discuss issues surrounding the various ways the acoustic units composing a sequence may be 368 

characterised.  369 

 Units may be identified based on either production mechanisms, which focus on how the sounds 370 

are generated by signallers, or by perceptual mechanisms, which focus on how the sounds are interpreted 371 

by receivers. How we define a unit will therefore be different if the biological question pertains to 372 

production mechanisms or perceptual mechanisms. For example, in birdsong even a fairly simple note 373 

may be the result of two physical production pathways, each made on a different side of the syrinx 374 

(Catchpole & Slater, 2003). In practice, however, the details of acoustic production and perception are 375 

often hidden from the researcher, and so the definition of acoustic units is often carried out on the basis of 376 

observed acoustic properties (see Catchpole & Slater, 2003). It is not always clear to what extent these 377 

observed acoustic properties accurately represent the production/perceptual constraints on 378 
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communication, and the communicative role of the sequence. Identifying units is made all the more 379 

challenging because acoustic units produced by animals often exhibit graded variation in their features 380 

(e.g., absolute frequency, duration, rhythm or tempo, or frequency modulation), but most analytical 381 

methods for unit classification assume that units can be divided into discrete, distinct categories (e.g., 382 

Clark, Marler & Beeman, 1987). Thus, how we identify units may differ depending on whether the 383 

biological question pertains to production mechanisms, perceptual mechanisms, or acoustical analyses of 384 

information content in the sequences. If the unit classification scheme must reflect animal sound 385 

production or perception, care must be taken to base unit identification on the appropriate features of a 386 

signal, and features that are biologically relevant (e.g., Clemins & Johnson, 2006). In cases where 387 

sequences carry meaning, it is likely that they can be correlated with observational behaviours (possibly 388 

context-dependent) observed over a large number of trials. There is still no guarantee that the sequence 389 

assigned by the researcher is representative of the animal’s perception of the same sequence. To some 390 

degree, this can be tested with playback trials where the signals are manipulated with respect to the 391 

hypothesised unit sequence (Kroodsma, 1989; Fischer, Noser & Hammerschmidt, 2013). 392 

Whatever technique for identifying potential acoustic units is used, we emphasise here that there 393 

are four acoustic properties that are commonly used to delineate potential units (Figure 3). First, the 394 

spectrogram may show a silent gap between two acoustic elements (Figure 3a). When classifying units 395 

“by eye”, separating units by silent gaps is probably the most commonly used criterion. Second, 396 

examination of a spectrogram may show that an acoustic signal changes its properties at a certain time, 397 

without the presence of a silent “gap” (Figure 3b). For example, a pure tone may become harmonic or 398 

noisy, as the result of the animal altering its articulators (e.g., lips), without ceasing sound production in 399 

the source (e.g., larynx). Third, a series of similar sounds may be grouped together as a single unit, 400 

regardless of silent gaps between them, and separated from dissimilar units (Figure 3c). This is 401 

characteristic of pulse trains and “trills”. Finally, there may be a complex hierarchical structure to the 402 

sequence, in which combinations of sounds, which might otherwise be considered fundamental units, 403 

always appear together, giving the impression of a coherent, larger unit of communication (Figure 3d). A 404 
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consideration of these four properties together can provide valuable insights into defining units of 405 

production, units of perception, and units for sequence analyses. 406 

In Table 1, we give examples of the wide range of studies that have used these different criteria 407 

for dividing acoustic sequences into units. Although not intended to be comprehensive, the table shows 408 

how all of the four criteria listed above have been used for multiple species and with multiple aims – 409 

whether simply characterising the vocalisations, defining units of production/perception, or identifying 410 

the functional purpose of the sequences. 411 

 412 

(1) Identifying potential units 413 

Before we discuss in more detail how acoustic units may be identified in terms of production, perception, 414 

and analysis methods, we point out here that practically all such efforts require scientists to identify 415 

potential units at some early stage of their planned investigation or analysis. Two practical considerations 416 

are noteworthy.  417 

 First, a potential unit can be considered that part of a sequence that can be replaced with a label 418 

for analysis purposes (e.g., unit A or unit B), without adversely affecting the results of a planned 419 

investigation or analysis. Because animal acoustic sequences are sometimes hierarchical in nature (e.g., 420 

humpback whale Megaptera novaengliae song, reviewed in Cholewiak, Sousa-Lima & Cerchio, 2012), 421 

distinct sequences of units may themselves be organised into longer, distinctive sequences (i.e., 422 

“sequences of sequences”, Berwick et al., 2011). Thus, an important consideration in identifying potential 423 

acoustic units for sequence analyses is that they can be hierarchically nested, such that a sequence of units 424 

can itself be considered as a unit and replaced with a label.   425 

 Second, potential acoustic units are almost always identified based on acoustic features present in 426 

a spectrographic representation of the acoustic waveform. Associating combinations of these features 427 

with a potential unit can be performed either manually (i.e., examining the spectrograms “by eye”), or 428 

automatically by using algorithms for either supervised classification (where sounds are placed in 429 

categories according to pre-defined exemplars) or unsupervised clustering (where labelling units is 430 
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performed without prior knowledge of the types of units that occur). We return to these analytical 431 

methods in a subsequent section, and elaborate here on spectrographic representations.  432 

Spectrograms consisting of discrete Fourier transforms of short, frequently overlapped, segments 433 

of the signal are ubiquitous and characterise well those acoustic features related to spectral profile and 434 

frequency modulation, many of which are relevant in animal acoustic communication. Examples of such 435 

features include minimum and maximum fundamental frequency, slope of the fundamental frequency, 436 

number of inflection points, and the presence of harmonics (Oswald et al., 2007) that vary, for example, 437 

between individuals (Buck & Tyack, 1993; Blumstein & Munos, 2005; Koren & Geffen, 2011; Ji et al., 438 

2013; Kershenbaum, Sayigh & Janik, 2013; Root-Gutteridge et al., 2014), and in different environmental 439 

and behavioural contexts (Matthews et al., 1999; Taylor, Reby & McComb, 2008; Henderson, Hildebrand 440 

& Smith, 2011).  441 

Other less used analytical techniques, such as cepstral analysis, may provide additional detail on 442 

the nature of acoustic units, and are worth considering for additional analytical depth. Cepstra are the 443 

Fourier (or inverse Fourier) transform of the log of the power spectrum (Oppenheim & Schafer, 2004), 444 

and can be thought of as producing a spectrum of the power spectrum. Discarding coefficients can yield a 445 

compact representation of the spectrum (Figure 4). Further, while Fourier transforms have uniform 446 

temporal and frequency resolution, other techniques vary this resolution by using different basis sets, and 447 

this provides improved frequency resolution at low frequencies and better temporal resolution at higher 448 

frequencies. Examples of these other techniques include multi-taper spectra (Thomson, 1982; 449 

Tchernichovski et al., 2000; Baker & Logue, 2003), Wigner-Ville spectra (Martin & Flandrin, 1985; 450 

Cohn, 1995), and wavelet analysis (Mallat, 1999). While spectrograms and cepstra are useful for 451 

examining frequency-related features of signals, they are less useful when analysing temporal patterns of 452 

amplitude modulation. This is an important issue worth bearing in mind, because amplitude modulations 453 

are probably critical in signal perception by many animals (Henry et al., 2011), including speech 454 

perception by humans (Remez et al., 1994). 455 

 456 
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(2) Identifying production units 457 

One important approach to identifying acoustic units stems from considering the mechanisms for sound 458 

production. In stridulating insects, for example, relatively simple, repeated sounds are typically generated 459 

by musculature action that causes hard physical structures to be engaged, such as the file and scraper 460 

located on the wings of crickets or the tymbal organs of cicadas (Gerhardt & Huber, 2002). The resulting 461 

units, variously termed “chirps,” or, “pulses,” can be organised into longer temporal sequences often 462 

termed “trills” or “echemes” (Ragge & Reynolds, 1988). Frogs can produce sounds with temporally 463 

structured units in a variety of ways (Martin & Gans, 1972; Martin, 1972; Gerhardt & Huber, 2002). In 464 

some species, a single acoustic unit (sometimes called a “pulse,” “note,” or a “call”) is produced by a 465 

single contraction of the trunk and laryngeal musculature that induces vibrations in the vocal folds (e.g., 466 

Girgenrath & Marsh, 1997). In other instances, frogs can generate short sequences of distinct sound units 467 

(also often called “pulses”) produced by the passive expulsion of air forced through the larynx that 468 

induces vibrations in structures called arytenoid cartilages, which impose temporal structure on sound 469 

(Martin & Gans, 1972; Martin, 1972). Many frogs organise these units into trills (e.g., Gerhardt, 2001), 470 

while other species combine acoustically distinct units (e.g., Narins, Lewis & McClelland, 2000; Larson, 471 

2004). In songbirds, coordinated control of the two sides of the syrinx can be used to produce different 472 

units of sound, or “notes” (Suthers, 2004). These units can be organised into longer sequences, of “notes,” 473 

“trills,” “syllables,” “phrases,” “motifs,” and “songs” (Catchpole & Slater, 2003). In most mammals, 474 

sounds are produced as an air source (pressure squeezed from the lungs) causes vibrations in the vocal 475 

membranes, which are then filtered by a vocal tract (Peterson & Barney, 1952; Titze, 1994). When 476 

resonances occur in the vocal tract, certain frequencies known as formants are reinforced. Formants and 477 

formant transitions have been strongly implicated in human perception of vowels and voiced consonants, 478 

and may also be used by other species to perceive information (Raemaekers, Raemaekers & Haimoff, 479 

1984; Fitch, 2000).  480 

As the variety in these examples illustrates, there is incredible diversity in the mechanisms 481 

animals use to produce the acoustic units that are subsequently organised into sequences. Moreover, there 482 
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are additional mechanisms that constrain the production of some of the units. For example, in zebra 483 

finches Taeniopygia guttata, songs can be interrupted between some of its constitutive units but not 484 

others (Cynx, 1990). This suggests that at a neuronal level, certain units share a common, integrated 485 

neural production mechanism. Such examples indicate that identifying units based on metrics of audition 486 

or visual inspection of spectrograms (e.g., based on silent gaps) may not always be justified, and that 487 

there may be essential utility that emerges from a fundamental understanding of unit production. Thus, a 488 

key consideration in identifying functional units of production is that doing so may often require 489 

knowledge about production mechanisms that can only come about through rigorous experimental 490 

studies.  491 

 492 

(3) Identifying perceptual units  493 

While there may be fundamental insights gained from identifying units based on a detailed understanding 494 

of sound production, there may not always be a one-to-one mapping of the units of production or the units 495 

identified in acoustics analyses, onto units of perception (e.g., Blumstein, 1995). Three key considerations 496 

should be borne in mind when thinking about units of perception and the analysis of animal acoustic 497 

sequences (Figure 5). 498 

First, it is possible that units of production or the units a scientist might identify on a spectrogram 499 

are perceptually bound together by receivers into a single unit of perception (Figure 5a). In this sense, a 500 

unit of perception is considered a perceptual auditory object in terms familiar to cognitive psychologists 501 

and auditory scientists. There are compelling reasons for researchers to consider vocalisations and other 502 

sounds as auditory objects (Miller & Cohen, 2010). While the rules governing auditory object formation 503 

in humans have been well studied (Griffiths & Warren, 2004; Bizley & Cohen, 2013), the question of 504 

precisely how, and to what extent, non-humans group acoustic information into coherent perceptual 505 

representations remains a largely open empirical question (Hulse, 2002; Bee & Micheyl, 2008; Miller & 506 

Bee, 2012). 507 
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Second, studies of categorical perception in humans and other animals (Harnad, 1990) show that 508 

continuous variation can nevertheless be perceived as forming discrete categories. In the context of units 509 

of perception, this means that the graded variation often seen in spectrograms may nevertheless be 510 

perceived categorically by receivers (Figure 5b). Thus, in instances where there are few discrete 511 

differences in production mechanisms or in spectrograms, receivers might still perceive distinct units 512 

(Nelson & Marler, 1989; Baugh, Akre & Ryan, 2008). 513 

Third, well-known perceptual constraints related to the limits of spectrotemporal resolution may 514 

identify units of perception in ways that differ from analytical units and the units of production (Figure 515 

5c). For example, due to temporal integration by the auditory system (Recanzone & Sutter, 2008), some 516 

short units of production might be produced so rapidly that they are not perceived as separate units. 517 

Instead, they might be integrated into a single percept having a pitch proportional to the repetition rate.  518 

For example, in both bottlenose dolphins Tursiops truncatus and Atlantic spotted dolphins Stenella 519 

frontalis, the “squawking” sound that humans perceive as having some tonal qualities is actually a set of 520 

rapid echolocation clicks known as a burst pulse (Herzing, 1996). The perceived pitch is related to the 521 

repetition rate, the faster the repetition, the higher the pitch. Given the perceptual limits of gap detection 522 

(Recanzone & Sutter, 2008), some silent gaps between units of production may be too short to be 523 

perceived by the receiver. Clearly, while it may sometimes be desirable or convenient to use “silence” as 524 

a way to create analysis boundaries between units, a receiver may not always perceive the silent gaps that 525 

we see in our spectrograms. Likewise, some transitions in frequency may reflect units of production that 526 

are not perceived because the changes remain unresolved by auditory filters (Moore & Moore, 2003; 527 

Recanzone & Sutter, 2008). Indeed, some species may be forced to trade off temporal and spectral 528 

resolution to optimise signalling efficiency in different environmental conditions. Frequency modulated 529 

signals are more reliable than amplitude modulation in reverberant habitats, such as forests, so woodland 530 

birds are adapted to greater frequency resolution and poorer temporal resolution, while the reverse is true 531 

of grassland species (Henry & Lucas, 2010; Henry et al., 2011).  532 
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The question of what constitutes a unit that is perceptually meaningful to the animal demands 533 

rigorous experimental approaches that put this question to the animal itself. There simply is no convenient 534 

shortcut to identifying perceptual units. Experimental approaches ranging from operant conditioning (e.g., 535 

Dooling et al., 1987; Brown, Dooling & O'Grady, 1988; Dent et al., 1997; Tu, Smith & Dooling, 2011; 536 

Ohms et al., 2012; Tu & Dooling, 2012), to field playback experiments, often involving the habituation-537 

discrimination paradigm (e.g., Nelson & Marler, 1989; Wyttenbach, May & Hoy, 1996; Evans, 1997; 538 

Searcy, Nowicki & Peters, 1999; Ghazanfar et al., 2001; Weiss & Hauser, 2002) have the potential to 539 

identify the boundaries of perceptual units. Playbacks additionally can determine whether units can be 540 

discriminated (as in ‘go no-go’ tasks stemming from operant conditioning), or whether they can be 541 

recognised and are functionally meaningful to receivers. 542 

Obviously some animals and systems are more tractable than others when it comes to 543 

experimentally assessing units of perception, but those not easy to manipulate experimentally (e.g., baleen 544 

whales, Balaenopteridae) should not necessarily be excluded from communication sequence research, 545 

although the inevitable constraints must be recognised. 546 

 547 

(4)       Identifying analytical units 548 

In many instances, it is desirable to analyse sequences of identified units in acoustic recordings without 549 

having a priori knowledge about how those units may be produced or perceived by the animals 550 

themselves. Such analyses are often a fundamental first step toward investigating the potential meaning of 551 

acoustic sequences. Before turning to our main discussion of algorithms for analysing sequences of 552 

identified units, we briefly discuss methods by which scientists can identify and validate units for 553 

sequence analyses from acoustic recordings. 554 

           Sounds are typically assigned classifications to units based on the consistency of acoustic 555 

characteristics. When feasible, external validation of categories (i.e., comparing animal behavioural 556 
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responses to playback experiments) should be performed. Even without directly testing hypotheses of 557 

biological significance by playback experiment, there may be other indicators of the validity of a 558 

classification scheme based purely on acoustic similarity. For example, naive observers correctly divide 559 

dolphin signature whistles into groups corresponding closely to the individuals that produced them 560 

(Sayigh et al., 2007), and similar (but poorer) results are achieved using quantitative measures of 561 

spectrogram features (Kershenbaum, Sayigh & Janik, 2013). 562 

            When classifying units on the basis of their acoustic properties, errors can occur both as the result 563 

of perceptual bias, and as the result of poor repeatability. Perceptual bias occurs either when the 564 

characteristics of the sound that are used to make the unit assignment are inappropriate for the 565 

communication system being studied, or when the classification scheme relies too heavily on those 566 

acoustic features that appear important to human observers. For example, analysing spectrograms with a 567 

50 Hz spectral resolution would be appropriate for human speech, but not for Asian elephants (Elephas 568 

maximus), which produce infrasonic calls that are typically between 14-24 Hz (Payne, Langbauer Jr & 569 

Thomas, 1986), as details of the elephant  calls would be unobservable. Features that appear important to 570 

human observers may include tonal modulation shapes, often posed in terms of geometric descriptors, 571 

such as "upsweep", "concave", and "sine" (e.g., Bazúa-Durán & Au, 2002), which are prominent to the 572 

human eye, but may or may not be of biological relevance. Poor repeatability, or variance, can occur both 573 

in human classification, as inter-observer variability, and in machine learning, where computer 574 

classification algorithms can make markedly different decisions after training with data that are very 575 

similar (overtraining).  Poor repeatability can be a particular problem when the classification scheme 576 

ignores, or fails to give sufficient weight to, the features that are of biological significance, or the 577 

algorithm (human or machine) places too much emphasis on particular classification cues that are specific 578 

to the examples used to learn the categories. Repeatability suffers particularly when analysing signals in 579 

the presence of noise, which can mask fine acoustic details (Kershenbaum & Roch, 2013). 580 
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            Two approaches have been used to classify units by their acoustic properties: visual inspection of 581 

spectrograms, and application of automatic algorithms that assign classifications based on mathematical 582 

rules. 583 

  (a)        Visual classification, “by eye” 584 

Traditionally, units are “hand-scored” by humans searching for consistent patterns in spectrograms (or 585 

even listening to sound recordings without the aid of a spectrogram). Visual classification has been an 586 

effective technique that has led to many important advances in the study both of birdsong (e.g., 587 

Kroodsma, 1985; Podos et al., 1992, and reviewed in Catchpole & Slater, 2003), and acoustic sequences 588 

in other taxa (e.g., Narins, Lewis & McClelland, 2000; Larson, 2004). Humans are usually considered to 589 

be good at visual pattern recognition – and better than most computer algorithms (Ripley, 2007; Duda, 590 

Hart & Stork, 2012), which makes visual classification an attractive approach to identifying acoustic 591 

units. However, drawbacks to visual classification exist (Clark, Marler & Beeman, 1987). Visual 592 

classification is time consuming and prevents taking full advantage of large acoustic data sets generated 593 

by automated recorders. Similarly, the difficulty in scoring large data sets means that sample sizes used in 594 

research may be too small to draw firm conclusions (Kershenbaum, 2013). Furthermore, visual 595 

classification can be prone to subjective errors (Jones, ten Cate & Bijleveld, 2001), and inter-observer 596 

reliability should be used (and reported) as a measure of the robustness of the visual assessments 597 

(Burghardt et al., 2012). 598 

(b)        Automatic classification 599 

As an alternative to visual classification, automated methods may extract specific metrics, or features, 600 

from the acoustic data for input to classification algorithms. Although the acoustic features used by 601 

automated systems also may not reflect the cues used by the focal species, automated systems have the 602 

advantage of being able to handle large data sets. In principle, automatic classification is attractive as it is 603 
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not susceptible to the inter-observer variability of visual classification (Tchernichovski et al., 2000). 604 

However, current implementations generally fall short of the performance desired (Janik, 1999), for 605 

instance by failing to recognise subtle features that can be detected both by humans, and by the focal 606 

animals, and visual classification has been shown to out-perform automated systems in cases where the 607 

meaning of acoustic signals is known a priori (e.g., Sayigh et al., 2007; Kershenbaum, Sayigh & Janik, 608 

2013). However, once an automatic algorithm is defined, large datasets can be analysed. 609 

            A third possibility is to use a hybrid system. Automated techniques can be used to find regions of 610 

possible calls that are then verified and corrected by a human analyst (Helble et al., 2012). Machine 611 

assistance can allow analysts to process much larger data sets than before, but at the risk of possibly 612 

missing calls that they might have been able to detect. 613 

Classification algorithms can accept acoustic data with varying degrees of pre-processing as 614 

inputs. For example, in addition to the commonly used spectrograms (Picone, 1993), cepstra (Oppenheim 615 

& Schafer, 2004), multi-taper spectra (Thomson, 1982), wavelets (Mallat, 1999), and formants (Fitch, 616 

1997) may be used, as they provide additional information on the acoustic characteristics of units, which 617 

may not be well represented by traditional spectrograms (Tchernichovski et al., 2000).  Each of these 618 

methods provide analysis of the spectral content of a short segment of the acoustic production, and 619 

algorithms frequently examine how these parameters are distributed or change over time (e.g., Kogan & 620 

Margoliash, 1998). 621 

Units may be classified automatically using supervised algorithms, in which the algorithm is 622 

taught to recognise unit types given some a priori known exemplars, or clustered using unsupervised 623 

algorithms, in which no a priori unit type assignment is known (Duda, Hart & Stork, 2012). In both cases, 624 

the biological relevance of units must be verified independently because mis-specification of units can 625 

obscure sequential patterns. Environmental noise or sounds from other species may be mistakenly 626 

classified as an acoustic unit, and genuine units may be incorrectly assigned to unit categories. When 627 
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using supervised algorithms, perceptual bias may lead to misinterpreting data when the critical bands, 628 

temporal resolution, and hearing capabilities of a species are not taken into account, i.e., the exemplars 629 

themselves may be subject to similar subjective errors that can occur in visual classification. However, 630 

validation of unsupervised clustering into units is also problematic, where clustering results cannot be 631 

assessed against known unit categories. The interplay between unit identification and sequence model 632 

validation is a non-trivial problem (e.g., Jin & Kozhevnikov, 2011). Similarly, estimating uncertainty in 633 

unit classification and assessing how that uncertainty affects conclusions from a sequence analysis is a 634 

key part of model assessment (Duda, Hart & Stork, 2012) 635 

When using supervised classification, one appropriate technique for measuring classification 636 

uncertainty is cross-validation (Arlot & Celisse, 2010). For fully unsupervised clustering algorithms, 637 

where the desired classification is unknown, techniques exist to quantify the stability of the clustering 638 

result, as an indicator of clustering quality. Examples include “leave-k-out” (Manning, Raghavan & 639 

Schütze, 2008), a generalisation of the “leave-one-out” cross-validation, and techniques based on 640 

normalised mutual information (Zhong & Ghosh, 2005), which measure the similarity between two 641 

clustering schemes (Fred & Jain, 2005). However, it must be clear that cluster stability (and 642 

correspondingly, inter-observer reliability) is not evidence that the classification is appropriate (i.e., 643 

matches the true, unknown, biologically relevant categorisation), or will remain stable upon addition of 644 

new data (Ben-David, Von Luxburg & Pál, 2006). Other information theoretic tests provide an alternative 645 

assessment of the validity of unsupervised clustering results, such as checking if units follow Zipf's law of 646 

abbreviation, which is predicted by a universal principle of compression (Zipf, 1949; Ferrer-i-Cancho et 647 

al., 2013) or Zipf's law for word frequencies, which is predicted by a compromise between maximizing 648 

the distinctiveness of units and the cost of producing them (Zipf, 1949; Ferrer-i-Cancho, 2005). 649 

 650 
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IV. THE STRUCTURE OF SEQUENCES 651 

 652 

Given that the researcher has successfully determined the units of an acoustic sequence that are 653 

appropriate for the hypothesis being tested, one must select and apply appropriate algorithms for 654 

analysing the sequence of units. Many algorithms exist for the analysis of sequences: both those produced 655 

by animals, and sequences in general (such as DNA, and stock market prices). Selection of an appropriate 656 

algorithm can sometimes be guided by the quantity and variability of the data, but there is no clear rule to 657 

be followed. In fact, in machine learning, the so-called no free lunch theorem (Wolpert & Macready, 658 

1997) shows that there is no one pattern recognition algorithm that is best for every situation, and any 659 

improvement in performance for one class of problems is offset by lower performance in another problem 660 

class. In choosing an algorithm for analyses, one should be guided by the variability and quantity of the 661 

data for analysis, keeping in mind that models with more parameters require more data to estimate the 662 

parameters effectively.  663 

The structure analysis algorithms discussed throughout this section can be used to model the 664 

different methods for combining units discussed earlier (Figure 2). Repetition, Diversity, and Ordering are 665 

reasonably well captured by models such as Markov chains, hidden Markov models, and grammars. 666 

Networks capture structure either with or without order, although much of the application of networks has 667 

been done on unordered associations (Combination). Temporal information can be modelled as an 668 

attribute of an acoustic unit requiring extensions to the techniques discussed below, or as a separate 669 

process.  670 

Here we give a sample of some of the more important and more promising algorithms for animal 671 

acoustic sequence analysis, and discuss ways for selecting and evaluating analytical techniques. Selecting 672 

appropriate algorithms should involve the following steps. (i) Technique: understand the nature of the 673 

models and their mathematical basis. (ii) Suitability: assess the suitability of the models and their 674 

constraints with respect to the research questions being asked. (iii) Application: apply the models to the 675 

empirical data (training, parameter estimation). (iv) Assessment: extract metrics from the models that 676 

Page 30 of 90Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

summarise the nature of the sequences analysed. (v) Inference: compare metrics between data sets (or 677 

between empirical data and random null-models) to draw ecological, mechanistic, evolutionary, and 678 

behavioural inferences. (vi) Validate: determine the goodness of fit of the model to the data and 679 

uncertainty of parameter estimates. Bootstrapping techniques can allow validation with sets that were not 680 

used in model development. 681 

We consider five models in this section: (1) Markov chains, (2) hidden Markov models, (3) 682 

network models, (4) formal grammars, and (5) temporal models. 683 

 684 

(1) Markov chains 685 

Markov chains, or N-grams models, capture structure in acoustic unit sequences based on the recent 686 

history of a finite number of discrete unit types. Thus, the occurrence of a unit (or the probability of 687 

occurrence of a unit) is determined by a finite number of previous units. The history length is referred to 688 

as the order, and the simplest such model is a 0th order Markov model, which assumes that each unit is 689 

independent of one another, and simply determines the probability of observing any unit with no prior 690 

knowledge. A 1st order Markov model is one in which the probability of each unit occurring is determined 691 

only by the preceding unit, together with the “transition probability” from one unit to the next. This 692 

transition probability is assumed to be constant (stationary). Higher order Markov models condition the 693 

unit probabilities based on more than one preceding units, as determined by the model order. An N-gram 694 

model conditions the probability on the N-1 previous units, and is equivalent to an N-1th order Markov 695 

model. A Kth order Markov model of a sequence with C distinct units is defined by a CK x C matrix of 696 

transition probabilities from each of the CK possible preceding sequences, to each of the C possible 697 

subsequent units, or equivalently by a state transition diagram (Figure 6). 698 

As the order of the model increases, more and more data are required for the accurate estimation 699 

of transition probabilities, i.e., sequences must be longer, and many transitions will have zero counts. This 700 

is particularly problematic when looking at new data, which may contain sequences that were not 701 

previously encountered, as they will appear to have zero probability. As a result, Markov models with 702 
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orders greater than two (trigram, N=3) are rare. In principle, a Kth order Markov model requires sufficient 703 

data to provide accurate estimates of CK+1 transition probabilities. 704 

Closed-form expressions for maximum likelihood estimates of the transition probabilities can be 705 

used with conditional counts (Anderson & Goodman, 1957). For example, assuming five acoustic units 706 

(A-E), maximum likelihood estimates of the transition probabilities for a first order Markov model 707 

(bigram, N=2) can be found directly from the number of occurrences of each transition, e.g. 708 

{ , , , , }

( )
( |

( , )
)

i A B C D E

count AB
P
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t A i
∈

=
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 709 

 710 

Although not widely used in the animal communication literature, research in human natural language 711 

processing has led to the development of methods known as back-off models (Katz, 1987), which account 712 

for the underestimated probability of rare sequences using Good-Turing counts (Gale & Sampson, 1995). 713 

When a particular state transition is never observed in empirical data, the back-off model offers the 714 

minimum probability for this state transition so as not to rule it out automatically during the testing. 715 

Standard freely available tools such as the SRI language modelling toolkit (Stolcke, 2002) implement 716 

back-off models and can reduce the effort of adopting these more advanced techniques. 717 

Once Markovian transitions have been calculated and validated, the transition probabilities can be 718 

used to calculate a number of summary metrics using information theory (Shannon et al., 1949; Chatfield 719 

& Lemon, 1970; Hailman, 2008). For a review on the mathematics underlying information theories, we 720 

direct the readers to the overview in McCowan, Hanser & Doyle (1999) or Freeberg & Lucas (2012), 721 

which provides the equations as well as a comprehensive reference list to other previous work. Here we 722 

will define these quantitative measures with respect to their relevance in analysing of animal acoustic 723 

sequences. Zero-order entropy measures repertoire diversity: 724 

�� = �����	
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where C=|V| is the cardinality of the set of acoustic units V. First-order entropy begins to measure simple 725 

repertoire internal organisational structure by evaluating the relative frequency of use of different signal 726 

types in the repertoire: 727 

�� = � −����
 ���� ����

��∈�

 

where the probability of each acoustic unit is typically estimated based on frequencies of occurrence, as 728 

described earlier with N-grams. Higher-order entropies measure internal organisational structure, and thus 729 

one form of communication complexity, by examining how signals interact within a repertoire at the two-730 

unit sequence level, the three-unit sequence level, and so forth.  731 

One inferential approach is to calculate the entropic values from first-order and higher-order 732 

Markov models to summarise the extent to which sequential structure is present at each order. A random 733 

sequence would show no dependence of entropy on Markov order, whereas decreases in entropy as the 734 

order is increased would be an indication of sequential organisation, and thus higher communication 735 

complexity (Ferrer-i-Cancho & McCowan, 2012). These summary measures can then be further 736 

extended to compare the importance of sequential structure across different taxa, social and ecological 737 

contexts. These types of comparisons can provide novel insights into the ecological, environmental, 738 

social, and contextual properties that shape the structure, organisation, and function of signal repertoires 739 

(McCowan, Doyle & Hanser, 2002). 740 

The most common application of the Markov model is to test whether or not units occur 741 

independently in a sequence. Model validation techniques include the sequential and 2χ tests (Anderson 742 

& Goodman, 1957). For instance, Narins, Lewis & McClelland (2000) used a permutation test (Adams & 743 

Anthony, 1996) to evaluate the hypothesis that a frog with an exceptionally large vocal repertoire, Bufo 744 

madagascariensis, emitted any call pairs more often than would be expected by chance. Similar 745 

techniques were used to show non-random call production by Sayigh et al., (2012) with short-finned pilot 746 

whales Globicephala macrorhynchus, and by Bohn et al., (2009) with free-tailed bats Tadarida 747 
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brasiliensis. However, deviation from statistical independence does not in itself prove a sequence to have 748 

been generated by a Markov chain. Other tests, such as N-gram distribution (Jin & Kozhevnikov, 2011) 749 

may be more revealing. 750 

 751 

(2) Hidden Markov models 752 

HMMs are a generalisation of the Markov model. In Markov models, the acoustic unit history (of length 753 

N) can be considered the current “state” of the system. In hidden Markov models (HMMs) (Rabiner, 754 

1989), states are not necessarily associated with acoustic units, but instead represent the state of some 755 

possibly unknown and unobservable process. Thus, the system progresses from one state to another, 756 

where the nature of each state is unknown to the observer. Each of these states may generate a “signal” 757 

(i.e., a unit), but there is not necessarily a one-to-one mapping between state transitions and signals 758 

generated. For example, transitioning to state X might generate unit A, but the same might be true of 759 

transitioning to state Y. An observation is generated at each state according to a state-dependent 760 

probability density function, and state transitions are governed by a separate probability distribution 761 

(Figure 7). HMMs are particularly useful to model very complex systems, while still being 762 

computationally tractable. 763 

Extensions to the HMM model also exist, in which the state transition probabilities are non-764 

stationary. For example, the probability of remaining in the same state may decay with time e.g., due to 765 

neural depletion, as shown by Jin & Kozhevnikov (2011), or recurrent units may appear more often than 766 

expected by a Markov model, particularly where behavioural sequences are non-Markovian (Cane, 1959; 767 

Kershenbaum, 2013). Also, HMMs are popular in speech analysis (Rabiner, 1989), where emissions are 768 

continuous-valued, rather than discrete. 769 

HMMs have been used fairly extensively in speaker recognition (Lee & Hon, 1989), the 770 

identification of acoustic units in birdsong (Trawicki, Johnson & Osiejuk, 2005), and other analyses of 771 

bird song sequences. ten Cate, Lachlan & Zuidema (2013) reviewed analytical methods for inferring the 772 

structure of birdsong and highlighted the idea that HMM states can be thought of as possibly modelling 773 
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an element of an animal’s cognitive state. This makes it possible to build models that have multiple state 774 

distributions for the same acoustic unit sequence. For instance, in the trigram AAC, the probability given 775 

by the 2nd order Markov model, P(C|A, A) is fixed. There cannot be different distributions for observing 776 

the unit C, if the previous two units are A. Yet cognitive state may have the potential to influence the 777 

probability of observing C, even for identical sequence contexts (AA). Another state variable (θ) exists 778 

unobserved, as it reflects cognitive state, rather than sequence history. In this case, P(C|A, A,θ=0)≠P(C|A, 779 

A,θ=1). Hahnloser, Kozhevnikov & Fee (2002), Katahira et al. (2011) and Jin (2009) have used HMMs to 780 

model the interaction between song and neural substrates in the brain. A more recent example of this can 781 

be seen in the work of Jin & Kozhevnikov (2011), where they used states to model neural units in song 782 

production of the Bengalese finch Lonchura striata ver. domestica, restricting each state to the emission 783 

of a single acoustic unit, thus making acoustic units associated with each state deterministic while 784 

retaining the stochastic nature of state transitions.  785 

Because the states of a HMM represent an unobservable process, it is difficult to estimate the 786 

number of states needed to describe the empirical data adequately. Model selection methods and criteria 787 

(for example Akaike and Bayesian information criteria, and others) can be used to estimate model order 788 

(see Hamaker, Ganapathiraju & Picone, 1998, and Zucchini & MacDonald, 2009 for a brief review), so 789 

the number of states is often determined empirically. Increasing the number of states permits the 790 

modelling of more complex underlying sequences (e.g., longer term dependencies), but increases the 791 

amount of data required for proper estimation. The efficiency and accuracy of model fitting depends on 792 

model complexity, so that models with many states, many acoustic units, and perhaps many covariates or 793 

other conditions will take more time and require more data to fit. 794 

During training, HMM parameters are estimated using an optimisation algorithm (Cappé, 795 

Moulines & Rydén, 2005) that finds a combination of hidden states, state transition tables, and state-796 

dependent distributions that best describe the data. Software libraries for the training of HMMs are 797 

available in many formats (e.g., the Matlab function hmmtrain, the R package HMM; R Development 798 
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Team, 2012, and the Hidden Markov Model Toolkit; Young & Young, 1994). Similar considerations of 799 

dataset completeness exist to those when generating regular Markov models, most importantly, that long 800 

sequences of data are required.  801 

Although the states of a HMM are sometimes postulated to possess biologically relevant 802 

meaning, the internal states of the HMM represent a hidden process, and do not necessarily refer to 803 

concrete behavioural states. Specifically, the training algorithm does not contain an optimisation criterion 804 

that will necessarily associate model states with the functional or ecological states of the animal that a 805 

researcher is interested in observing (e.g., foraging, seeking a mate, etc.). While the functional/ecological 806 

state is likely related to the sequence, each model state may in fact represent a different subsequence of 807 

the data. Therefore, one cannot assume in general that there will be a one-to-one mapping between model 808 

and animal states.  Network structures derived from different empirical data are often widely different, 809 

and it can be misleading to make comparisons between HMMs derived from different data sets. 810 

Furthermore, obtaining consistent states requires many examples with respect to the diversity of the 811 

sequence being modelled. An overtrained network will be highly dependent on the data presented to it 812 

and small changes in the training data can result in very different model parameters, making state-based 813 

inference questionable.  814 

 815 

(3) Network models 816 

The structure of an acoustic sequence can also be described using a network approach (reviewed in 817 

Newman, 2003 and Baronchelli et al., 2013), as has been done for other behavioural sequences (e.g., 818 

pollen processing by honeybees; Fewell, 2003). A node in the network represents a type of unit, and a 819 

directional edge connecting two nodes means that one unit comes after the other in the acoustic sequence. 820 

For example, if a bird sings a song in the order: ABCABC; the network representing this song will have 821 

three nodes for A, B, and C, and three edges connecting A to B, B to C, and C to A (Figure 8). The edges 822 

may simply indicate association between units without order (undirected binary network), an ordered 823 
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sequence (directed binary network), or a probability of an ordered sequence (directed weighted network), 824 

the latter being equivalent to a Markov chain (Newman, 2009).  825 

The network representation is fundamentally similar to the Markov model, and the basic input for 826 

constructing a binary network is a matrix of unit pairs within the repertoire, which corresponds to the 827 

transition matrix in a Markov model. However, the network representation may be more robust than a 828 

Markov analysis, particularly when a large number of distinct unit types exist, precluding accurate 829 

estimation of transition probabilities (e.g., Sasahara et al., 2012). In this case, binary or simple directed 830 

networks may capture pertinent properties of the sequence, even if transition probabilities are unknown. 831 

One of the attractive features of network analysis is that a large number of quantitative network 832 

measures exist for comparison to other networks (e.g., from different individuals, populations, or species), 833 

or for testing hypotheses. We list a few of the popular algorithms that can be used to infer the structure of 834 

the acoustic sequence using a network approach. We refer the reader to introductory texts to network 835 

analysis for further details (Newman, 2009; Scott & Carrington, 2011). 836 

Degree centrality measures the number of edges directly connected to each node. In a directed 837 

network, each node has an in-degree and an out-degree, corresponding to incoming and outgoing edges. 838 

The weighted version of degree centrality is termed strength centrality, which takes into account the 839 

weights of each edge (Barrat et al., 2004). Degree/strength centrality identifies the central nodes in the 840 

network, corresponding to central elements in the acoustic sequence. For example, in the mockingbird 841 

Mimus polyglottos, which imitates sounds of other species, its own song is central in the network, 842 

meaning that it usually separates between other sounds by singing its own song (Gammon & Altizer, 843 

2011). 844 

Betweenness centrality is a measure of the role a central node plays in connecting other nodes. 845 

For example, if an animal usually uses three units before moving to another group of units, a unit that lies 846 

between these groups in the acoustic sequence will have high betweenness centrality. A weighted version 847 

of betweenness centrality was described in Opsahl, Agneessens & Skvoretz (2010). 848 
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Clustering coefficient describes how many triads of nodes are closed in the network. For example, 849 

if unit A is connected to B, and B is connected to C, a cluster is formed if A is also connected to C. 850 

Directed and weighted versions of the clustering coefficient have been described (Barrat et al., 2004; 851 

Fagiolo, 2007). 852 

Mean path length is defined as the average minimum number of connections to be crossed from 853 

any arbitrary node to any other. This measures the overall navigability in the network; as this value 854 

becomes large, a longer series of steps is required for any node to reach another. 855 

Small-world metric measures the level of connectedness of a network and is the ratio of the 856 

clustering coefficient C to the mean path length L after normalising each with respect to the clustering 857 

coefficient and mean path length of a random network: S=(C/Crand)/(L/Lrand)). If S > 1 the network is 858 

regarded as “small-world” (Watts & Strogatz, 1998; Humphries & Gurney, 2008), with the implication 859 

that nodes are reasonably well connected and that it does not take a large number of edges to connect 860 

most pairs of nodes. Sasahara et al. (2012) demonstrated that the network of California thrasher songs has 861 

a small-world structure, in which subsets of phrases are highly grouped and linked with a short mean path 862 

length. 863 

Network motifs are recurring structures that serve as building blocks of the network (Milo et al., 864 

2002). For example, a network may feature an overrepresentation of specific types of triads, tetrads, or 865 

feed-forward loops. Network motif analysis could be informative in comparing sequence networks from 866 

different individuals, populations or species. We refer the reader to three software packages available for 867 

motif analysis: FANMOD (Wernicke & Rasche, 2006); MAVisto (Schreiber & Schwöbbermeyer, 2005); 868 

and MFinder (Kashtan et al., 2002). 869 

Community detection algorithms offer a method to detect network substructure objectively 870 

(Fortunato, 2010). These algorithms identify groups of nodes with dense connections between them but 871 

that are sparsely connected to other groups/nodes. Subgroups of nodes in a network can be considered 872 

somewhat independent components of it, offering insight into the different subunits of acoustic 873 
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sequences. Multi-scale community detection algorithms can be useful for detecting hierarchical sequence 874 

structures (Fushing & McAssey, 2010; Chen & Fushing, 2012). 875 

Exponential family Random Graph Models (ERGMs) offer a robust analytic approach to evaluate 876 

the contribution of multiple factors to the network structure using statistical modelling (Snijders, 2002). 877 

These factors may include structural factors (e.g., the tendency to have closed triads in the network), and 878 

factors based on node or edge attributes (e.g., a tendency for connections between nodes that are 879 

acoustically similar). The goal of ERGMs is to predict the joint probability that a set of edges exist on 880 

nodes in a network. The R programming language package statnet has tools for model estimation and 881 

evaluation, and for model-based network simulation and network visualisation (Handcock et al., 2008). 882 

As with other models, many statistical tests for inference and model assessment require a 883 

comparison of the observed network to a set of random networks. For example, the clustering coefficient 884 

of an observed network can be compared to those of randomly generated networks, to test if it is 885 

significantly smaller or larger than expected. A major concern when constructing random networks is 886 

what properties of the observed network should be retained (Croft, James & Krause, 2008). The answer to 887 

this question depends on the hypothesis being tested. For example, when testing the significance of the 888 

clustering coefficient, it is reasonable to retain the original number of nodes and edges, density and 889 

possibly also the degree distribution, such that the observed network is compared to random networks 890 

with similar properties. 891 

Several software packages exist that permit the computation of many of the metrics from this 892 

section that can be used to make inferences about the network. Examples include UCINet (Borgatti, 893 

Everett & Freeman, 2002) , Gephi (Bastian, Heymann & Jacomy, 2009), igraph (Csardi & Nepusz, 2006), 894 

and Cytoscape (Shannon et al., 2003). 895 

 896 

(4) Formal grammars 897 

The structure of an acoustic sequence can be described using formal grammars. A grammar consists of a 898 

set of rewrite rules (or “productions”), that define the ways in which units can be ordered. Grammar rules 899 
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consist of operations performed on “terminals” (in our case, units), which are conventionally denoted with 900 

lower case letters, and non-terminals (symbols that must be replaced by terminals before the derivation is 901 

complete), conventionally denoted with upper case letters (note that this convention is inconsistent with 902 

the upper case convention used for acoustic unit labels). Grammars generate sequences iteratively, by 903 

applying rules repeatedly to a growing sequence. For example, the rule “U → a W” means that the 904 

nonterminal U can be rewritten with the symbols “a W.” The terminal a is a unit, as we are familiar with, 905 

but as W is a non-terminal, and may itself be rewritten by a different rule. For an example, see Figure 9. 906 

Sequences that can be derived by a given grammar are called grammatical with respect to that 907 

grammar. The collection of all sequences that could possibly be generated by a grammar is called the 908 

language of the grammar. The validation of a grammar consists of verifying that the grammar’s language 909 

matches exactly the set of sequences to be modelled. If a species produces sequences that cannot be 910 

generated by the grammar, the grammar is deemed “overselective”. A grammar that is “overgeneralising” 911 

produces sequences not observed in the empirical data – although it is often unclear whether this 912 

represents a true failure of the grammar, or insufficient sampling of observed sequences. In the example 913 

given in Figure 9, the grammar is capable of producing the sequence ABBBBBBBBBBBBB, however, 914 

since blue whales have not been observed to produce similar sequences in decades of observation, we 915 

conclude that this grammar is overgeneralising. It is important to note, however, that formal grammars are 916 

deterministic, in contrast to the probabilistic models discussed previously (Markov model, HMM). If one 917 

assigned probabilities to each of the rewriting rules, the particular sequence shown above may not have 918 

been observed simply because it is very unlikely.  919 

Algorithms known as parsers can be constructed from grammars to estimate the probability that a 920 

sequence belongs to the language for which the grammar has been inferred. Inferring a grammar from a 921 

collection of sequences is a difficult problem, which, as famously formulated by (Gold, 1967), is 922 

intractable for all but a number of restricted cases. Gold’s formulation, however, does not appear to 923 

preclude the learning of grammar in real-world examples, and is of questionable direct relevance to the 924 

understanding or modelling of the psychology of sequence processing (Johnson, 2004). When restated in 925 
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terms that arguably fit better the cognitive tasks faced by humans and other animals, grammar inference 926 

becomes possible (Clark, 2010; Clark, Eyraud & Habrard, 2010). Algorithms based on distributional 927 

learning, which seek probabilistically motivated phrase structure by recursively aligning and comparing 928 

input sequences, are becoming increasingly successful in sequence processing tasks such as modelling 929 

language acquisition (Solan et al., 2005; Kolodny, Lotem & Edelman, in press). 930 

A grammar can be classified according to its place in a hierarchy of classes of formal grammars 931 

known as the Chomsky hierarchy (Chomsky, 2002) and illustrated in Figure 10. These classes differ in 932 

the complexity of languages that can be modelled. The simplest class of grammars are called regular 933 

grammars, which are capable of describing the generation of any finite set of sequences or repeating 934 

pattern, and are fundamentally similar to Markov models. Figure 9 is an example of a regular grammar. 935 

Kakishita et al. (2009) showed that Bengalese finch songs can be modelled by a restricted class of regular 936 

grammars, called “k-reversible regular grammars,” which is learnable from only positive samples, i.e., 937 

observed and hence permissible sequences, without information on those sequences that are not 938 

permissible in the grammar. Context-free grammars are more complex, and are able to retain state 939 

information that enable one part of the sequence to affect another; this is usually demonstrated through 940 

the ability to create sequences of symbols where each unit is repeated the same number of times An
B

n 941 

where n denotes n repetitions of the terminal unit, e.g., AAABBB (A3
B

3). Context sensitive languages 942 

allow context dependent rewrite rules that have few restrictions, permitting further reaching dependencies 943 

such as in the set of sequences An
B

n
C

n. The highest level in the Chomsky hierarchy, recursively 944 

enumerable grammars, are more complex still, and rarely have relevance to animal communication 945 

studies.  946 

The level of a grammar within the Chomsky hierarchy can give an indication of the complexity of 947 

the communication system represented by that grammar. Most animal acoustic sequences are thought to 948 

be no more complex than regular grammars (Berwick et al., 2011), whereas complexity greater than the 949 

regular grammar is thought to be a unique feature of human language (Hauser, Chomsky & Fitch, 2002). 950 

Therefore, indication that any animal communication could not be represented by a regular grammar 951 
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would be considered an important discovery, and claims of context-free (but non-regular) sequences in 952 

European starlings Sturnus vulgaris (Gentner et al., 2006) have not been widely accepted (Van 953 

Heijningen et al., 2009; Beckers et al., 2012). The deterministic nature of regular grammars – or indeed 954 

any formal grammars – may explain why formal grammars are not sufficiently general to describe the 955 

sequences of many animal species, and formal grammars remain more popular in human linguistic studies 956 

than in animal communication research. 957 

 958 

(5) Temporal structure 959 

Information may exist in the relative or absolute timing of acoustic units in a sequence, rather than in the 960 

order of those units. In particular, timing and rhythm information may be of importance, and may be lost 961 

when acoustic sequences are represented as a series of symbols. This section describes two different 962 

approaches to quantifying the temporal structure in acoustic sequences: traditional techniques examining 963 

inter-event interval and pulse statistics (e.g., Randall, 1989; Narins et al., 1992), and recent multi-964 

timescale rhythm analysis (Saar & Mitra, 2008). 965 

Analyses of temporal structure can be applied to any audio recording, regardless of whether that 966 

recording contains recognisable sequences, individual sounds, or multiple simultaneously vocalising 967 

individuals. Such analyses are most likely to be informative, however, when recurring acoustic patterns 968 

are present, especially if those recurring patterns are rhythmic or produced at a predictable rate. 969 

Variations in interactive sound sequence production during chorusing and cross-individual 970 

synchronisation can be quantified through meter, or prosody analysis, and higher-order sequence structure 971 

can be identified through automated identification of repeating patterns. At the simplest level, it is 972 

possible to analyse the timing of sounds in a sequence, simply by recording when sound energy is above a 973 

fixed threshold. For instance, temporal patterns can be extracted automatically from simpler acoustic 974 

sequences by transforming recordings into sequences of numerical measures of the durations and silent 975 

intervals between sounds (Isaac & Marler, 1963; Catchpole, 1976; Mercado, Herman & Pack, 2003; 976 

Handel, Todd & Zoidis, 2009; Green et al., 2011), song bouts (Eens, Pinxten & Verheyen, 1989; Saar & 977 
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Mitra, 2008), or of acoustic energy within successive intervals (Murray, Mercado & Roitblat, 1998; 978 

Mercado et al., 2010). Before the invention of the Kay sonograph, which led to the routine analysis of 979 

audio spectrograms, temporal dynamics of bird song were often transcribed using musical notation 980 

(Saunders, 1951; Nowicki & Marler, 1988).  981 

Inter-pulse interval has been widely used to quantify temporal structure in animal acoustic 982 

sequences, for example in kangaroo rats Dipodomys spectabilis (Randall, 1989), fruit flies Drosophila 983 

melanogaster (Bennet-Clark & Ewing, 1969), and rhesus monkeys Macaca mulatta (Hauser, Agnetta & 984 

Perez, 1998). Variations in pulse intervals can encode individual information such as identity and fitness 985 

(Bennet-Clark & Ewing, 1969; Randall, 1989), as well species identity (Randall, 1997; Hauser, Agnetta 986 

& Perez, 1998). In these examples, comparing the median inter-pulse interval between two sample 987 

populations is often sufficient to uncover significant differences. 988 

More recently developed techniques for analysis of temporal structure require more detailed 989 

processing. For example, periodic regularities and repetitions of patterns within recordings of musical 990 

performances can be automatically detected and characterised (Paulus, Müller & Klapuri, 2010; Weiss & 991 

Bello, 2011). The first step in modern approaches to analysing the temporal structure of sound sequences 992 

involves segmenting the recording. The duration and distribution of individual segments can be fixed 993 

(e.g., splitting a recording into 100 ms chunks/frames) or variable (e.g., using multiple frame sizes in 994 

parallel or adjusting the frame size based on the rate and duration of acoustic events). The acoustic 995 

features of individual frames can then be analysed using the same signal processing methods that are 996 

applied when measuring the acoustic features of individual sounds, thereby transforming the smaller 997 

waveform into a vector of elements that describe features of the segment. Sequences of such frame-998 

describing vectors then would typically be used to form a matrix representing the entire recording. In this 999 

matrix, the sequence of columns (or rows) corresponds to the temporal order of individual frames 1000 

extracted from the recording. 1001 

Regularities within the feature matrix generated from frame-describing vectors reflect temporal 1002 

regularities within the original recording. Thus, the problem of describing and detecting temporal patterns 1003 
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within a recording is transformed into the more computationally tractable problem of detecting and 1004 

identifying structure within a matrix of numbers (as opposed to a sequence of symbols). If each frame is 1005 

described by a single number (e.g., mean amplitude), then the resulting sequence of numbers can be 1006 

analysed using standard time-frequency analysis techniques to reveal rhythmic patterns (Saar & Mitra, 1007 

2008). Alternatively, each frame can be compared with every other frame to detect similarities using 1008 

standard measures for quantifying the distance between vectors (Paulus, Müller & Klapuri, 2010). These 1009 

distances are then often collected within a second matrix called a self-distance matrix. Temporal 1010 

regularities within the original feature matrix are visible as coherent patterns with the self-distance matrix 1011 

(typically showing up as patterned blocks or diagonal stripes). Various methods used for describing and 1012 

classifying patterns within matrices (or images) can then be used to classify these two-dimensional 1013 

patterns.  1014 

Different patterns in these matrices can be associated with variations in the novelty or 1015 

homogeneity of the temporal regularities over time, as well as the number of repetitions of particular 1016 

temporal patterns (Paulus, Müller & Klapuri, 2010). Longitudinal analyses of time-series measures of 1017 

temporal structure can also be used to describe the stability or dynamics of rhythmic pattern production 1018 

over time (Saar & Mitra, 2008). An alternative approach to identifying temporal structure within the 1019 

feature matrix is to decompose it into simpler component matrices that capture the most recurrent features 1020 

within the recording (Weiss & Bello, 2011). Similar approaches are common in modern analyses of high-1021 

density EEG recordings (Makeig et al., 2004). Algorithms for analysing the temporal dynamics of brain 1022 

waves may thus also be useful for analysing temporal structure within acoustic recordings. 1023 

 1024 

 1025 

V. FUTURE DIRECTIONS 1026 

 1027 

Many of the central questions in animal communication research focus on the meaning of signals and on 1028 

the role of natural, sexual, and social selection on the evolution of communication systems. As shown in 1029 
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Figure 2, information can exist in a sequence simultaneously via diversity, and order, as well as other less 1030 

well-studied phenomena. Both natural and sexual selection may act on this information, either through 1031 

conspecifics or heterospecifics (e.g., predators). This is especially true for animal acoustic sequences 1032 

because the potential complexity of a sequence may imply greater scope for both meaning and selective 1033 

pressure. Many new questions – and several old and unanswered ones – can be addressed by the 1034 

techniques that we have outlined in this review. Some of the most promising avenues for future research 1035 

are outlined below. First, we illustrate the integration of our framework using two case studies: the songs 1036 

of rock hyraxes, Procavia capensis, and California thrashers, Toxostoma redivivum. Then, we discuss 1037 

four outstanding questions in animal acoustic sequences that can potentially be addressed more 1038 

effectively using the approaches proposed in this review. 1039 

 1040 

(1) Two case studies 1041 

(a) Rock hyraxes 1042 

Kershenbaum et al. (2012) examined the syntactic structure of hyrax vocal sequences. They selected units 1043 

using the separation by silence approach (Figure 3a). A histogram showing the frequency of different 1044 

lengths of silence in the recordings was strongly bimodal (Kershenbaum et al., 2012:Figure S3), 1045 

supporting the separation by silence paradigm. From these recordings, five distinct syllable types were 1046 

identified. Previous studies (Koren & Geffen, 2009; Koren & Geffen, 2011) had identified only three 1047 

types of hyrax syllables, but Kershenbaum et al. (2012) felt that one of the syllable categories (“wail”) 1048 

was too general for their data, and that continuous variation in the length and frequency modulation 1049 

patterns in the “wail” syllable could be perceived as different units by the receiver (Figure 5b). To avoid 1050 

observation bias, they used an automatic system to measure the length and bandwidth of the purportedly 1051 

“wail” syllables, and divided them into two further categories, based on fixed thresholds. Inspection “by 1052 

eye” showed that only 10% of automatically classified syllables needed manual reclassification.  1053 

The analysis of these hyrax vocalisations followed the Ordering paradigm (Figure 2c). No 1054 

attempt was made to fit these data to one of the models described in Section IV.  1055 

Page 45 of 90 Biological Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

The main finding of this study was to show the presence of geographical dialects, by quantifying 1056 

the differences in order (syntax) using the edit (or Levenshtein) distance (Garland et al., 2012), via the 1057 

Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). Using a quantitative tool to compare 1058 

sequence similarity, and demonstrating that hyrax vocalisations have syntactic structure, the study showed 1059 

that complex vocalisation syntax is more common in mammals than commonly believed. 1060 

 1061 

(b) California thrashers 1062 

Sasahara et al. (2012) examined the song sequences of the California thrasher, a bird with an extensive 1063 

repertoire (over 180 song types in this study). Acoustic units were separated by silence (Figure 3a), and 1064 

classified “by eye” against a library catalogue of phrase types. However, to assess the reliability of the 1065 

classification criteria, the researchers trained a support vector machine (or a support vector network) on a 1066 

sample of manually classified units, and ensured that the automatic and manual classifications were 1067 

consistent. Although song phrases were typically monosyllabic, if the time between units was small, units 1068 

were grouped into a larger “phrase” (Figure 5c). Similarly two or more units were considered a single unit 1069 

if they were always associated with each other in a series (Figure 2c). Although not analysed in Sasahara 1070 

et al. (2012), subsequent unpublished work indicated that sequences of phrases can be grouped into higher 1071 

levels of organisation (Figure 3d), with longer intervals between them.  1072 

Although Markov and hidden Markov models work well for some species, these models are 1073 

unlikely to work for California thrashers because of the very large phrase repertoire; nodes in the model 1074 

appear to grow without limit, and estimation of the transition probabilities will be inaccurate. Sasahara et 1075 

al. (2012) used a network model, to bypass these problems.  1076 

Figure 11 shows a sample of the analysed data, with the phrase types as nodes, and the colour of 1077 

directed lines indicating the proportion of observed transitions. The network structure for California 1078 

thrasher songs varies between individuals, as indicated by network metrics of mean path length, clustering 1079 

coefficient, and degree centrality (Section IV.3). All individuals showed networks with a “small world” 1080 
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structure. Individual networks also showed variation in network metrics with time, indicating that song 1081 

structure was non-stationary. 1082 

 Although traditional analytical techniques such as Markov models would have been inappropriate 1083 

for these data, by using new and alternative approaches (a network model), the authors extracted 1084 

quantitative metrics on song structure, and successfully used these to compare the songs of different 1085 

individuals. These techniques are a promising approach for the highly complex sequences of species such 1086 

as the thrasher, mockingbird, and humpback whales.  1087 

  1088 

(2) Outstanding questions in animal vocal sequences 1089 

(a) How do we define communication complexity? 1090 

Perceptual and developmental constraints may drive selection for communication complexity. However, 1091 

complexity can exist at any one (or more) of the six levels of information encoding that we have detailed, 1092 

often leading to definitions of “communication complexity” that are inconsistent between researchers. As 1093 

it is likely that no one definition of communication complexity can be universally valid, any definition 1094 

has relevance only after choosing to which of the encoding paradigms described in Figure 2 – or 1095 

combination thereof – it applies. Complexity defined, say, for the Repetition paradigm (Figure 2a) and 1096 

quantified as pulse rate variation, is not easily compared with Diversity complexity (Figure 2b), typically 1097 

quantified as repertoire size. 1098 

For example, one hotly debated subject is whether selection from increased social complexity or 1099 

sexual selection is associated with increased acoustic complexity (Pollard & Blumstein, 2012), with 1100 

“complexity” defined as repertoire size (Figure 2b). Some researchers have proposed the idea that 1101 

communicative complexity, again defined as repertoire size, has at least in some species been driven by 1102 

the need to encode more information, or redundant information, in a complex social environment 1103 

(Freeberg et al., 2012). Alternatively, complexity metrics that measure Ordering (Figure 2d), often based 1104 

on non-zero orders of entropy (McCowan, Hanser & Doyle, 1999; Kershenbaum, 2013), may be more 1105 

biologically relevant in species that use unit ordering to encode information. Understanding the variety of 1106 
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sequence types is essential to choosing the relevant acoustic unit definitions, and without this, testing 1107 

competitive evolutionary hypotheses becomes problematic.  1108 

 1109 

(b) What is the role of sequence dialects in speciation? 1110 

It is tempting to speculate that acoustic sequences may have arisen from earlier selective forces acting on 1111 

a communication system based on single units. Alternatively, however, sequences could arise by neutral 1112 

processes analogous to drift. A complex interplay between production, perception, and encoding of 1113 

information in sequence syntax (along with the large relative differences between different species in 1114 

adaptive flexibility, Seyfarth & Cheney, 2010) could lead to adaptive pressures on communication 1115 

structure. In a few species, geographic syntactic dialects (Nettle, 1999) have been demonstrated (e.g., 1116 

Rhesus monkeys Macaca mulatta, Gouzoules, Gouzoules & Marler, 1984; chimpanzees Pan troglodytes, 1117 

Arcadi, 1996; Mitani, Hunley & Murdoch, 1999; Crockford & Boesch, 2005; Carolina chickadees Poecile 1118 

carolinensis, Freeberg, 2012; and rock hyraxes Procavia capensis, Kershenbaum et al., 2012) raising the 1119 

question of whether sequence syntax has a role in speciation (Wiens, 1982; Nevo et al., 1987; Irwin, 1120 

2000; Lachlan et al., 2013). However, the definition of acoustic units is rarely considered. In particular, 1121 

perceptual binding (Figure 5a) and the response of the focal species must be considered, as reproductive 1122 

isolation cannot occur on the basis of differences that are not perceived by the receiver. 1123 

 1124 

(c) How do individual differences in acoustic sequences arise? 1125 

The proximal processes driving individual differences in communicative sequences are rarely 1126 

investigated. Likewise, although there is a decades-rich history of song learning studies in songbirds, the 1127 

ontogenetic processes giving rise to communicative sequences per se have rarely been studied. Neural 1128 

models (e.g., Jin, 2009) can provide probabilistic descriptions of sequence generation (e.g., Markov 1129 

models, hidden Markov models), but the nature of the underlying stochasticity is unknown. The 1130 

California thrasher example given above (Figure 11), shows how an appropriate choice of a model for 1131 

sequence structure can allow quantitative comparisons between the parameters of different individuals. 1132 
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However, model fitting is only valid if unit selection is biologically appropriate (Section III). Other, more 1133 

abstract, questions can also be addressed. Individual humans use language with varying degrees of 1134 

efficiency, creativity, and effectiveness. Shakespearean sequences are radically unlike Haiku sequences, 1135 

political speeches, or the babbling of infants, in part because their communicative purposes differ. While 1136 

sexual selection and survival provide some purposive contexts through which we can approach meaning, 1137 

additional operative contexts may suggest other purposes, and give us new frameworks through which to 1138 

view vocal sequences (Waller, 2012). 1139 

 1140 

(d) How might information exist within units themselves? 1141 

Another promising direction lies in studying how animals use concatenated signals with multiple 1142 

meanings. For example, Jansen, Cant & Manser (2012) provided evidence for temporal segregation of 1143 

information within a syllable, where one segment of a banded mongoose Mungos mungo close call is 1144 

individually distinct, while the other segment contains meaning about the caller’s activity. Similar results 1145 

have been demonstrated in the song of the white-crowned sparrow Zonotrichia leucophrys (Nelson & 1146 

Poesel, 2007). Understanding how to divide acoustic units according to criteria other than silent gaps 1147 

(Figure 3) can change the research approach, as well as the results of a study. The presence of information 1148 

in sub-divisions of traditional acoustic units is a subject underexplored in the field of animal 1149 

communication, and an understanding of the production and perceptual constraints on unit definition 1150 

(Figure 5) is essential. 1151 

 1152 

We conclude by noting that more detailed and rigorous approaches to investigating animal acoustic 1153 

sequences will allow us to investigate more complex systems that have not been formally studied. A 1154 

number of directions lack even a basic framework as we have proposed in this review. For example, there 1155 

is much to be learned from the detailed study of the sequences created by multiple animals vocalising 1156 

simultaneously, and from the application of sequence analysis to multimodal communication with a 1157 

combination of acoustic, visual, and perhaps other modalities (e.g., Partan & Marler, 1999; Bradbury & 1158 
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Vehrencamp, 2011; Munoz & Blumstein, 2012). Eavesdropping, in which non-target receivers (such as 1159 

predators) gain additional information from listening to the interaction between individuals, has only just 1160 

begun to be studied in the context of sequence analysis. Finally, the study of non-stationary systems, 1161 

where the statistical nature of the communicative sequences changes over long or short time scales (such 1162 

as appears to occur in humpback whale songs) is ripe for exploration. We encourage researchers in these 1163 

fields to extend treatments such as ours to cover these more complex directions in animal communication 1164 

research, thereby facilitating quantitative comparisons between fields. 1165 

 1166 

VI. CONCLUSIONS 1167 

(1)  The use of acoustic sequences by animals is widespread across a large number of taxa. As diverse as 1168 

the sequences themselves is the range of analytical approaches used by researchers. We have proposed a 1169 

framework for analysing and interpreting such acoustic sequences, based around three central ideas of 1170 

understanding the information content of sequences, defining the acoustic units that comprise sequences, 1171 

and proposing analytical algorithms for testing hypotheses on empirical sequence data. 1172 

(2) We propose use of the term “meaning” to refer to a feature of communication sequences that 1173 

influences behavioural and evolutionary processes, and the term “information” to refer to the non-random 1174 

statistical properties of sequences. 1175 

(3) Information encoding in acoustic sequences can be classified into six non-mutually exclusive 1176 

paradigms: Repetition, Diversity, Combination, Ordering, Overlapping, and Timing. 1177 

(4) The constituent units of acoustic sequences can be classified according to production mechanisms, 1178 

perception mechanisms, or analytical properties. 1179 

(5) Discrete acoustic units are often delineated by silent intervals. However, changes in the acoustic 1180 

properties of a continuous sound may also indicate a transition between discrete units, multiple repeated 1181 

sounds may act as a discrete unit, and more complex hierarchical structure may also be present. 1182 
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(6) We have reviewed five approaches used for analysing the structure of animal acoustic sequences: 1183 

Markov chains, hidden Markov models, network models, formal grammars, and temporal models, 1184 

discussing their use and relative merits. 1185 

(7) Many important questions in the behavioural ecology of acoustic sequences remain to be answered, 1186 

such as understanding the role of communication complexity, including multimodal sequences, the 1187 

potential effect of communicative isolation on speciation, and the source of syntactic differences between 1188 

individuals. 1189 

 1190 
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FIGURE LEGENDS 1881 

 1882 

Figure 1. Overall flowchart showing a typical analysis of animal acoustic sequences. In this review, we 1883 

discuss Identifying units, Characterising sequences, and Identifying meaning. 1884 

 1885 

Figure 2. Different ways that units can be combined to encode information in a sequence. 1886 

 1887 

Figure 3. Examples of the different criteria for dividing a spectrogram into units. (a) Separating units by 1888 

silent gaps is probably the most commonly used criterion. (b) An acoustic signal may changes its 1889 

properties at a certain time, without the presence of a silent “gap”, for instance becoming harmonic or 1890 

noisy. (c) A series of similar sounds may be grouped together as a single unit, regardless of silent gaps 1891 

between them; a chirp sequence is labelled as C. (d) A complex hierarchical structure to the sequence, 1892 

combining sounds that might otherwise be considered fundamental units. 1893 

 1894 

Figure 4. Example of cepstral processing of a grey wolf Canis lupis howl and crickets chirping.  1895 

Recording was sampled at Fs = 16 kHz, 8 bit quantization.  (a) Standard spectrogram analyzed with a 15 1896 

ms Blackman-Harris window.    (b) Plot of transform to cepstral domain.  Lower quefrencies are related 1897 

to vocal tract information.  F0 can be determined from the "cepstral bump" apparent between quefrencies 1898 

25-45 and can be derived by Fs/quefrency.  (c) Cepstrum (inset) of the frame indicated by an arrow (2.5 s) 1899 

along with reconstructions of the spectrum created from truncated cepstral sequences.  Fidelity improves 1900 

as the number of cepstra are increased. 1901 

 1902 

Figure 5. Perceptual constraints for the definition of sequence units. (a) Perceptual binding, where two 1903 

discrete acoustic elements may be perceived by the receiver either as a single element, or as two separate 1904 

ones. (b) Categorical perception, where continuous variation in acoustic signals may be interpreted by the 1905 
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receiver as discrete categories. (c) Spectrotemporal constraints, where if the receiver cannot distinguish 1906 

small differences in time or frequency, discrete elements may be interpreted as joined. 1907 

 1908 

Figure 6. State transition diagram equivalent to a 2nd order Markov model and trigram model (N=3) for a 1909 

sequence containing A’s and B’s. 1910 

 1911 

Figure 7. State transition diagram of a two state (X, Y) hidden Markov model capable of producing 1912 

sequences of acoustic units A and B. When in state X, acoustic units emission of signals A and B are 1913 

equally likely Pre(A|X)= Pre(B|X)=0.5, and when in state Y, acoustic unit A is much more likely Pre 1914 

(A|Y)=0.9 than B Pre (B|Y)=0.1. Transitioning from state X to state Y occurs with probability Prt 1915 

(X→Y)=0.6, whereas from state Y to state X with probability Prt (Y→X)=0.3. 1916 

 1917 

Figure 8. Simple networks constructed from the sequence of acoustic units ABC. The undirected binary 1918 

network (left) simply indicates that A, B, and C are associated with one another without any information 1919 

about transition direction. The directed binary network (centre) adds ordering information, for example 1920 

that C cannot follow A. The weighted directed network (right) show the probabilities of the transitions 1921 

between units based on a bigram model. 1922 

 1923 

Figure 9. Grammar (rewrite rules) for approximating the sequence of acoustic units produced by Eastern 1924 

Pacific blue whales Balaenoptera musculus. There are three acoustic units, A, B, and D (Oleson, Wiggins 1925 

& Hildebrand, 2007), and the sequence begins with a start symbol S. Individual B or D calls may be 1926 

produced, or song, which consists of repeated sequences of an A call followed by one or more B calls. The 1927 

symbol | indicates a choice, and ε, the empty string, indicates that the rule is no longer used. A derivation 1928 

is shown for the song ABBAB. Grammar produced with contributions from Ana Širović (Scripps 1929 

Institution of Oceanography).  1930 

 1931 
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Figure 10. The classes of formal grammars known as the Chomsky hierarchy (Chomsky, 2002). Each 1932 

class is a generalisation of the class it encloses, and is more complex than the enclosed classes. Image 1933 

publicly available under the Creative Commons Attribution-Share Alike 3.0 Unported license. 1934 

https://commons.wikimedia.org/wiki/File:Wiki_inf_chomskeho_hierarchia.jpg 1935 

 1936 

Figure 11. Network diagram for a sample of California thrasher song data. Nodes indicate distinct phrase 1937 

types (acoustic units), arrows indicate transitions, with the colour of the arrow indicating the strength of 1938 

probability of transition bewteen two units (hotter colours represent more likely transitions). 1939 

 1940 

 1941 

 1942 
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Table 1. Examples of different approaches to unit definition, from different taxa and with different research aims.  

 

Unit criterion Taxon Goal of division into “units” 

Descriptive Production Perception Function 

Separated by 

silence 

Birds Swamp sparrow Melospiza 

georgiana note: (Marler & 
Pickert, 1984) 

 

Black capped chickadee 
Poecile atricapillus note: 

(Nowicki & Nelson, 1990) 

Zebra finch 

Taeniopygia guttata 
syllable: (Cynx, 

1990) 

Swamp sparrow 

Melospiza georgiana 
note: (Nelson & Marler, 

1989) 

 
Black-capped chickadee 

Poecile atricapillus 

notes: (Sturdy, Phillmore 
& Weisman, 2000) 

Carolina chickadee Poecile 

carolinensis and Black-capped 
chickadee P. atricapillus note 

composition → predator, foraging 

activity, identity: (Krams et al., 2012) 

Terrestrial 

mammals 

Meerkat Suricata suricatta 

calls: (Manser, 2001) 

 

Gibbon Hyrobates lar 

phrase: (Raemaekers, 
Raemaekers & Haimoff, 

1984) 

 

Rock hyrax Procavia 

capensis songs: 

(Kershenbaum et al., 2012) 

 

Free-tailed bat Tadarida 

brasiliensis syllable: (Bohn 
et al., 2008) 

 

Mustached bat Pteronotus 
parnellii syllable: (Kanwal 

et al., 1994) 

 Meerkat Suricata 

suricatta calls: (Manser, 

2001) 

Meerkat Suricata suricatta calls → 

predator type: (Manser, 2001) 

 

Rock hyrax Procavia capensis songs 

→ male quality: (Koren & Geffen, 
2009) 

 

Free-tailed bat Tadarida brasiliensis 

syllable → courtship: (Bohn et al., 

2008) 
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Marine 

mammals 

Humpback whale Megaptera 

novaeangliae unit: (Payne & 

McVay, 1971) 

 

Killer whale Orcinus orca 

calls: (Ford, 1989) 

 

Bottlenose dolphin Tursiops 
truncatus signature whistles: 

(Caldwell, 1965; McCowan 

& Reiss. 1995) 

 Bottlenose dolphin 

Tursiops truncatus 

signature whistles: 

(Janik, Sayigh & Wells, 

2006) 

Bottlenose dolphin Tursiops truncatus 

signature whistles → individual 

identity: (Sayigh et al., 1999; Harley, 

2008) 

 

Killer whale Orcinus orca calls: → 

group identity: (Ford, 1989) 

Change in 

acoustic 

properties 

(regardless of 

silence) 

Birds  Northern cardinal 

Cardinalis 

cardinalis: (Suthers, 

1997) 

  

Terrestrial 

mammals 

Black-fronted titi monkey 

Callicebus nigrifrons: 

(Cäsar et al., 2012b) 

 

Western gorilla Gorilla 

gorilla: (Salmi, 
Hammerschmidt & Doran-

Sheehy, 2013) 

 

Red titi monkey Callicebus 

cupreus: (Robinson, 1979) 

Banded mongoose 

Mungos mungo: 

(Jansen, Cant & 

Manser, 2012) 

 

Mustached bat 

Pteronotus parnellii: 

(Esser et al., 1997) 

Black-fronted titi monkey Callicebus 

nigrifrons alarm calls → predator 

type and behaviour: (Cäsar et al., 

2012a) 

 

Western gorilla Gorilla gorilla 
vocalisations → multiple functions: 

(Salmi, Hammerschmidt & Doran-

Sheehy, 2013) 

 

Tufted capuchin monkeys Sapajus 

nigritus calls→ predator type: 

(Wheeler, 2010b) 
  

Banded mongoose Mungos mungo 

close calls → individual identity, 

group cohesion: (Jansen, Cant and 

Manser, 2012) 
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Marine 

mammals 

Bottlenose dolphin Tursiops 

truncatus whistle loops: 

(Caldwell, Caldwell & 

Tyack, 1990) 

 

Killer whale Orcinus orca, 

subunit of calls: (Shapiro, 

Tyack & Seneff, 2010) 
 

Humpback whale Megaptera 

novaeangliae  subunit: 

(Payne & McVay, 1971) 

 

Leopard seal Hydrurga 

leptonyx calls: (Klinck, 

Kindermann & Boebel, 

2008) 

   

Series of sounds Birds Song sparrow song phrases 

(note clusters and trills): 
(Mulligan, 1966; Marler & 

Sherman, 1985) 

 
 

Emberizid sparrow 

trills: (Podos, 1997) 

 Carolina chickadee Poecile 

carolinensis D-notes → food 

availability: (Mahurin & Freeberg, 

2009) 

Terrestrial 

mammals 

Black-fronted titi monkey 

Callicebus nigrifrons: 

(Cäsar et al., 2012b; Cäsar et 

al., 2013) 

 
Mustached bat Pteronotus 

parnellii syllable: (Kanwal 

et al., 1994) 
 

Free-tailed bat Tadarida 

brasiliensis calls: (Bohn et 

al., 2008) 

 Black-fronted titi 

monkey Callicebus 

nigrifrons: (Cäsar et al., 

2012a) 

 
Colobus Colobus 

guereza sequences: 

(Schel, Candiotti & 
Zuberbühler, 2010) 

 

Tufted capuchin monkey 

Sapajus nigritus bouts: 

Chimpanzee Pan troglodytes pant 

hoots → foraging: (Notman & 

Rendall, 2005) 

 

Free-tailed bat Tadarida brasiliensis 
calls → courtship: (Bohn et al., 2008) 
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Hyrax Procavia capensis 

social calls: (Ilany et al., 

2013) 

 

Chimpanzee Pan troglodytes 

pant hoots: (Notman & 

Rendall, 2005) 

(Wheeler, 2010b) 

Marine 

mammals 

Humpback whale Megaptera 

novaeangliae phrases: 
(Payne & McVay, 1971) 

 

Bottlenose dolphin Tursiops 

truncatus whistles: (Deecke 

& Janik, 2006) 

 
Free-tailed bat Tadarida 

brasiliensis syllable: (Bohn 

et al., 2008) 

  Bottlenose dolphin Tursiops truncatus 

signature whistles → individual 

identity, group cohesion: (Quick & 

Janik, 2012) 

 

Humpback whale Megaptera 

novaeangliae phrases → unknown: 

(Payne & McVay, 1971) 

Higher levels of 

organisation 

Birds  Swamp sparrow 

Melospiza georgiana 

trills: (Podos, 1997) 

Song sparrow Melospiza 

melodia songs: (Searcy 

et al., 1995) 

Skylark Alauda arvensis songs → 

group identity: (Briefer, Rybak & 

Aubin, 2013) 

 

Terrestrial 

mammals 

Red titi monkey Callicebus 

cupreus syllable: (Robinson, 

1979) 
 

Free-tailed bat Tadarida 

brasiliensis songs: (Bohn et 
al., 2008) 

Rhesus-macaque 

Macaca mulatta 

vocalisations: (Fitch, 
1997) 

 

Black-fronted titi 
monkey Callicebus 

nigrifrons: (Cäsar et 

Putty-nosed monkey 

Cercopithecus nictitans 

sequences: (Arnold & 
Zuberbühler, 2006b) 

 

Red titi monkey 
Callicebus cupreus 

syllable: (Robinson, 

Chimpanzee Pan troglodytes phrases 

→ group identity: (Arcadi, 1996) 

 
Putty-nosed monkey Cercopithecus 

nictitans sequences → predators 

presence, group movement: (Arnold 
& Zuberbühler, 2006b) 
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al., 2013) 

 

1979) Tufted capuchin monkeys Sapajus 

nigritus calls→ predator type: 

(Wheeler, 2010b) 

Marine 
mammals 

Humpback whale Megaptera 
novaeangliae theme and 

song: (Payne & McVay, 

1971) 

  Humpback whale Megaptera 
novaeangliae song → mating display 

- female attraction/male-male 

interactions (Darling, Jones & 
Nicklin, 2006; Smith et al., 2008) 
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Data 
collection

Raw audio

Filtering
Time-frequency 

analysis (e.g. 
spectrogram)

Division into units

Change in 
acoustic 

properties

Separated 
by silence

Series of 
sounds

Higher level 
of 

organisation

Select relevant units

Extract 
features

Characterise 
sequence

Clustering

Repertoire

Identify meaning

Repitition Diversity Composition

Ordering Overlapping Temporal

Testable hypotheses & behavioural experiments

Data collection

Identifying units

Characterising 
sequence

Identifying 
meaning

Time-series 
analysis

Preprocessing
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A A A A A AA

A A A A A B C D

A B C A BC AB C

A B C A B C

(a) Repetition

(b) Diversity

(c) Combination

(d) Ordering

(e) Overlapping

(f) Timing

A A A B A CB

A B C D

C A D B

A B C D

C A D B

 Type Criterion Example 
a Repetition Single unit repeated more than once Chickadee D-note mobbing call 

(Baker & Becker. 2002)  
b Diversity A number of distinct units are present. Order 

is unimportant. 
Birdsong repertoire size (Searcy. 
1992) 

c Combination Set of units has different information from 
each unit individually. Order is unimportant. 

Banded mongoose close calls 
(Jansen, Cant & Manser. 2012) 

d Ordering Set of units has different information from 
each unit individually. Order is important 

Human language, Humpback 
song (Payne & McVay. 1971) 

e Overlapping Information conveyed in the relationship 
between sequences of two or more individuals 

Sperm whale codas (Schulz et al. 
2008) 

f Timing Timing between units (often between different 
individuals) conveys information 

Group alarm calling (Thompson 
& Hare. 2010) 
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A B C
Fr

eq

Time

(a) Separated by silence

(b) Change in acoustic properties (regardless of silence)

A B

Fr
eq

Time

A B C

(c) Series of sounds

Fr
eq

Time

A BA B

(d) Higher levels of organization

Fr
eq

Time
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Figure 4. Example of cepstral processing of a grey wolf Canis lupis howl and crickets chirping.  Recording 
was sampled at Fs = 16 kHz, 8 bit quantization.  (a) Standard spectrogram analyzed with a 15 ms 

Blackman-Harris window.    (b) Plot of transform to cepstral domain.  Lower quefrencies are related to vocal 

tract information.  F0 can be determined from the "cepstral bump" apparent between quefrencies 25-45 and 
can be derived by Fs/quefrency.  (c) Cepstrum (inset) of the frame indicated by an arrow (2.5 s) along with 

reconstructions of the spectrum created from truncated cepstral sequences.  Fidelity improves as the 
number of cepstra are increased.  
190x178mm (300 x 300 DPI)  
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≠ ≠ 

(a) Perceptual binding. Two discrete acoustic elements may be perceived by the 
receiver either as a single element, or as two separate ones

(b) Categorical perception. Continuous variation in acoustic signals may be 
interpreted by the receiver as discrete categories

(c) Spectrotemporal constraints. If the receiver cannot distinguish small differences in 
time or frequency, discrete elements may be interpreted as joined
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AB

BA AA

BB

P(B|AB)=0.4

P
(A
|A

B
)=0

.6

P(B|BB)=0.1

P(A|BB)=0.9

P(A|AA)=0.2

P(B|AA)=0.8

P(A|BA)=0.3

P
(B
|B
A
)=
0
.7

  

 A  B  

P(X|AA) 0.2  0.8  

P(X|AB) 0.6  0.4  

P(X|BA) 0.3  0.7  

P(X|BB) 0.9  0.1  
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Prt(X→ Y)=0.6

Prt(Y→ X)=0.3

Prt(X→ X)=0.4 Prt(Y→ Y)=0.7

Pre (A|X)=0.5

Pr
e (B|X)=0.5

X

AA
BB

Pre(A
|Y)=0.9

Pr
e
(B

|Y
)=

0.
1

AA
BB

Y
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Figure 9. Grammar (rewrite rules) for approximating the sequence of acoustic units produced by Eastern 
Pacific blue whales Balaenoptera musculus. There are three acoustic units, A, B, and D (Oleson, Wiggins & 

Hildebrand. 2007), and the sequence begins with a start symbol S. Individual B or D calls may be produced, 
or song, which consists of repeated sequences of an A call followed by one or more B calls. The symbol | 

indicates a choice, and ε, the empty string, indicates that the rule is no longer used. A derivation is shown 
for the song ABBAB. Grammar produced with contributions from Ana Širović (Scripps Institution of 

Oceanography).  
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Figure 10. The classes of formal grammars known as the Chomsky hierarchy (Chomsky. 2002). Each class is 
a generalisation of the class it encloses, and is more complex than the enclosed classes. Image publicly 

available under the Creative Commons Attribution-Share Alike 3.0 Unported license. 

https://commons.wikimedia.org/wiki/File:Wiki_inf_chomskeho_hierarchia.jpg  
251x181mm (72 x 72 DPI)  
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Figure 11. Network diagram for a sample of California thrasher song data. Nodes indicate distinct phrase 
types (acoustic units), arrows indicate transitions, with the colour of the arrow indicating the strength of 

probability of transition bewteen two units (hotter colours represent more likely transitions).  
281x280mm (300 x 300 DPI)  
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